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The accurate quantification of plant types can provide a scientific basis for crop

variety improvement, whereas efficient automatic classification methods greatly

enhance crop management and breeding efficiency. For leafy crops such as

Chinese cabbage, differences in the plant type directly affect their growth and

yield. However, in current agricultural production, the classification of Chinese

cabbage plant types largely depends on manual observation and lacks scientific

and unified standards. Therefore, it is crucial to develop a method that can

quickly and accurately quantify and classify plant types. This study has proposed a

method for the rapid and accurate quantification and classification of Chinese

cabbage plant types based on point-cloud data processing and the deep learning

algorithm PointNet++. First, we quantified the traits related to plant type based

on the growth characteristics of Chinese cabbage. K-medoids clustering analysis

was then used for the unsupervised classification of the data, and specific

quantification of Chinese cabbage plant types was performed based on the

classification results. Finally, we combined 1024 feature vectors with 10 custom

dimensionless features and used the optimized PointNet++model for supervised

learning to achieve the automatic classification of Chinese cabbage plant types.

The experimental results showed that this method had an accuracy of up to

92.4% in classifying the Chinese cabbage plant types, with an average recall of

92.5% and an average F1 score of 92.3%.
KEYWORDS

point cloud data, PointNet++, Chinese cabbage plant type classification, deep learning,
clustering analysis
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1 Introduction

In modern agricultural production, accurate quantification and

classification of crop plant types are of great significance for variety

improvement, crop management, and breeding processes (Donald,

1968; Mock and Pearce, 1975; Yuan, 2001). Particularly for leafy

vegetables, such as Chinese cabbage, the differences in plant types

are directly related to the growth conditions and yield (Sun et al.,

2021). Traditionally, the classification of Chinese cabbage plant

types has relied mainly on experienced agricultural workers who

conducted manual observations, measurements, and subjective

naming. This method is not only inefficient and lacks a unified

scientific standard, but also fails to accurately distinguish certain

plant traits that are difficult to describe verbally, such as leaf

inclination and symmetry, leading to subjective and inconsistent

results (Sun et al., 2014; Lai et al., 2019; Fan et al., 2021).

In recentyears,with the rapiddevelopmentof computer visionand

machine learning technologies (Jordan andMitchell, 2015; Yoo, 2015;

Ayub Khan et al., 2021), image processing and deep learningmethods

forplant classificationhavegraduallybecomepopular researchhotspot

(Lee et al., 2017; Diaz et al., 2019; Kaya et al., 2019). S. Razavi et al.

(Razavi and Yalcin, 2017) proposed a method using Convolutional

Neural Networks (CNN) to classify plant types from image sequences

collected from smart agricultural stations. This method helps to

improve agricultural production processes, including pesticide

application, fertilization, and timely harvesting, by automatically

identifying different plant types. Sari et al. (Sari et al., 2020) used a

Naive Bayes classifier and local binary pattern feature extraction in

order to classify papaya types based on papaya leaf images. After

preprocessing steps, such as grayscale conversion, image adjustment,

and resizing, 150 papaya leaf imageswere used for training and testing.

The results showed that the Naive Bayes classifier with specific pixel

unit sizes and image adjustments achieved an accuracy of 96%.

However, their research focused on 2D images, ignoring the three-

dimensional structural information of the plants, which, to some

extent, limits the classification accuracy and application range.

To overcome this limitation, researchers have begun to use point

cloud data in order to capture and analyze the three-dimensional

structure of plants in detail (Lou et al., 2015; Wang and Chen, 2020).

Point clouddata comprehensively reflect the geometricmorphologyof

plants from multiple perspectives, which is crucial for understanding

plant growth conditions and classification. Currently, 3D point-cloud

technology is a key tool in plant phenotypic analysis, particularly for

characterizing the geometric and morphological features of plants. Li

et al. (Li et al., 2020) proposed anew framework consistingoffive stages

for phenotypic analysis of the leaves of two ornamental plants,

Caladium bicolor and Begonia masoniana. This framework includes

multiview stereo point-cloud reconstruction, preprocessing, stem

removal from the plant canopy, leaf segmentation, and leaf

phenotypic feature extraction. Through experiments, the team

calculated and compared phenotypic features such as single leaf area,

length, width, and leaf inclination angle. However, after obtaining

plant point-cloud information through 3D point clouds, the key

challenge lies in accurately quantifying and finely classifying plants

for better applications in practical plant phenotypic analysis and

biological research.
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With the rapid development of deep-learning technology,

methods for processing point-cloud data are also evolving,

particularly with the introduction of deep-learning models, such as

PointNet and PointNet++ (Shrestha and Mahmood, 2019). These

models can effectively handle complex 3D data from multiple

perspectives, significantly improving the accuracy and efficiency of

point-cloud data analysis by learning deep features within the data.

However, the focus of current research combining plant 3D point-

cloud data and deep learning is mainly on solving data segmentation

problems.Maet al. (Maet al., 2024) in their studyproposed a two-stage

method that combined morphological features and deep learning

point-cloud segmentation to extract banana pseudostem parameters.

First, they used the DBSCAN clustering algorithm to extract seed

points and completed the single-plant segmentation of bananas based

on these seed points using a region-growing algorithm. They then

applied PointNet++, PointNet, and a DGCNN to segment the

pseudostem and canopy. This method effectively overcomes the

challenge of single-plant segmentation in densely planted bananas

and provides precise phenotypic parameter information for banana

cultivation management. Applications of PointNet++ in plant species

classification are relatively limited and mostly focused on tree

classification. Liu et al. (Liu et al., 2022) used a backpack laser

scanning (BLS) system to collect 3D point-cloud data for eight tree

species from three regions. By designing comparative experiments,

they explored the impact of different point cloud normalization

methods on tree species classification accuracy and analyzed the

effect of separating leaves and wood in the point cloud data on

classification accuracy. Additionally, they tested five point-cloud

downsampling methods to determine the most suitable

downsampling method and demonstrated the potential of point-

cloud deep learning methods in tree species classification.

In addition, recent advancements in computer vision for fruit

detection and harvesting automation have provided new methods

and insights for plant classification. For instance, Li et al. (Li et al.,

2024) proposed a lightweight improved YOLOv5s model for

detecting pitaya fruits in both daytime and nighttime light-

supplement environments. The model not only enhances

detection accuracy but also reduces computational resource

requirements, making it suitable for real-time and resource-

constrained environments. Chen et al. (Chen et al., 2024).

investigated dynamic visual servo control methods for continuous

operation of a fruit-harvesting robot in orchards. By dynamically

adjusting the robot’s pose and position, these methods significantly

improved the efficiency and reliability of fruit harvesting.

Building on this, our research further expands the application of

deep learning classification models in agriculture. In this study, 257

samples of different varieties of Chinese cabbage were collected, and a

multi-view image sequence method was used to quickly acquire and

reconstruct the 3D structural information of the plants (Rong et al.,

2021; Gao et al., 2022). We quantified the traits related to plant type

based on the growth characteristics of Chinese cabbage. Subsequently,

K-medoids clustering analysis was used for unsupervised classification

of the data, and specific quantification of Chinese cabbage plant types

was performed based on the classification results. Finally, we used an

optimized PointNet++model for supervised learning to automatically

classify Chinese cabbage plant types.
frontiersin.org
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2 Materials and methods

2.1 Data collection

The precision and resolution of the images play a crucial role in

the subsequent 3D point-cloud construction and classification

accuracy. High-precision images provide detailed and accurate

information about the phenotypic traits of the Chinese cabbage

plants, which is essential for capturing the fine geometric and color

features needed for robust 3D modeling and classification. For

image acquisition, we selected the FSFE-3200D-10GE camera from
Frontiers in Plant Science 03
JAI in Copenhagen, Denmark. This camera is widely recognized in

botanical research for its high resolution and high dynamic range,

which effectively capture the detailed phenotypic traits of the plants.

The high-precision camera ensures the accuracy of the obtained

results, providing a solid foundation for the subsequent 3D point-

cloud construction and classification tasks.

The complete process for obtaining 3D point-cloud data in this

study is shown in Figure 1. The 257 Chinese cabbage samples

analyzed in this study were carefully cultivated from multiple

varieties with rich genetic backgrounds using ex situ conservation

methods. All of the samples were planted in the experimental field
FIGURE 1

Workflow for Acquiring the 3D Point Cloud Models of Chinese Cabbage. The process begins with (A) Sample Collection, where Chinese cabbage
samples are gathered from the experimental field. Next, in (B) Multi-View Image Acquisition, multiple images of the cabbage are captured using a
multi-view imaging setup. This is followed by (C) Point Cloud Processing Software, where various software tools, including Visual Studio,
CloudCompare, Matlab, and Metashape. In (D) Sparse Point Cloud Construction, sparse point clouds are generated based on the multi-view images,
which are then refined into dense point clouds through detailed processing. Finally, (E) Noise Removal and Coordinate Correction involves removing
noise using color filtering techniques and correcting the point cloud coordinates based on principal component analysis.
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of the Third Farm at the Western Campus of Hebei Agricultural

University (latitude 115°25′ N, longitude 38°48′ E) and strict

harvesting procedures were followed (Figure 1A). The image

collection process was completed at the Artificial Intelligence

Laboratory of Hebei Agricultural University (Figure 1B). Specifically,

the image collection steps included placing the Chinese cabbage

sample to be tested at the center of a platform with a transparent

glass base (Zhang et al., 2022) and using a rotating camera to capture

images around the sample, collecting 60 to 70 images per rotation.
2.2 3D point cloud reconstruction
and preprocessing

After acquiring the multi-view image sequence, we used the

Agisoft Metashape software for efficient 3D point cloud construction

(Tinkham and Swayze, 2021). The Scale-Invariant Feature Transform

(SIFT) algorithm was employed to identify key feature points in the

images, and the Random Sample Consensus (RANSAC) algorithm

was used to remove mismatches, thereby reconstructing sparse point

clouds of the Chinese cabbage plants. We further applied clustering

basedonmulti-view stereo (MVS) andapatch-basedmulti-view stereo

algorithm to cluster, match, densify, and filter the point cloud,

ultimately generating a high-density point cloud for the Chinese

cabbage plants (Figure 1D).

Owing to the complexity of the environment and other

uncontrollable factors, the reconstructed 3D point-cloud model

inevitably contains noisy points. In order to improve the quality and

accuracy of the point cloud, we adopted color-filtering techniques to

remove these noisy points. The color-filteringmethod is mainly based

on the significant color differencebetween theChinese cabbageand the

surrounding environment (Xiao et al., 2020). By comparing and

analyzing the colors of the pixel points in the images with the preset

color threshold of Chinese cabbage, we effectively identified and

excluded noise points whose colors did not match the characteristics

of Chinese cabbage (Figure 1E).

To ensure the handling of high-quality and uniformly

standardized input data, we used Principal Component Analysis

(PCA) to correct the coordinate axes of the point-cloud data, and

we performed normalization to enhance the comparability and

consistency between the different datasets. Through these steps, the

data preprocessing workflow produced standardized high-quality

3D point cloud data, providing high-quality input for the automatic

classification of Chinese cabbage plant types. This ensured the

efficiency and accuracy of the classification system and provided

reliable data support for the subsequent use of deep learning models

for point-cloud feature learning and classification.
2.3 Extraction of phenotypic parameters of
Chinese cabbage based on 3D point clouds

To comprehensively and accurately assess the differences between

Chinese cabbage plant types and classify them effectively, we selected a

set of parameters that included geometric,morphological, and structural

features (Figure 2).
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The selection of these parameters is based on several key

reasons. First, the combination of geometric, morphological, and

structural features can more comprehensively reflect the growth

status and structural characteristics of Chinese cabbage, capturing

subtle differences from different perspectives that a single feature

type cannot fully assess. Second, dimensionless features, such as the

plant height-to-plant spread ratio, leaf inclination angle, and radial

dimension difference, are not affected by specific length units,

providing better generalizability and comparability across

different environments and scales, and avoiding errors caused by

unit changes. Third, each parameter has a clear biophysical

meaning, directly reflecting key growth characteristics of the

plant. For example, the plant height-to-plant spread ratio

evaluates growth patterns and balance, while the leaf inclination

angle impacts the capture and utilization of photosynthetically

active radiation, reflecting the plant’s health and potential yield.

Finally, these features have high discriminative power in

classification tasks, helping the model better identify and

differentiate various types of Chinese cabbage. Volume and

surface area provide overall geometric information, projection

areas assess growth and expansion in different spatial directions,

and head roundness and symmetry are important indicators for

evaluating morphology and growth quality.

The software used to measure these parameters included

CloudCompare, MATLAB 2023b, and Visual Studio 2017

configured with the PCL library. The basic calculation methods

for the 10 phenotypic parameters were as follows:

Plant height-to-plant spread ratio (T): The ratio of plant height

to plant spread is a fundamental parameter for evaluating the

growth patterns of Chinese cabbage and provides an intuitive

indicator of the balance between vertical and horizontal growth.

This ratio was calculated by measuring the maximum height of the

Chinese cabbage from the ground to the top (maximum Z-axis

distance) and its diameter at the widest part of the horizontal plane

(maximum XY plane distance) (Figure 2A).

Equation 1 expresses the process for calculating the plant

height-to-plant spread ratio.

T =
H
D

(1)

where T is the plant height-to-plant spread ratio, H is the plant

height, and D is the plant spread.

Leaf Inclination Angle (q): Leaf inclination angle is an indicator

of the degree of tilt of the leaves relative to the vertical direction,

directly affecting the capture and utilization of photosynthetically

active radiation. The specific measurement steps were as follows.

First, the Chinese cabbage was vertically divided into three equal

parts, and the middle section was selected as the primary analysis

object to exclude interference from the bottom and top parts. Then,

the pcdenoise function was used to process the selected point cloud

section to reduce the noise impact. The surface normals of each

point in the point cloud were calculated using the pcnormal

function. Next, the angle between these normals and the vertical

direction (0, 0, and 1) was calculated. This angle is the deviation of

the leaf from the vertical direction and reflects the leaf inclination

angle (Figure 2B). As the leaves face different directions, the final
frontiersin.org
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angle obtained is the absolute value of the angle between the leaf

normals and the vertical direction. Finally, the leaf inclination

angles of all the measurement points were averaged in order to

obtain the average leaf inclination angle of the entire Chinese

cabbage plant.

Equations 2 and 3 express the calculation process for the leaf

inclination angle.

qi = cos−1 ( ni � zj j) (2)

q =
1
No

N

i=1
qi (3)

where ni represents the normal vector of each point; z is the

vertical direction vector; qi is the leaf inclination angle of each point;
N is the number of points; andq is the average leaf inclination angle.

Radial Dimension Difference (W): Measuring the radial

dimension difference of the Chinese cabbage in the XY plane can

better assess the uniformity and consistency of its longitudinal

morphology. The specific steps were as follows: The convhull

function was used to find the outer contour of the point cloud on

the XY plane, as the convex hull simplifies the point set, making

subsequent calculations consider only the points forming the

convex outer contour. Then, the distances between the contour
Frontiers in Plant Science 05
points were compared to find the maximum and minimum

distances and their differences were calculated (Figure 2C).

Equation 4 expresses the calculation process for the radial

dimension difference.

W = max (dij) −min (dij) (4)

where W denotes the radial dimension difference, dij the

maximum distance between any two points in the XY plane, and

max (dij) the minimum distance.

Volume (V) and Surface Area (S): Measuring the volume and

surface area can provide specific geometric information on Chinese

cabbage. A point-cloud convex hull refers to the smallest convex

polyhedron that closes point-cloud data. This convex polyhedron

covers all data points. The overall volume and surface area of the

Chinese cabbage were calculated (Figure 2D).

Equations 5 and 6 express the calculation processes for the

volume and surface area, respectively:

V =
1
6o

n

k=1

(ri � (rj � rk))
�
�

�
� (5)

S =
1
2o

n

k=1

ri � rj
�
�

�
� (6)
FIGURE 2

Extraction Diagrams of the Various Phenotypic Parameters of Chinese Cabbage. (A) Height-to-spread ratio, (B) Leaf inclination angle, (C) Radial
dimension difference, (D) Volume and surface area, (E) Projection areas, (F) Head roundness, (G) Symmetry.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1458962
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Yang et al. 10.3389/fpls.2024.1458962
where V is the volume; S is the surface area; ri, rj, rk is the vertex

vector coordinate of the convex hull; and n is the number of vertices

and faces of the convex hull.

Projection Areas (S1, S2, and S3):The projection areas of the

Chinese cabbages on the XZ, YZ, and XY planes were calculated to

reflect their growth and expansion in different spatial directions

(Figure 2E). These projection areas were obtained by projecting the

3D point-cloud data after principal component analysis onto the

corresponding plane and then calculating the area of the convex

hull covering the region.

Equations 7–9 express the calculation process for the projection

areas.

S1 = Area(convhull((xi, zi)j∀i) (7)

S2 = Area(convhull((yi, zi)j∀i) (8)

S3 = Area(convhull((xi, yi)j∀i) (9)

where S1,  S2,  S3 is the projection area in the XZ, YZ, and XY

planes. xi, yi, and zi represent the coordinates of the points in the

three-dimensional point cloud data.

Head Roundness(O): Head roundness is an important criterion

for evaluating Chinese cabbage quality. The measurement of

roundness is an essential assessment of morphology and growth

quality, reflecting how close it is to a perfect circle. First, the point

cloud of the Chinese cabbage was projected onto the XY-plane to

extract its 2D contour information. Subsequently, the area of the

polygon formed by these 2D points and the area of the minimum

enclosing circle that can contain this area were calculated. The

roundness of the Chinese cabbage was quantified by the ratio of the

polygon area to the circular area (Figure 2F).

Equation 10 expresses the calculation process for head

roundness.

O =
A
Ac

(10)

where O is the head roundness, a dimensionless ratio; the closer

to 1, the more the shape approximates a perfect circle. A is the area

of the polygon formed by the projection of Chinese cabbage on the

XY plane. Ac is the area of the minimum enclosing circle.

Symmetry (M): Measuring the symmetry of Chinese cabbages

aims to quantitatively assess morphological regularity and balanced

development. The specific steps are as follows: principal component

analysis (PCA) was used to find the main axis direction of the point

cloud and the point cloud of the Chinese cabbage was divided along

the XY plane into several parts. The variance in distances from each

point to the main axis for each part was calculated. Finally, we

calculated the average of the variances for all parts. The smaller the

mean and standard deviation of the distance differences, the better

is the symmetry of the Chinese cabbage. This method allowed for

the objective quantification of the morphological symmetry of

Chinese cabbage, thereby assessing its growth status and

quality (Figure 2G).
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Equations 11 and 12 express the symmetry calculation process.

s 2
k =

1
Sk
o
p∈Sk

(d(p, L) − mk)
2 (11)

M =
1
K o

K

k=1

s 2
k (12)

where s 2
k is the average variance, mk represents the mean

distance of all points in the kth group to the main-axis L, Sk
represents the number of points in the kth group (i.e., the group

size), d(p, L) represents the distance from point p to the main-axis L,

M is the symmetry, and K is the number of groups.
2.4 Quantification and classification of
Chinese cabbage plant types based on
cluster analysis

In this study, the K-medoids clustering analysis method was

used to perform a detailed structural exploration and group division

of the dataset (Arora et al., 2016). Compared to other clustering

algorithms, K-medoids provide more stable and reliable clustering

results. The workflow of the cluster analysis begins with the z-score

standardization of all phenotypic parameter datasets involved to

eliminate differences in scales and ensure that each dimension has

equal influence in subsequent analyses. After standardization, the

number of clusters (k) was determined, which is a crucial parameter

in cluster analysis that affects the granularity and distinguishability

of the clustering results.

Next, the K-medoids algorithm randomly selects (k) data points

as the initial cluster centers in the standardized dataset. For each

point in the dataset, the algorithm calculates its distance to these (k)

center points and assigns each point to the cluster represented by

the nearest cluster center. This step ensures that the data points are

grouped into clusters that are more similar (i.e., at the

shortest distance).

Then, the algorithm enters the iterative process, recalculating

the “center point” (i.e., “medoid,” the point in the cluster with the

smallest average distance to other points) of each cluster, and then it

reassigns each data point to the cluster represented by the nearest

new center point. The iteration stops when the cluster composition

no longer changes or reaches a predetermined number of iterations.

This process ultimately determines the optimal clustering structure

of the dataset. Each point is assigned to one cluster, with each

cluster represented by a cluster center (medoid). The clustering

results reveal the intrinsic organization and patterns within the

dataset, providing a foundation for in-depth data analysis

and understanding.

Through this method, the different groups present in the dataset

could be clearly distinguished, allowing for an in-depth analysis of

each group’s characteristics and their internal similarities and

differences. This supports subsequent data application and

research decisions.
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2.5 Classification framework of Chinese
cabbage plant types based on PointNet++

PointNet is a deep learning architecture for processing point-

cloud data (Qi et al., 2017). Its core concept is to transform the

input features and compare the input with the transformed data for

tasks such as point-cloud classification, segmentation, and semantic

annotation. However, the main limitations of PointNet are its weak

perception of the local structure of point-cloud data and its lack of

robustness to spatial transformations.

PointNet++ improves upon PointNet by introducing a

hierarchical neighborhood structure for local feature learning and

multiscale sensitivity analysis, thus enhancing the perception of the

local point cloud data structure and robustness to transformations,

aiming for more accurate point cloud processing in complex

scenarios (Qi et al., 2017). Due to the structural complexity of

Chinese cabbage plant types, PointNet may fail to capture sufficient

local features, leading to decreased classification accuracy. However,

the excellent local sensitivity and transformation robustness of

PointNet + + can more accurately capture the characteristics of

Chinese cabbage plant types, thereby improving the classification

accuracy. Therefore, we chose to use PointNet++ to classify the

Chinese cabbage point cloud plant types.

PointNet++ divides the point-cloud data of the Chinese cabbage

into multiple overlapping local regions. In this process, it first

captures fine geometric structures within small neighboring

regions. These local features are then further organized into larger

units and processed to produce higher-level features. This process

was repeated until the feature representation of the entire set of

points was obtained.
Frontiers in Plant Science 07
In the classification process of this study, we divided the

classification into two main parts: feature extraction and fully

connected layer classification. In the feature extraction stage, we

processed the Chinese cabbage point cloud data using several set

abstraction layers. Each abstraction layer involves sampling

(selecting representative points), grouping (grouping points

according to the point cloud density), and applying PointNet

layers (extracting the features of each group). After these steps

were completed, a feature vector containing 1024 elements

was obtained.

Additionally, we incorporated ten custom dimensionless

features (the ten plant type parameters measured earlier) to

capture the specific geometric and biological characteristics of the

Chinese cabbage plant type (Zhou et al., 2022). These features were

then combined with the 1024-dimensional feature vector to form a

feature vector with 1034 dimensions. Finally, this 1034-dimensional

feature vector was classified through a fully connected layer. The

structure of the Chinese-cabbage classification network is shown

in Figure 3.

Owing to the varying number of points in the point clouds of

each Chinese cabbage, downsampling was necessary to standardize

the size of the dataset. This study used Farthest Point Sampling

(FPS) as the downsampling strategy (Okada et al., 2023). For each

Chinese cabbage point cloud dataset, the FPS was performed first.

By iteratively selecting the farthest points, the distribution and

coverage range of the sampling were ensured, thereby maintaining

the characteristics of the original point cloud as much as possible

during the downsampling process. Subsequently, a limit was

imposed on the number of points in each point cloud to ensure

that each point cloud contained 20,000 points. This process
FIGURE 3

Network Structure for Chinese Cabbage Classification.
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successfully addressed the issue of an imbalance in the number of

points in the different point clouds in the dataset, thereby providing

high-quality input data for subsequent deep learning

model training.

The experimental dataset was randomly divided into two parts:

80% of the data was selected as the training set for model training

and tuning, and the remaining 20% was designated as the test set to

validate the model’s performance on unseen data. In addition, to

increase the diversity of the test data and test the robustness of the

model, the test set data were augmented by expanding the 205

samples in the test set to 900. This augmentation includes

operations such as rotation, scaling, and addition of random

noise to simulate potential real-world data variations. Each class

in the test set was expanded to 225 samples in order to avoid a

significant imbalance in the amount of data among the different

classes in the training set. Ultimately, 952 samples were used for the

model training and evaluation.

The deep-learning framework used in the experiment was

PyTorch (2.0.0 + CUDA 11.8). The operating system used for the

experiment was Windows 10, with the following computer

configuration: 13th Gen Intel® Core™ i5-13490F 2.50 GHz, 16

GB RAM, and NVIDIA GeForce RTX 4060Ti. Table 1 lists the

model hyperparameters and optimized configuration parameters

used in this experiment, where multiple schemes were selected for

experimentation. We will conduct hyperparameter tuning based on

the hyperparameters and configuration parameters listed in Table 1.

Through this process, we aim to analyze the impact of each

hyperparameter on model performance and identify the optimal

configuration combination.
3 Results

3.1 Clustering and quantification results of
Chinese cabbage plant types

After conducting a K-medoids cluster analysis (Figure 4), the

Chinese cabbage plant types were categorized into four main

clusters. This choice is based on the following considerations

(Figure 5): We tested the silhouette scores for different numbers

of clusters (k=2, 3, 4, 5, 6, 7, 8). The silhouette score, ranging from

-1 to 1, indicates better clustering as it approaches 1. In our analysis,

the silhouette score reached its highest value at k=4, suggesting that

the internal structure of the four clusters is more compact and the

separation between different clusters is greater, thus achieving the

best clustering effect. Additionally, we used the K-means algorithm

to calculate the WCSS (Within-Cluster Sum of Squares) for

different k values. The WCSS decreases gradually as k increases,

but there is a clear elbow point at k=4, further confirming that four

clusters are optimal.

Based on the characteristics of each cluster (Table 2), four types

of Chinese cabbage were identified: full type (Cluster 1), highly lean

type (Cluster 2), tight type (Cluster 3), and round spread type

(Cluster 4). The ratio of plant height to plant spread was low, with a

large projection area, volume, and surface area on the x-z and y-z

planes, resulting in a relatively full body size at all angles. The tall
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and lean type exhibited well-balanced parameters, with a large ratio

of plant height to plant spread and a symmetrical tall and lean

shape. The compact type had a small projected area, a thin

appearance from all angles, and a small blade inclination and

volume. Finally, the circular spread type featured wide-spreading

plants on the side with a large xy-plane projection area and surface

area, along with high roundness.

A diagram depicting the four plant types is shown in Figure 6.

To validate the effectiveness and efficiency of the automatic

classification method, we designed a control group experiment

involving five experienced agricultural experts who manually

screened the samples into four major categories of Chinese

cabbage. The results showed that the time required for manual
TABLE 1 Configuration of the model hyperparameters.

Hyperparameter Value Declaration

Model SSG/MSG Two different point cloud
sampling strategies

Batch size 4/8/12/
16/20

The number of samples used for
each training

Number of points
Epochs

1024/
2048/
4096/8192
50/100/
200/
300/500

The number of points selected in each
point cloud
The number of complete training cycles
on the entire data set

Optimizer Adam/
SGD

Method for updating network weights

Learning rate
0.001/
0.01/0.1

Control the number of steps the model
takes to update parameters at
each iteration

Decay rate
Dropout Rate

0.0001/
0.001
0.3/0.5

Weight attenuation to prevent
overfitting
Regularization techniques to
prevent overfitting
FIGURE 4

Classification of the Chinese Cabbage Plant Types Based on
K-medoids.
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screening was significantly higher than that for the automated

method, and the accuracy was also notably lower. Specifically, the

experts had to distinguish each sample individually, with an average

classification time of 10 seconds per sample for each expert. In

contrast, the automated method could classify all samples within a

few seconds.

Moreover, even when accounting for the time required for the

initial point cloud data collection and measurement, the total time

consumed by the automated method was still higher than that of

manual screening. However, manual screening was heavily

influenced by subjectivity and the fatigue of the human eye,

resulting in large differences in classification results between

different experts and even within the same expert each time

(Figure 7). This resulted in low consistency and accuracy. The

automated method, through a unified algorithm and standard,

ensured the consistency and reproducibility of the classification

results, making it a more reliable and efficient choice overall
3.2 Model training results

Through the iterative experiments and cross validation, we fine-

tuned the parameters of our model to achieve optimal performance.

We employed the Multi-Scale Grouping (MSG) strategy for model

selection. The MSG strategy groups and extracts features from

point-c ata at multiple scales, capturing richer local and global
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information, which enhanced the model’s ability to identify

complex Chinese cabbage plant types.

We chose a batch size of eight in order to balance computational

resource utilization and accelerate the training process while

ensuring stable gradient estimates. The number of points was set

to 4096 to ensure efficient computation and adequate capture of the

3D morphological features of the cabbages for classification.

Training was conducted over 200 epochs, providing ample time

for the model to learn and optimize, resulting in stable performance.

We used the Adam optimizer, which is known for its fast

convergence and stable performance, making it suitable for complex

deep learning tasks such as Chinese cabbage plant type classification.

The learning ratewas set to 0.001, allowing smooth parameter updates

in each iteration, thereby avoiding instability and ensuring gradual

optimization. We set the decay rate to 0.0001, which prevented

overfitting and promoted gradual model optimization. Finally, we

included a dropout rate of 0.5, which effectively prevented overfitting

and enhanced the generalizability of the model.

To evaluate the impact of adding dimensionless features on the

classification accuracy, we conducted comparative experiments. We

trained two models: one using only a 1024-dimensional point cloud

feature vector for classification, and the other incorporating a 1034-

dimensional feature vector that includes dimensionless features. As

illustrated in Figure 8, the inclusion of dimensionless features

significantly improves the classification accuracy of the model. The

model without dimensionless features achieved an accuracy of 89.6%
FIGURE 5

Comparison of contour coefficient and WCSS with the number of clusters.
TABLE 2 Analysis of the phenotypic differences between the Chinese cabbage groups.

T S1 S2 S3 R V S O M W

CLUSTER 1 1.1274 0.8359 0.7769 0.7046 60.9285 0.2484 2.1247 86.6433 0.1862 0.9157

CLUSTER 2 1.5136 0.4127 0.4109 0.4555 67.8658 0.1457 1.5216 105.3768 0.1638 0.6823

CLUSTER 3 1.2058 0.2217 0.1768 0.3443 61.4423 0.0422 0.5850 155.3771 0.0877 0.4127

CLUSTER 4 1.4600 0.7689 0.632 1.6705 70.3238 0.1739 1.699 372.2589 0.1764 0.7195
fro
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FIGURE 6

Schematic Diagrams of the Four Plant Types.
FIGURE 7

The accuracy of classification for different experts and the consistency of classification results for five experts, noted: In the graph on the left, the bar
chart represents the average classification accuracy of each expert, and the red dashed line represents the classification accuracy of K-medoids
cluster analysis. In the figure on the right, the box plot shows the distribution of the classification results of the five experts, showing the degree of
consistency and variation among different experts.
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for the validation set, whereas the model with dimensionless features

achieved an accuracy of 92.4%. This demonstrates that incorporating

custom dimensions can enhance the model accuracy. For the training

duration, the optimized network required an average of 8 additional

seconds per batch compared to the unoptimized network. It is clear

that the inclusion of these 10 dimensionless features does not

substantially reduce the operational efficiency of the network. This is

due to the fact that these features are exclusively involved in the

computations of the fully connected layers, representing only a small

portion of the total 1034 features. Consequently, their impact on the

overall computational burden is limited. Given the improved model

accuracy, this marginal increase in training time is justified. This

approach not only enhances the model’s predictive performance but

also maintains satisfactory training efficiency.
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The confusion matrix for the optimized model is shown in

Figure 9. The confusion matrix summarizes the results of the

classifier predictions, with all correct predictions located on the

diagonal of the table. It is evident that the classification accuracy

varies among different types of Chinese cabbage plant shapes. The

round spread type had the highest classification accuracy, whereas

the highly lean type had the lowest accuracy. This discrepancy may

be due to the more distinct distinguishing features of the round

spread type, which make it easier for the model to identify and

classify them. In many cases, the high-lean type is misclassified as

the full type because some characteristics of the high-lean type

resemble those of the full type, leading to misclassification. This also

suggests that the ten dimensionless parameters chosen, when most

of them exhibit similar values, can result in classification errors.

To further validate the effectiveness of ourmethod,we compared it

with four advanced point cloud processing models: PointCNN,

DGCNN, SPLATNet, and PointNet, using the same dataset. From

Table 3, it is evident that our method outperforms these models in

classification accuracy, average recall, and average F1 score. Our

method achieved a classification accuracy of 92.4%, average recall of

92.5%, and average F1 score of 92.3%, all of which are higher than the

respectivemetrics for PointCNN,DGCNN, SPLATNet, andPointNet.

This demonstrates the leading performance of our approach in

handling complex Chinese cabbage plant types.
4 Discussion

4.1 Method advantage and innovation

In previous studies, researchers often relied on two-dimensional

images in order to classify distinct plant types. For example,

Andono et al. (Andono et al., 2021). used Support Vector
FIGURE 8

Accuracy of the Model Before and After Optimization.
FIGURE 9

Confusion Matrix and Performance Metrics for the Optimized Model, noted: This figure shows how well the optimized model classifies the different
types of Chinese cabbage plants. On the left is the confusion matrix, which tells us how often the model correctly or incorrectly predicts each of the
four plant types. The numbers in the grid show the model’s predictions against the actual labels for each type. On the right, we see precision, recall,
and F1-score for each type, which help us understand how well the model performs for each category.
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Machine (SVM), Naive Bayes, and K-Nearest Neighbor (KNN)

algorithms to classify 15 types of orchids, training with 2250 images,

and testing with 1500 images. The results showed that the SVM

with a linear kernel and feature extraction had the highest accuracy

of 98.13%, outperforming the Naive Bayes and KNN algorithms.

Komi et al. (Komi et al., 2007) in their study proposed a novel weed

detection and classification system that combined low-cost RGB

and color spectral cameras. Under controlled laboratory lighting

conditions, the system achieved 97.6% accuracy in identifying

nonoverlapping whole leaves using samples from six different

plant types. Although these methods are effective at

distinguishing significantly different plant types, their limitations

become apparent when classifying variations within the same plant

species. Two-dimensional images fail to fully capture the three-

dimensional structure and subtle features of plants, making them

unsuitable for distinguishing plant shapes within the same species.

In contrast, our method not only differentiates various plant species

but also effectively addresses the classification of subtle shape

differences within the same species.

Due to the limitations of two-dimensional data, in recent years,

an increasing number of scholars have turned to three-dimensional

data for plant classification research. Qian Y. et al. (Qian et al.,

2021) used a Raytrix light field camera to obtain 3D point cloud

data of rice seeds. After filtering, segmentation, and downsampling,

the data were input into an improved PointNet network for feature

extraction and classification. The improved PointNet model

enhanced the rice variety classification accuracy to an average of

89.4% by adding cross-layer feature connections. Xi et al. (Xi et al.,

2024) proposed a soil particle roundness classification method

based on deep learning, achieving a classification accuracy of

92.19% on 2400 soil particle point cloud data points using the

PointNet++ model, effectively handling defective particles. In

comparison, the improved PointNet++ model achieved an

accuracy of 92.4%, surpassing that of Qian et al. Our

improvements in feature extraction and cross-layer feature fusion

effectively capture subtle differences among categories, thereby

enhancing the classification accuracy. Xu et al. (Xu et al., 2024)

proposed the D-PointNet++ model, which achieved an overall

classification accuracy (OA) of 92.65% and a mean class accuracy

(mAcc) of 92.54% on the Nursery dataset. The model also obtained

an average Intersection over Union (mIoU) of 89.90% and a mean

class accuracy (mAcc) of 92.18% for segmentation tasks. These

results demonstrate the significant advantages of the D-PointNet++
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model in both tree species classification and tree part segmentation,

further validating the effectiveness of the dense connection pattern

and feature fusion operations in maintaining high classification

accuracy even when processing highly complex point cloud

datasets. Although our model’s accuracy is slightly lower than

that of D-PointNet++, our research focuses on fine-grained

classification of individual plant phenotypes within the same

species, which is a more challenging task compared to the

classification of different species. Despite this increased

complexity, our model achieves comparable accuracy,

highlighting its robustness and effectiveness in capturing subtle

differences among plant phenotypes. This underscores the

advanced capabilities of our model in handling intricate and

nuanced data for plant phenotype classification.

Furthermore, in our species classification approach, we

abandoned the traditional manual division and labeling method

and innovatively adopted the quantified extraction of representative

information combined with K-medoid clustering analysis. This

method ensures more accurate dataset division. By objectively

identifying and classifying the categories, we ensured the

independence and scientific nature of the training data, thereby

laying a solid foundation for further improving the accuracy of the

classification model. This automated data preprocessing step

reduces human error and enhances the generalization capability

of the model across different datasets.
4.2 Limitations and future
research directions

Despite these achievements, the study has some limitations.

First, the diversity and scale of the dataset require further expansion

to enhance the robustness and generalizability of the model. The

current dataset primarily focuses on Chinese cabbage grown under

the same environmental conditions and lacks broad coverage of

other plant types or different environments, which may limit the

model’s effectiveness across various settings and varieties; therefore,

future research should aim to collect a wider range of image data

from different plant species and growing conditions to better

address these limitations. Specifically, measures can include:

increasing plant types by collecting image data from various

species, including common vegetables, fruits, and cereal crops, to

validate the model’s applicability and effectiveness across a broader

range of plant types; diversifying growing conditions by gathering

plant images under different environmental conditions, such as

greenhouses, fields, and different climate zones, to cover a variety of

lighting, humidity, and soil conditions, thereby improving the

model’s environmental adaptability; and expanding sample size

by increasing the number of samples for each plant type to

enhance the robustness of the model.

Second, more parameters will be extracted in the future.

According to the feature characteristics of the misclassified results

in this study, when most of the ten dimensionless parameters

exhibit similar values, it can lead to classification errors. To

improve distinction and accuracy, we can further increase the

number of dimensionless parameters, such as Petiole length and
TABLE 3 Comparative Analysis of Network Performance Metrics Across
Different Models.

Model Classification
Accuracy (%)

Average
Recall (%)

Average F1
Score (%)

Our
Method

92.4
92.5 92.3

PointCNN 89.5 88.8 88.8

DGCNN 87.7 87.8 87.5

SPLATNet 90.1 90.0 90.0

Pointnet 79.1 79.2 77.5
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thickness, leaf texture, and vein distribution, which may show

greater differences between high-lean and full types, helping the

model classify more accurately; additionally, using feature selection

methods, such as recursive feature elimination and importance-

based feature selection, can help identify the most relevant features

and avoid introducing redundant parameters that may affect

model efficiency.

Through continuous optimization and expansion, we expect

this method to provide more scientific and efficient solutions for

smart agricultural development and precise crop management.
5 Conclusion

In this study, 3D point-cloud data processing and the deep

learning algorithm PointNet++ were used to quantify and classify

Chinese cabbage plant shapes. By combining plant shape parameter

extraction and the K-medoids clustering method, we achieved the

precise quantification of Chinese cabbage plant shapes. We also

optimized the basic PointNet++ algorithm by adding 10 plant shape

features to the 1024 features automatically defined by PointNet++,

improving the classification accuracy by 2.8% to 92.4%.

Dimensionless features simplified the comparison between

different categories, further revealing essential differences among

various Chinese cabbage plant types. These features provide key

information about cabbage morphology, creating more distinct

classification boundaries in the feature space, and thus helping

the model distinguish different categories more accurately. This

approach not only provides a new method for the precise

classification of agricultural crops but also serves as a reference

for classification research in other fields.

This method provides a new approach for the precise

classification of similar agricultural crops and demonstrates

significant potential in smart agricultural systems. In terms of

crop monitoring, the morphological features of plants can reflect

their growth status and health conditions in real-time. This study

offers farmers a unified method for managing plants, enabling them

to promptly gather phenotypic information. In the area of yield

prediction, the morphological features of plants are closely related

to their final yield. Using our method, we can analyze the

relationship between plant morphological features and yield,

thereby predicting the final crop yield more accurately. This helps

farmers develop more scientific planting plans, optimize field

layouts, and select the most suitable growing areas for specific

plants, leading to improved overall yield and economic efficiency. In

disease management, the morphological features of plants change

subtly when they are affected by diseases. Our method can capture

these subtle changes, enabling early disease detection and providing

a basis for timely treatment. Additionally, it not only detects

whether plants are diseased but also classifies different disease

types based on the differences in morphological features, helping

farmers implement targeted control measures and reduce losses.

In summary, this study presents an effective method for the

classification of Chinese cabbage plant shapes based on 3D point-
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cloud data, demonstrating excellent performance in highly accurate

classification tasks and providing strong support for intelligent and

precise management in the agricultural field.
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