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Leaf area index (LAI) of alfalfa is a crucial indicator of its growth status and a

predictor of yield. The LAI of alfalfa is influenced by environmental factors, and

the limitations of non-linear models in integrating these factors affect the

accuracy of LAI predictions. This study explores the potential of classical non-

linear models and deep learning for predicting alfalfa LAI. Initially, Logistic,

Gompertz, and Richards models were developed based on growth days to

assess the applicability of nonlinear models for LAI prediction of alfalfa. In

contrast, this study combines environmental factors such as temperature and

soil moisture, and proposes a time series prediction model based on mutation

point detection method and encoder-attention-decoder BiLSTM network

(TMEAD-BiLSTM). The model’s performance was analyzed and evaluated

against LAI data from different years and cuts. The results indicate that the

TMEAD-BiLSTM model achieved the highest prediction accuracy (R² > 0.99),

while the non-linear models exhibited lower accuracy (R² > 0.78). The TMEAD-

BiLSTM model overcomes the limitations of nonlinear models in integrating

environmental factors, enabling rapid and accurate predictions of alfalfa LAI,

which can provide valuable references for alfalfa growth monitoring and the

establishment of field management practices.
KEYWORDS

alfalfa, leaf area index, non-liner model, deep learning model, MOSUM.
1 Introduction

Alfalfa (Medicago sativa L.) is regarded as the “king of forages” upon account of its

remarkable forage properties, prolific production, high protein and nutritious content, and

good palatability (Baral et al., 2022). Between 2010 and 2020, China’s import of alfalfa hay

increased from 200,000 tons to 1.4 million tons in response to the growing market demand

(Wang and Zhang, 2023). To reduce import dependence, China actively expanded its alfalfa

cultivation area and increased alfalfa production (Wang et al., 2023). However, alfalfa

production faces significant challenges due to regional climate variations, limited water
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resources, and soil conditions (Qian et al., 2020). The leaf area index

(LAI) of alfalfa is a crucial indicator for defining the canopy

structure of alfalfa, statistically describing the growth and density

changes of alfalfa leaf populations (Tooley et al., 2024). It can be

used to assess the dynamics of leaf growth and yield in alfalfa

(Tripathi et al., 2018). Therefore, predicting the alfalfa leaf area

index is significant for monitoring growth dynamics and guiding

field management.

Methods for predicting LAI through direct measurement of leaf

area are often destructive and can be costly. Numerous studies have

developed nonlinear models for LAI prediction by analyzing the

optimal growth requirements at each developmental stage of plants.

Examples include the Logistic model, Gompertz model, Richards

model, and Schnute model (Zhang et al., 2021; Duran and Ünal,

2024). Guo et al. (2022) established a generalized Logistic model

using growing degree days (GDD) and relative growing degree days

(RGDD) as key parameters to describe the height, leaf area index,

and biomass accumulation of maize. Karadavut et al. (2010) was

carried out on five maize varieties (Monton, Ranchero, Progen

1550, 35 P12, and TTM 81-19) to explain the fitting performance of

the Richards model on leaf data. Chaturvedi et al. (2017) developed

allometric models for estimating the leaf area index (LAI) of

Tectona grandis (teak) trees across ten diameter classes in India.

Non-linear regression models, especially logistic and Gompertz,

effectively explained over 60% of LAI variability. The advantages of

such models include their simplicity, ease of calculation, and

reasonable interpretability. However, the limitations are also

obvious. This is mainly reflected in two aspects: first, the

parameter settings of such models need to be verified and

calibrated through years of field experiments, and their

applicability in different regions is poor (Lin et al., 2023; Brogi

et al., 2020); second, such models are usually one-dimensional,

lacking the consideration of a large number of environmental

influences, and the dynamic change of variables over time is not

taken into account (Desai et al., 2020).

In contrast, deep learning is more suitable for handling non-

linear prediction problems. Deep learning models can improve their

predictive ability by self-learning the relationships between data

from multiple dimensions based on historical datasets, including

crop growth information, crop environmental information, and

field management strategies. Ze-hao et al. (2020) used LSTM to

model winter wheat temporal LAI and LAI in different growth

periods, and the results showed that the LSTM network has good

prediction ability. Long Short-Term Memory (LSTM), while

capable of obtaining long-term dependent time series estimates

from continuous time series data, uses only prior state knowledge

and ignores back propagation of information about current

vegetation changes (Sherstinsky, 2020). BiLSTM adds a reverse

operation based on LSTM, which is better than LSTM at capturing

the relationship between sequential features (Siami-Namini et al.,

2019). LSTM shows excellent performance in time-series based

prediction results, but performs poorly in dealing with

data mutations.

LSTM has strong self-learning and self-adaptive ability, which

overcomes the shortcomings of classical non-linear models to a

certain extent. However, alfalfa is often at the maximum LAI value
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during the cutting, which leads to LAI data mutations after cutting.

The presence of these mutation points may greatly reduce the

predictive performance of LSTM. Researchers have proposed

detection strategies for the change point problem, including

maximum likelihood, least squares, minimum absolute length,

and minimum descriptive length (Anastasiou and Fryzlewicz,

2022; Chen et al., 2022). This paper examines the number and

location of mutations in alfalfa leaf area index data using moving

sum (MOSUM) method. The MOSUM method not only effectively

detects data mutations, but also greatly reduces the computational

complexity (Burczaniuk and Jastrzębska, 2024).

To overcome the limitations of nonlinear models in integrating

environmental factors and the inefficiency of LSTM in handling

abrupt changes in LAI data, this study proposes a TMEAD-BiLSTM

method for the rapid and accurate prediction of alfalfa leaf area

index. The main contributions of this paper are as follows:

1) We established Logistic, Gompertz, and Richards models for

predicting alfalfa leaf area index based on growing degree days,

achieving a prediction accuracy (R²) greater than 0.78 for all

three models.

2) To address the issue of abrupt data changes after alfalfa

harvesting, we proposed a TMEAD-BiLSTM model that combines

the MOSUM method with a bidirectional long short-term memory

(BiLSTM) encoder-decoder neural network. This model predicts

the leaf area index (LAI) of alfalfa by utilizing its annual cycle and

different planting strategies. The results demonstrate that this deep

learning model achieved the highest prediction accuracy (R² > 0.99).
2 Materials and methods

This section introduces the experimental dataset, which comes

from the publicly available dataset we previously worked on.

Secondly, we describe the non-linear model and TMEAD-

BiLSTM model used for predicting alfalfa leaf area index, and

display the model training parameters and evaluation indicators.

Then the training process and techniques used to optimize model

performance were discussed. Finally, we propose evaluation metrics

for assessing and comparing the accuracy of the models.
2.1 Dataset

The acquisition of alfalfa LAI data requires a significant amount of

manpower and resources, and adverse weather conditions may affect

the accuracy and feasibility of data collection, further increasing the

challenge of obtaining continuous time series data. To the best of our

knowledge, only we have publicly released the alfalfa leaf area index

dataset (Yang et al., 2024a). The dataset provides growth data of alfalfa

under different water and nitrogen treatments, as well as meteorological

data for the entire growth period of alfalfa and soil moisture data at

different depths (0-10 cm, >10-20 cm, >20-30 cm). The dataset includes

field trial data from three years of history (2017-2018, 2022), with a 7-

day interval for collecting alfalfa LAI data. During the period from 2019

to 2021, the experimental field was utilized for planting silage maize

using a rotation method. The dataset contains a total of 955 leaf area
frontiersin.org
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index data. The interval between meteorological and soil moisture data

is one day. Integrating multiple features is beneficial for expanding the

applicability of estimation and prediction models and improving their

accuracy. This paper used non-linear regression models and deep

learning models to model the alfalfa leaf area index.

We used this dataset to model the alfalfa leaf area index, as

shown in Figure 1. The dataset contains 955 leaf area index data, the

dataset is divided according to the following proportion: (Train:

Val = 8: 2): Test = 8: 2. Deep learning models require a large number

of samples to participate in training, and we use logistic models with

relative leaf area index and growth days for data augmentation.

Calculate daily LAI based on the maximum measured LAI value, as

shown in equation (14). Thus, a daily LAI dataset with a history of

three years is generated, and the partially enhanced dataset is shown

in Table 1.

LAI = f (GD)� LAImax (1)

Where, f(·) represents the fitting curve; GD represents the

number of growing days; LAImax represents the maximum

measured LAI value.
2.2 Non-liner model

The growth of plants over time typically follows an “S” shaped curve,

and such growth characteristics are often simulated using mathematical

models such as the Logistic model, Gompertz model, and Richards

model. Currently, research on modeling the leaf area index of alfalfa

using mathematical models is still in its early stages. In this study, the

growth days are taken as influencing factors, and single variable Logistic,

Gompertz, and Richardsmodels are used tomodel four different cuttings

of alfalfa. The applicability of Logistic, Richards, andGompertzmodels in

predicting the leaf area index of alfalfa is evaluated.
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While the trend of alfalfa LAI growth days is basically

consistent, significant differences in the LAI values among

different water and nitrogen treatment plots. The relative leaf area

index (RLAI) can eliminate the influence of mathematical models

on the fitting of alfalfa LAI under different water and nitrogen

treatments, thereby allowing for more accurately analyzing the

growth status of alfalfa under different treatments (Su et al., 2022;

Liu et al., 2020). Using three non-linear regression models, Logistic

(Formula 2), Richards (Formula 3), Gompertz (Formula 4), to

describe the trend of LAI changes during plant growth (Nhu

et al., 2020; Roosa et al., 2020; Vaghi et al., 2020):

RLAI =
LAI

LAImax
=

1

1 + ea1+b1x+c1x
2 (2)

RLAI =
LAI

LAImax
=

a2
(1 + eb2−c2x)

1
d

(3)

RLAI =
LAI

LAImax
= a3e

−c3e
−b3x

(4)

Where, RLAI is the relative leaf area index; LAI is leaf area

index; LAImax is the theoretical maximum LAI. a1, b1, c1, a2, b2, c2,

a3, b3, c3 and d are model fitting parameters; x is the growth days.
2.3 TMEAD-BiLSTM model

2.3.1 Overall framework
The construction of the model can be divided into three parts:

(1) The MOSUM method is used to detect mutation points in time

series data (Figures 2A, B). (2) A model based on encoder decoder

was constructed, where both the encoder and decoder are BiLSTM

models (Figures 2C, E). In order to solve the problem of feature
FIGURE 1

Dataset partitioning and prediction strategies.
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disappearance and information loss caused by covariate feature

compression in long sequence data, we introduced an attention

mechanism in the model to capture the long-term dependency

relationship between input decoder covariates and feature variables

(Figure 2D). The fully connected layer outputs the predicted results

(Figure 2F). (3) During the training process, training batches

containing mutation points are eliminated through pre-defined

functions. This section focuses on the construction process of the

TMEAD-BiLSTM model, the overall structure of which is shown

in Figure 2.

2.3.2 Mutation point detection based on MOSUM
Time series data usually contains mutation points, and there is

currently no widely recognized method to handle these mutation data

points. The currently known processing methods include removing

abnormal data or using linear interpolation for filling (Liguori et al.,

2021). However, these methods may disrupt the time series properties
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of the data and affect the accuracy of the analysis. Time series

prediction has made remarkable progress in recent years, evolving

from traditional statistical methods andmachine learning to the latest

deep learning techniques, thereby advancing the field of time series

analysis (Masini et al., 2023). However, there are still some basic

problems in practice, and one of the main problems is the existence of

lag difference. Lag differences are deviations or delays that occur in

the predicted sequence, which can affect the accuracy and robustness

of the model (Samanta et al., 2020). Time series data usually contain

abrupt change, and the presence of abrupt change greatly reduces the

prediction performance of the model when there is a lag in the

prediction process, as shown in Figure 3. As a forage crop, alfalfa

shows a positive correlation between leaf area index (LAI), and final

yield throughout its growth cycle. During mowing, alfalfa LAI was

generally reaches its maximum value, and LAI mutations occur

afterward, significantly impacting the prediction performance of

deep learning models.
FIGURE 2

A hybrid model combining attention based BiLSTM encoder-decoder neural network and MOSUM (TMEAD-BiLSTM for short).
TABLE 1 Partial data of LAI dataset.

DateTime GDD Growth days Soil moisture 10 Soil moisture 20 Soil moisture 30 LAI

2018/6/13 194 12 28.45 29.81 25.02 1.26

2018/6/14 212 13 26.88 28.45 24.39 1.40

2018/6/15 231 14 25.62 27.02 23.59 1.56

2018/6/16 245 15 24.65 25.59 22.93 1.74

2018/6/17 260 16 24.71 25.6 22.8 1.95

2018/6/18 278 17 24.15 24.89 22.41 2.18

2018/6/19 297 18 23.23 23.61 21.76 2.43

2018/6/20 318 19 22.15 22.11 21.01 2.71

2018/6/21 337 20 21.14 20.9 20.38 3.01
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The MOSUM method is a technique used to detect structural

changes in time series, commonly used for detecting outliers

(Eichinger and Kirch, 2018). The core principle is to monitor the

evolution of data by calculating the cumulative sum within a sliding

window. As the window slides, calculate the magnitude of the

cumulative sum change within the current window and set a

predetermined threshold. When the cumulative sum changes

beyond this threshold, the corresponding window position is

marked as an outlier. The MOSUM method utilizes the

bandwidth parameter (G value) to adjust the size of the sliding

window to adapt to different degrees of variation. The mathematical

formula of the MOSUM method is as follows:

St = o
t

i=t−k+1

Xi (5)

Rt = St − St−G (6)

Where, St represents the cumulative sum of the sliding window in

the time series; Rtrepresents the amount of change in the time series at

time t; Xi represents the data point in the time series; k represents the

size of the sliding window; and G represents the bandwidth parameter.

As a forage crop aimed at obtaining plants, alfalfa has a positive

correlation between leaf area index (LAI) and crop growth and final

yield during its growth cycle. The maximum LAI of alfalfa during the

growth period is generally observed during cutting, which leads to LAI

mutations and significantly affects the predictive performance of deep

learning models. Therefore, we consider using the MOSUMmethod to

detect mutation points in alfalfa LAI data, as shown in Figure 4.

2.3.3 Attention with encoder and decoder
The encoder network is a BiLSTM that sequentially transforms

the input time series {x1,…, xi,…, xt}. The mapping from xi to eh,i
and eb,i can be obtained, as shown in Formula 6–8:

eh,i = fl(Wf ½eh,i−l , xi�) (7)

eb,i = f2(Wb½eb,i+l , xi�) (8)

encoder _ outputsi = ½eh,i; eb,i� (9)
Frontiers in Plant Science 05
Where, eh,i and eb,i are the forward and backward hidden layer

outputs of encoder i at time; Wf and Wb represent the weight

matrices of forward and backward units, respectively; f1 and f2 are

units of LSTM; encoder_outputsi represents the output of the

encoder at time step i.

Using weighted attention to compute the weighted average of

encoder outputs to generate context vectors:

attn _weightsi = softmax(eh,i · eb,i) (10)

context =o
T

i=1
attn _Weightsi · encoder _ outputsi (11)

Where, attn_weightsi represents the attention weights; context

represents the context vectors.

The decoder network is also a BiLSTM, dh,i and db,i are the

hidden layer outputs of the decoder at time i. As shown in Formula

11, 12, dh,i and db,i can be obtained:

dh,i = f3(Wf ½dh,i−l , xi, context�) (12)

db,i = f4(Wb½db,i+1, xi, context�) (13)

Where,Wf andWb indicates the weight matrices of forward and

backward units, respectively; f3 and f4 are units of LSTM; dh,i and db,i
respectively represent the forward and backward hidden layer

outputs of the decoder at time step i.

BiLSTM can extract complex features of time series, and

attention layer output and hidden state information df,i-1、db,i+1
can improve the prediction performance. Afterwards, the predicted

values are output through the fully connected layer:

outputi = fc(dh,i, db,i) (14)

Where, outputi represents the prediction result; fc denotes the

fully connected layer.

2.3.4 Predefined function
Before the start of training, the MOSUMmethod is used to detect

potential mutation points in the data. When selecting a training

batch, predefined functions are used to determine whether to include

mutation points in the upcoming training batch. If a mutation point
FIGURE 3

Demonstration of lag in time series forecasting.
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exists, the batch will be skipped until a batch without the mutation

point is found. The specific process is shown in Figure 5.

In detail, the batch size s is one of the most important control

parameters of our method. We have to choose s in such a way that it

could cover at most one change point. If s is larger than the distance

between two change points ci, cj, the part of the time series between

time index i and j would never be learned. The batches containing

this part of the time series would always contain at least one change

point and would, therefore, not be allowed. To avoid this, we develop

a method that automatically selects the maximum batch size based on

the change points. In this method we calculate the distance between

all detected change points. We then set smax to be half of the smallest

distance between the change points. Taking half of this distance

increases the probability of selecting the allowable batch between the

change points, and the resulting number smax is the maximum batch

size that should be selected. See Algorithm 1 for details.
Fron
Input: training data d, change point detection method A

Output: maximal batch size smax, change points c0,…, ck−1

c0,…, ck−1 ← MOSUM(d)

for i, j∈{0,…, k − 1}, i≠ j do

diffi,j ←||ci - cj||2

end for

smax ←⌈mini,j{diffi,j}/2⌉

return c0,…, ck−1, smax
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Algorithm 1. Find change points and maximum batch size.

In the TMEAD-BiLSTMmodel, we pass a batch size s ≤ smax and

the detected change points c0,…, ck−1 to the algorithm. Our goal is to

find the start and end points of the batches that do not contain any

change points. To do this, we select indices that lie between 0 and n-s-

1. For each change point, we check whether the index of the

respective change point lies between the previously selected start

index and end index of the batch. If the change point lies in the batch,

we repeat the method and select a new start index, and perform the

same process for this, as shown in Algorithm 2. For example, a set of

change points has been found through the MOSUM method:

C : = c0,…, ck−1f g (15)

Select batch size s ≤ smax in Algorithm 1. Select a random

starting index start, that is in the range [0, n-s-1] of the time series.

This gives us a batch with start point istart and end point:

iend : = istart + s − 1 (16)

Assume that one of the change points lies in the batch, thus

without loss of generality ∃j ∈ {0,…, k-1} such that cj∈[istart, iend].
Then again a random start index istart’ is chosen and:

iend0 = istart0 + s − 1 (17)
FIGURE 4

The above figure shows the LAI data of alfalfa detected by MOSUM (blue solid line), the mutation points (red dashed line), as well as the
corresponding movement and (black dashed line). The following figure shows the MOSUM statistic, which identifies the mean, threshold (black
dashed line), and corresponding change points (red dashed line).
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If now ∀j∈{0,…, k − 1} holds:

cj ∉ ½istart0 , iend0 � (18)

In the following batch [istart’,iend’] is the valid batch.
Fron
Input: training data d, training data d, batch size

s ≤ smax, change points c0,…,ck-1

Output: start and end points of the batch

n ← len(d)

repeat

istart←{0,…,n-s-1}

valid←True

for j∈{0,…,k-1}

if cj ≥ istart and cj ≤ istart +s-1 then

Valid ← False

break for

end if

end for

until valid = True

iend ←istart+s-1

return istart, iend
Algorithm 2. Find valid batch.
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2.4 Model training

Train the hybrid model using the interpolated dataset, with a

training-to-testing ratio of 8:2. The encoder and decoder are both

BiLSTM with 12 hidden units, using the ReLU activation function.

The attention mechanism generates context vectors to enhance

output by calculating the correlation between queries and keys. The

model uses a learning rate of 0.6e-3 and an Adam optimizer, with a

batch size of 32 and a maximum of 300 rounds of training,

combined with an early stopping strategy to prevent overfitting.

All experiments in this paper were performed on Windows 10

Professional, version 21H2, on a computer with the following main

parameters (CPU: AMD Ryzen 5 3600 6-core processor 3.60 GHz;

GPU: NVIDIA GeForce GTX 1080 Ti GPU). The code was

compiled using PyCharm version 2021.2.3 compiler, and the full

syntax followed Python version 3.7.
2.5 Evaluation metrics

To prove the prediction performance of TMEAD-BiLSTM and

non-linear model, three metrics are adopted to evaluate its
FIGURE 5

Example of batch processing selection around mutation points. The first green area shows a batch created by choosing t = 23 as the start index, and
with a selected batch size of s = 6, the batch contains the points t = 23 to t = 28. The change point is located at t = 34 and is therefore outside the
detected batch. The batch is therefore permissible. The red area next to it shows a prohibited batch. The start index of this batch is t = 31 and the
end index at t = 36, so the change point is located inside the batch and is not allowed in training. A new batch must be found. The green area to the
right indicates another permissible batch, since the change point lies outside of it.
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prediction accuracy. Specifically, mean absolute error (MAE),

coefficient (R2) and root mean square (RMSE) are adopted. The

R2 signifies the agreement between estimated and measured values,

with a value closer to 1 indicating a better fit of the model. The

RMSE indicates the extent of deviation between estimated and

measured values, with smaller values suggesting a better model fit.

The MAE assesses the actual deviation between estimated and

measured values, with smaller values indicating higher model

accuracy. The calculation formula is as follows:

MAE =
1
no

n

i=1
ŷ i − yij j (19)

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
no

n

i=1
(ŷ i − yi)

2

s
(20)

R2 =
o
n

i=1
(ŷ i − y)2

o
n

i=1
(yi − y)2

(21)
3 Experiment results

3.1 Prediction results annual alfalfa leaf
area index

3.1.1 Prediction results of non-linear model
The relationship between the relative leaf area index and the

number of growing days is illustrated in Figure 6. The Logistic,

Richards, and Gompertz models were employed to fit the changes in

the relative leaf area index over the growing days shown in Figure 6,

respectively. The fitting results of the logistic (Formula 22),

Richards (Formula 23), and Gompertz (Formula 24) models are

as follows:
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RLAI =
LAI

LAImax
=

1

1 + e2:4249−0:1699x+0:0003x
2 (22)

RLAI =
LAI

LAImax
=

0:9334

(1 + e−0:2767−26:7844x)
1

2:7461

(23)

RLAI =
LAI

LAImax
= 0:9971e−0:1137e

−6:8693x

(24)

Table 2 illustrates the fitting and validation results of three non-

linear models for the relative leaf area index. It can be observed that

all three models exhibit acceptable fits (R2>0.78), and the models

were validated using test data. It is evident that there is no

significant difference in the predictive performance of the three

models for the alfalfa leaf area index.

3.1.2 Prediction results of deep learn model
Due to differences in alfalfa phenology under different

meteorological conditions and soil moisture, growth days, and

soil moisture at different depths (>0-10 cm, >10-20 cm, >20-30

cm) corresponding to LAI at time t were also used as input features.

To ensure consistency in input features, the features were

normalized and scaled to 0-1. Parallel control experiments were

conducted between the TMEAD-BiLSTM model and four models:

LSTM, BiLSTM, MLSTM and MBiLSTM. The prediction results of

each model are compared using RMSE、MAE and R2 measures the

degree of fitting of the model. The prediction results of each model

are shown in Table 3.

As shown in Figure 7, the model has a high accuracy in

predicting 1.5 ≤ LAI ≤ 5.5, with both predicted and labeled values

near the 1:1 line. When LAI < 1.5 and LAI > 5.5, the prediction

accuracy is slightly lower compared to the previous situation. This

may be because under different growth conditions, the time for

alfalfa to turn green and set pods is different, and there are

significant differences in LAI changes during the corresponding

stages of LAI increase and decrease.
FIGURE 6

Fitting diagram of annual leaf area index of alfalfa.
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The LSTM network performs well in temporal data processing

due to its structural features, but the prediction results are not ideal

under the influence of multiple feature factors. In contrast, BiLSTM

networks have the ability to perceive forward and backward data,

enabling stronger causality between forward and backward data.

Based on the data presented in Table 3, it can be seen that the

BiLSTM model has a 27.90% reduction in MAE compared to

LSTM. In addition, after adding the MOSUM method, the

prediction accuracy of all models was significantly improved,

verifying that the MOSUM method can better preserve time

series features and effectively reduce the impact of mutation

points on model prediction accuracy. To further improve the

model’s capacity to mine feature factors and time, this study

combines the MOSUM approach with the BiLSTM encoder

decoder network model based on attention mechanism. The

prediction results show that the R2 and RMSE of the TMEAD-

BiLSTM model are 0.9986 and 0.0662, respectively.
3.2 Prediction results of leaf area index of
alfalfa in different cutting

3.2.1 Prediction results of non-linear model
Due to the influence of growth environment temperature, the

growth rates of alfalfa vary between different cuttings (Lloveras

et al., 1998). It is challenging to simulate the leaf area index changes

for multiple cuttings within a year using nonlinear models.

Therefore, we modeled the leaf area index of alfalfa for different

cuttings separately. Although the variation trend of alfalfa leaf area

index with growth days is basically consistent for the same cutting,

there are significant differences in LAI values among the

experimental plots. In order to analyze its intrinsic mechanism,

the relative leaf area index was used to analyze its common

growth characteristics.

Figure 8 shows the relationship between the relative leaf area

index (RLAI) and growth days. The RLAI of alfalfa was fitted using

the Logistic, Richards and Gompertz models. Tables 4, 5 presents
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the fitting effects and fitting coefficients of the models, respectively.

The R2, RMSE and MAE values of three models were acceptable.

Additionally, the maximum LAI of the fourth cutting in the

observed region was around 5, and the LAI of the fourth cutting

exhibited a declining trend in the later growth period (Figure 8).

The Logistic and Gompertz models effectively capture the decline

process of the leaf area index of the fourth cutting of alfalfa (R2 >

0.9). We utilized the Logistic, Richards, and Gompertz models to

analyze the rate of change between the alfalfa leaf area index and

growth days, computing the first derivative of the fitting curves for

different cuttings. Setting growth days to 15, 20, 25, 30, 35, and 40,

we averaged the slopes obtained from the three models. The results

indicate that the fastest growth rates of alfalfa in different cutting

occur at approximately 32, 23, 20, and 18 days after sowing for

different cuttings, which is consistent with the results of Yang et al.

(2024a)’s study.

The model obtained was validated using the test dataset, and the

validation results are shown in Table 6. The simulated values of the

leaf area index (LAI) based on the Logistic and Gompertz models
TABLE 3 Comparison of prediction accuracy of different LAI prediction models.

Metrics LSTM BiLSTM MLSTM MBiLSTM TMEAD-BiLSTM

R2 0.8935 0.9179 0.9761 0.9889 0.9986

RMSE 0.5400 0.4857 0.2592 0.1810 0.0662

MAE 0.2857 0.2060 0.2134 0.1406 0.0397
TABLE 2 Modeling and validation results.

Metrics
Fitting results Verification results

Richards Logisitc Gompertz Richards Logisitic Gompertz

R2 0.7944 0.7892 0.7968 0.8414 0.8362 0.8412

RMSE 0.1421 0.1439 0.1413 0.1191 0.1211 0.1192

MAE 0.1132 0.1112 0.1109 0.0952 0.0936 0.0947
FIGURE 7

LAI prediction model prediction results.
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for alfalfa exhibit a high degree of agreement with the measured

values. The R2 values for the simulated curves of different cutting

times are all greater than 0.9, indicating strong goodness-of-fit.

Compared to the Logistic and Gompertz models, the Richards

model shows no significant advantage in fitting the data from the

first three cuttings, and it performs poorly in fitting the data from

the fourth cutting. In summary, the fitting of the Logistic and

Gompertz models is satisfactory.

3.2.2 Prediction results of deep learn model
Alfalfa is harvested multiple times annually, and the publicly

published dataset used in this study includes data from 3-4 harvests

per year. During the growth process of alfalfa, there are differences

in the changes in LAI of alfalfa in different cutting. Therefore, there

are differences in the accuracy of LAI prediction models for alfalfa

in different cutting. As shown in Figure 9, the alfalfa LAI dataset was

divided into four batches, namely the first, second, third, and fourth

batches. The accuracy analysis of these four batches was performed

using the TMEAD-BiLSTM prediction model.

As shown in Table 7, the prediction accuracy of the TMEAD-

BiLSTM model was higher than that of other experimental models

in four different crop cycles. Due to the significant impact of

temperature on the growth of alfalfa, the growth periods of the

second and third batches of alfalfa are from May to September each

year, and the LAI growth rate is relatively high. The model’s ability

to capture rapid changes in LAI is insufficient, resulting in a slight

decrease in prediction accuracy.
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4 Discussion

4.1 Comparative analysis of
model accuracy

In this study, non-linear and deep learning models were used to

predict alfalfa LAI. The results indicate that the prediction accuracy

of the TMEAD-BiLSTM model is the highest, followed by the

baseline time series forecasting models (LSTM, BiLSTM, MLSTM,

MBiLSTM), while the logistic, Richards, and Gompertz models

exhibit the poorest predictive performance (R2 > 0.78), with no

significant difference observed among the three nonlinear models in

terms of predictive efficacy. In contrast to traditional nonlinear

models, deep learning models have the capability to integrate

multiple environmental factors (e.g., water and nitrogen

treatments, soil moisture, meteorological data) for LAI prediction

(Cheng et al., 2022). This may account for the superiority of deep

learning models over other methods. Extensive studies have

revealed that the growth of alfalfa is influenced by various

environmental factors (Kaiwen et al., 2020; Liu et al., 2021).

Based on our previous work on the dataset, we found that even

under the same growth days, the leaf area index (LAI) of alfalfa

varies under different water and nitrogen treatments. This

observation is consistent with the findings of Ma et al. (2024) and

Feng et al. (2016). The dataset we provide includes LAI data from

the years 2017-2018 and 2022. The year 2022 marks the first year of

alfalfa planting, and the planting period experienced higher
FIGURE 8

Relationships between relative leaf area index (RLAI) and growth days.
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temperatures in the region. Alfalfa growth is highly sensitive to

temperature, leading to substantial variability in LAI across

different growing years. This observation aligns with the studies

by Ren et al. (2021) and Kim et al. (2023). These factors also

contribute to the decreased accuracy in fitting non-linear models.

Different alfalfa cuttings exhibit significantly different growth

rates, thus the use of nonlinear models significantly improves the

accuracy of fitting the leaf area index (LAI) for different cuttings.

The LAI of the fourth cutting shows a declining trend in the later

stages of growth, consistent with the findings of Bai and Bao (2002)

The Logistic and Gompertz models effectively captures this

changing trend. We observe that the baseline time-series models

(LSTM, BiLSTM) have the poorest predictive accuracy. This is

attributed to the lagged effect in predictions and the presence of

breakpoints in the LAI time-series data, consistent with the findings
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of Samanta et al. (2020). We use the MOSUM method to achieve

mutation point detection and eliminate training batches containing

mutation points through predefined functions, avoiding damage to

the original dataset and the impact of data mutations on prediction

accuracy. Despite the predictive accuracy of three nonlinear models

for alfalfa LAI across different cuttings has significantly improved,

the differences in growth environments across different years still

constrain the predictive performance of nonlinear models,

especially concerning temperature and soil moisture, consistent

with the findings of Yang et al. (2024b) and Su et al. (2015).
4.2 Analysis of Model Complexity
and Applicability

In the prediction of alfalfa leaf area index (LAI), deep learning

models and nonlinear models each have their advantages and

disadvantages. Deep learning models can handle multiple

features, including effective accumulated temperature, growth

days, meteorological data, soil moisture, and leaf area index,

making them suitable for complex environments. However, they

have high computational complexity O(T×n×m2) and space

complexity O(n×m+m2), with a large number of parameters (for

instance, BiLSTM can reach 8×(m×d+m2)), leading to significant

memory usage (Shah and Bhavsar, 2022; Maji and Mullins, 2018).

Here, n represents the sequence length (i.e., number of time steps),

m represents the number of hidden units, T represents the number

of training iterations, and d represents the dimensionality of the

input features (such as the total number of effective accumulated

temperature, growth days, meteorological data, soil moisture, and

leaf area index). In contrast, nonlinear models rely only on growth

days and leaf area index, resulting in low complexity (time

complexity O(T) and space complexity O(n), with fewer

parameters (usually 3-5), and high computational efficiency (De

Cock et al., 2017). For example, when processing thousands of

samples, the training time for the Logistic model is only a few
TABLE 5 Change of leaf area index with growing days.

Non-
liner model

Cutting
time

a b c d

Logistic

First cutting 2.13 0.02 -0.004 —

Second cutting 2.42 -0.04 -0.004 —

Third cutting 3.38 -0.19 0.001 —

Fourth cutting 5.94 -0.45 0.01 —

Richards

First cutting 0.99 0.64 36.11 7.74

Second cutting 0.98 0.44 27.78 4.48

Third cutting 0.98 0.20 19.45 1.25

Fourth cutting 0.86 0.36 21.17 2.44

Gompertz

First cutting 1.1653 12.9047 0.1768 —

Second cutting 0.9986 11.6963 0.1919 —

Third cutting 0.9889 12.3895 0.1152 —

Fourth cutting 0.9756 12.4646 0.1807 —
TABLE 4 Modeling results for different cutting.

Cutting time Metrics Richards Logistic Gompertz

First cutting

R2 0.9451 0.9403 0.9424

RMSE 0.0756 0.0800 0.0774

MAE 0.0507 0.0576 0.0523

Second cutting

R2 0.9331 0.9305 0.9353

RMSE 0.0815 0.0831 0.0802

MAE 0.0632 0.0649 0.0614

Third cutting

R2 0.9091 0.9089 0.9051

RMSE 0.0902 0.0903 0.0922

MAE 0.0733 0.0723 0.0722

Fourth cutting

R2 0.8698 0.9042 0.9210

RMSE 0.1057 0.0907 0.0823

MAE 0.0842 0.0765 0.0650
TABLE 6 Verification results of different cutting.

Cutting time Metrics Richards Logistic Gompertz

First cutting

R2 0.9571 0.9546 0.9550

RMSE 0.0676 0.0696 0.0693

MAE 0.0473 0.0522 0.0474

Second cutting

R2 0.9360 0.9371 0.9371

RMSE 0.0770 0.0763 0.0763

MAE 0.0593 0.0593 0.0575

Third cutting

R2 0.9244 0.9245 0.9205

RMSE 0.0766 0.0765 0.0785

MAE 0.0662 0.0647 0.0656

Fourth cutting

R2 0.8582 0.9206 0.9375

RMSE 0.1044 0.0782 0.0693

MAE 0.0829 0.0671 0.0552
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seconds, and the memory usage is less than one-tenth of that of

deep learning models (Banerjee, 2007).

Deep learning models typically exhibit superior suitability for

supporting offline predictions compared to nonlinear models (Jin

et al., 2022). This preference stems from the inherent characteristics

of deep learning architectures, which can leverage pre-trained

weight parameters for offline inference without necessitating real-

time computations or extensive computational resources. Once the

training phase is completed, deep learning models can be seamlessly
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deployed on relatively modest hardware setups for prediction tasks,

rendering them particularly advantageous in scenarios

characterized by resource constraints or where continuous online

computation is impractical. Conversely, nonlinear models often

entail recalculating parameters with each prediction, making them

better suited for online prediction scenarios or applications

requiring real-time computations (Kalhor et al., 2010). This

distinction underscores the versatility and efficiency of deep

learning models in facilitating offline predictions, thereby catering
FIGURE 9

LAI prediction results in different crop cycles.
TABLE 7 Comparison of the precision of four LAI prediction results in different cutting.

Cutting time Metrics LSTM BiLSTM MLSTM MBiLSTM TMEAD-BiLSTM

First cutting

R2 0.8733 0.9473 0.9857 0.9925 0.9982

RMSE 0.6287 0.4295 0.2189 0.1638 0.0818

MAE 0.3307 0.1864 0.1716 0.1235 0.0583

Second cutting

R2 0.8342 0.8804 0.9552 0.9766 0.9924

RMSE 0.6809 0.6173 0.3622 0.2678 0.1575

MAE 0.3081 0.2699 0.2602 0.2080 0.1188

Third cutting

R2 0.8409 0.8916 0.9633 0.9786 0.9918

RMSE 0.5549 0.4724 0.2728 0.2127 0.1342

MAE 0.2706 0.2249 0.2260 0.1723 0.0995

Fourth cutting

R2 0.8843 0.9508 0.9818 0.9878 0.9977

RMSE 0.4948 0.3566 0.2008 0.1726 0.0800

MAE 0.2063 0.1837 0.1710 0.1458 0.0670
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to a diverse array of research and practical applications within

various scientific domains. Deep learning models can integrate

multiple environmental factors for LAI prediction, including

water and nitrogen treatment, soil moisture, and meteorological

data. This ability significantly improves prediction accuracy, but

also increases computational load and parameter complexity (Justus

et al., 2018). In addition, deep learning models are suitable for

predicting leaf area index (LAI) in different ecological environments

due to their powerful feature extraction ability and the advantage of

cross regional prediction through transfer learning. They can

quickly deploy data from the source region in new areas and

achieve good prediction results (Zeng et al., 2020). Although non-

linear models perform well in specific regions, their applicability is

mainly limited to local data due to the lack of generalization ability

and adaptability to cross regional data, making it difficult to

effectively meet the needs of cross regional prediction. However,

the training of deep learning models requires the participation of

large datasets to effectively capture complex patterns and

interactions in the data (Najafabadi et al., 2015). The

implementation of deep learning models may be challenging in

resource constrained environments or with limited data availability

(Liu et al., 2024). In this case, traditional nonlinear models provide a

practical solution that balances the trade-off between computational

efficiency and predictive performance.
5 Conclusion

To overcome the limitations of non-linear models in

incorporating environmental factors and the inefficiency of LSTM

in handling abrupt changes in LAI data, we proposed a TMEAD-

BiLSTM model. This model was compared with classical non-linear

models such as Logistic, Gompertz, and Richards. The TMEAD-

BiLSTM model demonstrated superior predictive accuracy

compared to the non-linear models. The strength of classic non-

linear models lies in their simplicity, low computational demand,

and suitability for low cost applications, particularly in resource

constrained embedded devices. In contrast, the TMEAD-BiLSTM

model offers high accuracy but requires high performance

computing support, making it suitable for applications with high

accuracy requirements and ample computational resources.

Considering the potential of drones in monitoring alfalfa growth,

we plan to lightweighten the model in future work and deploy it on

drones to evaluate the method in real-world environments.
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