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Hyperspectral images are rich in spectral and spatial information, providing a

detailed and comprehensive description of objects, which makes hyperspectral

image analysis technology essential in intelligent agriculture. With various corn

seed varieties exhibiting significant internal structural differences, accurate

classification is crucial for planting, monitoring, and consumption. However,

due to the large volume and complex features of hyperspectral corn image data,

existing methods often fall short in feature extraction and utilization, leading to

low classification accuracy. To address these issues, this paper proposes a

spectral-spatial attention transformer network (SSATNet) for hyperspectral

corn image classification. Specifically, SSATNet utilizes 3D and 2D convolutions

to effectively extract local spatial, spectral, and textural features from the data

while incorporating spectral and spatial morphological structures to understand

the internal structure of the data better. Additionally, a transformer encoder with

cross-attention extracts and refines feature information from a global

perspective. Finally, a classifier generates the prediction results. Compared to

existing state-of-the-art classification methods, our model performs better on

the hyperspectral corn image dataset, demonstrating its effectiveness.
KEYWORDS

corn identification, hyperspectral image classification, deep learning, morphology,
image classification
1 Introduction

Hyperspectral imaging technology comprehensively measures an object’s spectral

properties by recording its absorption and reflection across various spectral bands (Li

et al., 2024c; Zhang et al., 2024b; Li et al., 2024a). The resulting hyperspectral images,

composed of multiple consecutive bands, are rich in feature information and can
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thoroughly reveal the nature of the object. This technology advances

intelligent agriculture by utilizing the detailed feature information

in hyperspectral images, thereby avoiding the destructive methods

of traditional seed identification. Hyperspectral imaging has

gradually been applied to intelligent agriculture, geological

exploration, and medical treatment, offering new development

opportunities and technical capabilities.

The increasing variety of corn seeds available in the market

presents a significant challenge to the cereal farming industry,

making the accurate identification of corn varieties especially

crucial. Recently, researchers have been investigating hyperspectral

image classification techniques using machine learning and deep

learning approaches (Zhang et al., 2023c; Wu et al., 2022). Ahmad

et al. (Ahmad et al., 2019). utilized a self-encoder paired with a

multilayer extreme learning machine to mitigate high computational

overhead and the Thuesian phenomenon in hyperspectral images,

which improved the accuracy of hyperspectral image classification.

Okwuashi et al. (Okwuashi and Ndehedehe, 2020) introduced a deep

support vector machine algorithm incorporating four kernel functions

and demonstrated its effectiveness in hyperspectral image

classification using publicly available datasets. Zhang et al. (Zhang

et al., 2020) employed a deep forest model with hyperspectral imaging

to classify rice seeds with different levels of frost damage in small

sample datasets. Su et al. (Su et al., 2022) introduced a new semi-

supervised method for hyperspectral image classification that

integrates normalized spectral clustering with kernel learning,

effectively addressing the issues of relevant features appearing in

non-adjacent regions and the lack of non-Euclidean spatial

correlation. Jin et al. (Jin et al., 2023) developed a cost-sensitive K-

neighborhood algorithm to reduce noise interference, enhance spatial

information utilization, and achieve robust performance in

hyperspectral wheat image classification. Farmonov et al.

(Farmonov et al., 2023) employed wavelet transform for feature

extraction, combined with random forests and support vector

machine algorithms, to localize crops in farmland and classify crop

hyperspectral images, playing a significant role in crop growth

monitoring and harvest prediction. Sim et al. (Sim et al., 2024)

combined machine learning algorithms with hyperspectral imaging

for fast, non-destructive detection of coffee origin without sample

processing. Wang et al. (Wang et al., 2024b) proposed a cross-domain

few-shot learning strategy utilizing a two-branch domain adaptation

technique to mitigate distortion caused by enforcing different domain

alignments, achieving effective cross-domain transfer learning for low/

high spatial resolution data. Althoughmachine learning methods have

demonstrated exemplary performance in hyperspectral image

classification, their reliance on manual or semi-automatic feature

extraction limits their potential. The emergence of deep learning

methods has enabled the automatic extraction of spectral, spatial

and spatial-spectral features from hyperspectral images, leading to

significant advancements in this field.

Zhang et al. (Zhang et al., 2019) created a straightforward 1D

convolutional capsule network to tackle the high dimensionality and

limited labeled samples in hyperspectral images, achieving effective

feature extraction and classification. Wang et al. (Wang et al., 2020)

developed an end-to-end cubic convolutional neural network that

integrates Principal Component Analysis with 1D convolution for
Frontiers in Plant Science 02
efficient extraction of spatial and spectral features. Roy et al.

(Roy et al., 2020) proposed an improved residual network using an

adaptive spatial-spectral kernel with attention mechanisms, utilizing 3D

convolutional kernels to simultaneously extract spatial and spectral

features, achieving excellent classification results. Cui et al.

(Cui et al., 2021) introduced a lightweight deep network using 3D

deep convolution to classify hyperspectral images with fewer parameters

and lower computational costs. Ortac et al. (Ortac and Ozcan, 2021)

evaluated the performance of 1D, 2D, and 3D convolutions in

hyperspectral image classification, demonstrating that 3D convolution

offers superior feature extraction capabilities. Ghaderizadeh et al.

(Ghaderizadeh et al., 2021) employed depth-separable and fast

convolutional blocks in combination with 2D convolutional neural

networks to effectively tackle data noise and insufficient training

samples. Paoletti et al. (Paoletti et al., 2023a) proposed a channel

attention mechanism to automatically design and optimize

convolutional neural networks, reducing the computational burden in

feature extraction while obtaining effective classification outcomes. Sun

et al. (Sun et al., 2023) introduced an extensive kernel spatial-spectral

attention network designed to efficiently leverage 3D spatial-spectral

features, maintaining the 3D structure of hyperspectral images. Jia et al.

(Jia et al., 2023) developed a structure-adaptive CNN for hyperspectral

image classification, which employs structure-adaptive convolution and

mean pooling to extract deep spectral, spatial, and geometric features

from a uniform hyperpixel region. Gao et al. (Gao et al., 2023) designed a

lightweight 3D-2D multigroup feature extraction module for

hyperspectral image classification, which mitigates the loss of crucial

details in single-scale feature extraction and the high computational

expense of multiscale extraction. Zhang et al. (Zhang et al., 2023b)

introduced a method combining 3D and 2D convolution to fully utilize

the spatial, texture and spectral features of hyperspectral data for the task

of identifying wheat varieties. In conclusion, while 2D and 3D

convolutions effectively capture spectral and spatial features from

hyperspectral data, traditional convolutional neural networks are

limited by high computational complexity and insufficient feature

utilization, impacting their classification performance.

Inspired by (Vaswani et al., 2017), researchers have suggested a

Transformer-based network model for image classification (Zhang

et al., 2024a). Hong et al. (Hong et al., 2021) effectively classified

hyperspectral remote sensing images by leveraging spectral local

sequence information from neighboring bands, considering the

temporal properties, and designing cross-layer skipping

connections combined with the Transformer structure. Roy et al.

(Roy et al., 2021) introduced an innovative end-to-end deep

learning framework, using spectral and spatial morphological

blocks for nonlinear transformations in feature extraction. Yang

et al. (Yang et al., 2022) integrated convolutional operations into

the Transformer structure to capture local spatial context and

subtle spectral differences, fully utilizing the sequence attributes of

spectral features. Sun et al. (Sun et al., 2022b) developed a spatial-

spectral feature tokenization converter to capture both spectral-

spatial and high-level semantic features, achieving hyperspectral

image classification through a feature transformation module, a

feature extraction module, and a sample label learning module.

Kumar et al. (Kumar et al., 2022) developed a novel morphology-

expanding convolutional neural network that connects the
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morphological feature domain with the original hyperspectral data,

reducing computational complexity and achieving good

classification results. Peng et al. (Peng et al., 2022) developed a

two-branch spectral-spatial converter with cross-attention, using

spatial sequences to extract spectral features and capture deep

spatial information to establish interrelationships among spectral

sequences. Tang et al. (Tang et al., 2023) introduced a dual-

attention Transformer encoder based on the Transformer

backbone network for hyperspectral image classification,

effectively extracting global dependencies and local spatial

information between spectral bands. Qi et al. (Qi et al., 2023a)

embedded 3D convolution in a two-branch Transformer structure

to capture globally and locally correlated spectral-spatial domain

features, demonstrating good performance for hyperspectral image

classification through validation. Qiu et al. (Qiu et al., 2023)

proposed a cross-channel dynamic spectral-spatial fusion

Transformer capable of extracting multi-channel and multi-scale

features, using multi-head self-attention to extract cross-channel

global features and enhancing spatial-spectral joint features for

hyperspectral image classification. Sun et al. (Sun et al., 2024)

converted the spatial-spectral features into a memory marker

storing a priori knowledge into an in-memory tagger, using a

memory-enhanced Transformer encoder for the hyperspectral

image classification task. Ahmad et al. (Ahmad et al., 2024)

designed a Transformer-based network for hyperspectral image

classification by combining wavelet transform with downsampling.

The wavelet transform performs reversible downsampling,

enabling attentional learning while preserving data integrity.

Based on these studies, we propose utilizing a combination of

2D-3D convolution and Transformer, leveraging spectral-spatial

morphological features to identify hyperspectral corn seed

varieties. The contributions of this paper can be summarized

as follows:
Fron
• We developed a 3D-2D convolutional cascade structure that

autonomously extracts contextual features, reduces data

complexity and efficiently captures high-level abstract

features for integration into the Transformer architecture.

• We introduced a spectral-spatial morphology structure that

employs expansion and erosion operations for spectral-spatial

morphology convolution, enhancing the understanding of the

data’s intrinsic properties.

• We employed a Transformer Encoder with CrossAttention

to comprehensively extract and refine feature information

from hyperspectral corn images on a global scale using the

attention mechanism.
2 Related works

Currently, researchers have proposed a variety of methods for

classifying hyperspectral remote sensing images and hyperspectral seed

images. We classify these approaches into deep learning methods,

machine learning methods and traditional methods. The deep learning

methods are further divided into hybrid CNN-Transformer methods,
tiers in Plant Science 03
Transformer-based methods, and CNN-based methods. Next, we

overview and summarize these research outcomes.

Traditional methods for hyperspectral image classification

primarily rely on analyzing physical and statistical features. These

methods typically include spectral feature extraction, pixel-based

classification, and target-based classification. For example, Cui et al.

(Cui et al., 2020) introduced a super-pixel and multi-classifier

fusion approach to tackle the challenges of limited labeled

samples and substantial spectral variations. Similarly, Chen et al.

(Chen et al., 2021a) introduced a feature extraction means that

combines PCA and LBP, optimized using the Gray Wolf

optimization algorithm for hyperspectral image classification.

While these methods perform well for simpler classification tasks,

their effectiveness diminishes when faced with complex

backgrounds and highly mixed pixels.

Machine learning methods effectively classify hyperspectral

images by learning the features of sample data. With the

advancement of machine learning technology, researchers

increasingly utilize machine learning algorithms for hyperspectral

image classification. For example, Pham et al. (Pham and Liou,

2022) developed a push-sweep hyperspectral system using a support

vector machine to date surface defects, addressing the problem of

insufficient accuracy and speed in detecting date skin defects with

traditional methods. Sun et al. (Sun et al., 2022a) constructed a

network integrating multi-feature and multi-scale extraction with a

swift and efficient kernel-extreme learning machine for rapid

classification, significantly enhancing hyperspectral image

classification accuracy. Wang et al. (Wang et al., 2023b) proposed

a capsule vector neural network that combines capsule

representation of vector neurons with an underlying fully

convolutional network, achieving good classification performance

with insufficient labeled samples. Compared to traditional methods,

machine learning approaches handle high-dimensional data more

effectively and achieve higher classification accuracy. However,

these methods still rely on human-designed feature extraction

and selection, preventing them from fully utilizing all the

information in hyperspectral data.

Deep learning methods excel in hyperspectral image

classification due to their automatic feature extraction and end-

to-end learning capability (Zhang et al., 2024c; Hong et al., 2023).

These methods can be categorized into hybrid CNN-Transformer

methods, Transformer-based methods, and CNN-based methods.

CNN-based methods are designed to capture spectral and spatial

features through convolutional layers specifically tailored for

hyperspectral data, significantly improving classification performance

(Wu et al., 2021). Yang et al. (Yang et al., 2021) introduced a spatial-

spectral cross-attention network that suppresses redundant data bands

and achieves robust, accurate classification. Yu et al. (Yu et al., 2021)

developed a spectral-spatial dense convolutional neural network

framework with a feedback attention mechanism to tackle issues of

high complexity, information redundancy, and inefficient description,

thereby improving classification efficiency and accuracy. Zheng et al.

(Zheng et al., 2022) developed a rotationally invariant attention

network for pixel feature class recognition, leveraging spectral

features and spatial information. Paoletti et al. (Paoletti et al., 2023b)

created a channel attention mechanism to automatically design and
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optimize a CNN, integrating 1D and spectral-spatial (3D) classifiers to

process data from various perspectives while reducing computational

overhead. Guo et al. (Guo et al., 2023) introduced a dual-view global

spatial and spectral feature fusion network that efficiently extracts

spectral-spatial features from hyperspectral images, accounting for

global and local information.

Transformer-based methods excel at capturing long-range

dependencies and complex features in hyperspectral images

through a self-attention mechanism. Huang et al. (Huang et al.,

2022) introduced a 3D swin transformer that captures rich spatial-

spectral information, learns semantic representations from

unlabeled data, and overcomes traditional methods’ limitations

regarding receptive fields and labeling requirements. Yu et al. (Yu

et al., 2022) proposed a multilevel spatial-spectral transformer

network that processes hyperspectral images into sequences,

addressing issues faced by CNN-based methods such as limited

receptive fields, information loss in downsampling layers, and high

computational resource consumption. Zhang et al. (Zhang et al.,

2023d) developed a location-lightweight multi-head self-attention

module and a channel-lightweight multi-head self-attention

module, allowing each channel or pixel to associate with global

information while reducing memory and computational burdens.

Zhao et al. (Zhao et al., 2023) proposed an active learning

hyperspectral image classification framework using an adaptive

super-pixel segmentation and multi-attention transformer,

achieving good classification performance with small sample sizes.

Wang et al. (Wang et al., 2023a) introduced a trispectral image

generation channel that converts hyperspectral images into high-

quality trispectral images, mitigating the spatial variability problem

caused by complex imaging conditions. Compared to CNNs,

transformers have significant advantages in processing global and

multi-scale features, allowing for better handling of global

information in hyperspectral images.

Methods that hybrid CNN and Transformer aim to utilize the

strengths of both to enhance hyperspectral image classification

performance. These hybrid methods typically employ

Transformers to capture global dependencies and CNNs to

extract local spatial features. Zhang et al. (Zhang et al., 2022a)

designed a dual-branch structure combining Transformer and CNN

branches, effectively extracting both global hyperspectral features

and local spectral-spatial features, resulting in high classification

accuracy. Zhang et al. (Zhang et al., 2023a) proposed a network that

integrates Transformer and multiple attention mechanisms,

utilizing spatial and channel attention to focus on salient

information, thereby enhancing spatial-spectral feature extraction

and semantic understanding. Qi et al. (Qi et al., 2023b) introduced a

global-local 3D convolutional Transformer network, embedding a

dual-branch Transformer in 3D convolution to simultaneously

capture global-local correlations across spatial and spectral

domains, addressing the restricted receptive field issue of

traditional CNNs. Xu et al. (Xu et al., 2024) proposed a two-

branch convolutional Transformer network based on 3D CNN

and an improved Transformer encoder, integrating spatial and

local-global spectral features with lower computational

complexity. Chen et al. (Chen et al., 2024) developed the TCCU-

Net, a two-stream collaborative network that learns spatial, spectral,
Frontiers in Plant Science 04
local and global information end-to-end for effective hyperspectral

unmixing. This integration enables the model to leverage both

spectral and spatial information from hyperspectral images more

comprehensively, enhancing classification robustness and accuracy.
3 Methodology

The network flowchart of our proposed Spectral-Spatial

Attention Transformer for hyperspectral corn image classification

is shown in Figure 1. It contains 3D-2D Convolutional Module,

Spectral-Spatial Morphology, Transformer Encoder with

CrossAttention, and Classifier.
3.1 Motivation

With the development of intelligent agriculture, the integration of

hyperspectral imaging technology and deep learning has gained

widespread application in crop research, particularly in seed

classification and identification. As a globally important food crop,

the classification of corn seeds is significant for improving agricultural

productivity and preserving crop genetic resources. Hyperspectral

images can capture reflectance features at different wavelengths,

providing researchers with rich spectral information for more precise

seed classification and quality assessment (Chang et al., 2024).

In recent years, transformer models have emerged as popular in

computer vision due to their powerful feature extraction and

representation capabilities (Han et al., 2023; Li et al., 2024b).

Compared to traditional convolutional neural networks,

transformers are better at handling high-dimensional data and

capturing long-range dependencies, which are crucial for

extracting complex features from hyperspectral images.

Additionally, the self-attention mechanism of Transformers

enables the model to flexibly focus on important areas within the

image, thereby enhancing classification accuracy. Consequently,

choosing Transformer-based methods allows for more effective

utilization of hyperspectral data, providing more reliable support

for corn seed classification.
3.2 3D-2D convolution module

In hyperspectral image classification, effective feature extraction

is vital for improving accuracy. Both 3D and 2D convolutions are

widely used in this domain due to their unique advantages. 3D

convolution simultaneously operates in spectral and spatial

dimensions, capturing their correlation. Unlike traditional 2D or

1D convolutions, 3D convolution provides richer feature

descriptions and retains more original spectral and spatial

information, thus enhancing classification accuracy. It fully

leverages the three-dimensional data structure of hyperspectral

images, avoiding information loss or oversimplification. However,

as network depth and input data size increase, the computational

complexity and memory requirements of 3D convolution rise

significantly, demanding higher hardware resources and more
frontiersin.org
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training time. 2D convolution, on the other hand, has lower

computational complexity and high efficiency, as it operates on

two-dimensional space (width and height). It effectively utilizes

spatial and texture information, making it suitable for handling

local features and texture details in hyperspectral images.

Combining 3D and 2D convolutions can efficiently leverage the

strengths to extract features from hyperspectral corn images. 3D

convolution captures complex spectral-spatial relationships, while

2D convolution extracts local spatial features and texture

information, maintaining computational efficiency. This

combination optimizes feature extraction, leading to improved

classification performance.

3D convolution is mainly used for three-dimensional data

processing, extracting features by sliding a convolution kernel

across the three dimensions of the input data. Suppose the input

data is ID×H×W×C, where C is the number of channels, W is the

width, H is the height, and D is the depth (spectral dimension).The

dimensions of the 3D convolution kernel are Kd � Kh � Kw � C �
N , where N is the number of output channels (i.e., the number of

convolution kernels), C is the number of input channels, Kw is the

size in the width direction, Kh is the size in the height direction, and

Kd is the size of the convolution kernel in the depth direction. For

an input tensor I and a convolution kernelW, the output tensor Y of

the 3D convolution can be expressed as

Y(n, d, h,w) = o
C−1

c=0
o
Kd−1

kd=0
o
Kh−1

kh=0
o
Kw−1

kw=0

I(c, d + kd , h + kh,w + kw)

�W(n, c, kd , kh, kw) + b(n) (1)

where I(c, d + kd , h + kh,w + kw) is the value of the input tensor

I at channel c and position (d + kd , h + kh,w + kw). W(n, c, kd , kh,

kw) represents the weight of the convolution kernel W at output

channel n and input channel c, positioned at (kd , kh, kw). b(n) is the

bias term for each output channel n in the convolutional layers. It is

initialized with random values (typically small values close to zero)

and then adjusted during training via backpropagation. The

gradient of the loss with respect to the bias is computed and used
Frontiers in Plant Science 05
to update b(n), just like the weights of the convolutional filters. This

adjustment allows the model to shift the activations of each channel,

enabling the network to adapt to various patterns in the data and

improve its representation of features.

2D convolution is applied to 2D data processing, extracting features

by sliding a convolution kernel (filter) across the two dimensions of the

input data. Assuming the input data is IH×W×C, the 2D convolution

kernel has dimensions Kh � Kw � C � N , with the parameter

presentation consistent with that of 3D convolution. For an input

tensor I and a convolution kernel W, the output tensor Y of the 2D

convolution can be expressed as

Y(n, i, j) = o
C−1

c=0
o
Kh−1

kh=0
o
Kw−1

kw=0

I(c, i + kh, j + kw)�W(n, c, kh, kw)

+ b(n) (2)

where I(c, i + kh, j + kw) is the value at position (i + kh, j + kw) in

the input tensor I at channel c.W(n, c, kh, kw) represents the weight

of the convolutional kernel W at position (kh, kw) for output

channel n and input channel c.
3.3 Spectral-spatial morphology module

Hyperspectral images contain abundant textural, spatial, and

spectral information. Morphology, a nonlinear image processing

technique, is mainly used to analyze and manipulate the shape and

structure of images. In hyperspectral image processing,

morphological methods can effectively extract spatial and spectral

features, enhancing the robustness and accuracy of image

classification. Building on this, we integrate morphology with 2D

convolution to locally manipulate images using structural elements,

which can highlight or suppress specific shape features.

Spatial features can be extracted from each spectral band of a

hyperspectral corn image through morphological operations like

dilation and erosion. The dilation operation can emphasize the

bright areas in the image and expand the edges of the target object,
FIGURE 1

Flowchart of the spectral-spatial attention Transformer for hyperspectral corn image classification. Initially, the data are preprocessed with region of
interest extraction and PCA dimensionality reduction. Subsequently, local spatial, spectral, and texture features are extracted using 2D and 3D
convolutions. The spectral and spatial morphology modules further analyze the internal structure of the data. The Transformer encoder with cross-
attention then extracts and refines the feature information from a global perspective. Finally, the classifier provides the prediction results.
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making the morphological features of the corn seed more

pronounced. The computational expression for dilation is as

D(I) = I ⊕ B¼∪b∈B(I + b) (3)

where I denotes the input image, B is the structural element (a

small template used to detect the morphological features of the

image), ⊕ stands for the dilation operation, ∪b∈B() represents the

union of all structural element positions to take the maximum value,

and + denotes the pixel displacement operation. b influences the

dilation and erosion operations. These operations involve shifting

and adjusting the shape of features within the image, where b helps

control the degree of expansion (dilation) or contraction (erosion).

Like the convolutional biases, the values of b in these operations are

also learned during training, refining the model’s ability to capture

spatial relationships and remove irrelevant details in the data.

Conversely, the erosion operation removes noise and small bright

spots, resulting in a smoother and more uniform target area. The

computational expression for erosion is as

E(I) = I⊖B =∩b∈B(I − b) (4)

where ⊖ denotes the erosion operation, ∩b∈B() represents the

intersection operation to take the minimum value for all structural

element positions, and − indicates the negative displacement

operation of pixels. Performing these operations on each spectral

band extracts subtle spatial variations and enhances the

representation of spatial features. Subsequently, these spatial

features are combined with spectral features to fully utilize the

spectral and spatial information in hyperspectral images.

Specifically, we apply morphological operations to each spectral

band to extract spatial features. These spatial features are merged

with the original spectral information to construct high-dimensional

feature vectors. This method preserves the spectral information of the

hyperspectral image while enhancing the representation of spatial

structure information. The feature extraction and classification

effectiveness is further improved by integrating these morphological

operations with 2D convolution. 2D convolution extracts local spatial

features within each spectral band and enhances the representation of

spatial information. These two convolutional operations complement

each other, allowing the features, preprocessed through

morphological operations, to be input into the convolutional neural

network for more accurate classification.

The bias b in these equations plays a crucial role in adjusting the

output activations, improving the feature extraction process. In the

convolutional operations (Equations 1, 2), it allows the network to

adapt to various activation patterns, enhancing the model’s ability

to learn more complex relationships in the data. In the

morphological operations (Equations 3, 4), it enhances spatial

feature representation by refining the shapes and structures in the

image. This combination of accurate feature extraction and

refinement leads to better corn seeds classification performance.

By integrating morphological and convolutional techniques, we

substantially enhance hyperspectral corn image classification

accuracy and robustness. This combined approach boosts

classification performance and improves resilience against

complex backgrounds and noise.
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3.4 Transformer encoder with
CrossAttention module

The Transformer encoder enhances input data representation

through a sophisticated attention module that captures

dependencies among different parts of the input sequence.

Figure 2 depicts the detailed structure of this attention module,

consisting of two primary components: multi-head self-attention

and scaled dot-product attention.

Originally, the Transformer architecture was designed for

natural language processing, particularly for handling sequence

data, and it excels in this domain due to its multiple self-attention

core blocks. Unlike conventional Convolutional Neural Networks

and Recurrent Neural Networks, the Transformer exclusively

utilizes the attention mechanism, enabling efficient capture of

global dependencies in sequential data. The input sequence is

initially converted into a fixed-dimensional vector representation

via an embedding layer, with positional information preserved

through positional encoding, which is generated by sine and

cosine functions.

Each encoder layer includes multiple self-attention heads,

each independently processing the input sequence to generate an

attention representation, which is then concatenated and

integrated through a linear transformation. The multi-head

self-attention mechanism enables the model to attend to

mult iple parts of the input sequence simultaneously.

Specifically, the input sequence is represented as a key (K),

query (Q), and value (V). Multiple sets of Q, K, and V are

created through the linear projection of a learned weight

matrix. Each set of Q, K, and V is passed to the scaled dot-

product attention mechanism, where attention scores are

calculated and applied to the values. The Q is multiplied by the

transposed key KT to obtain the raw attention score, which is

then divided by the square root of the key’s dimension,
ffiffiffiffiffi
dk

p
, to

maintain gradient stability. The computational process of self-

attention can be summarized as
FIGURE 2

Diagram illustrating the structure of the multi-head attention
mechanism and scaled dot-product attention.
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SA = Attention (Q,K ,V) = softmax 
QKTffiffiffiffiffiffi
dK

p
� �

V (5)

Through its unique multi-head self-attention mechanism and

feed-forward neural network, the Transformer structure efficiently

captures global dependencies and improves the classification

accuracy of hyperspectral corn images.
3.5 Loss function

In this paper, we propose a method that combines spectral-spatial

morphology with a 3D-2D convolutional Transformer network to

classify hyperspectral corn images. This approach fully utilizes the

spatial and spectral features of hyperspectral images. To optimize

model performance, we employ the CrossEntropyLoss function.

The CrossEntropyLoss function is commonly used in

classification tasks, especially for multi-class classification

problems. It measures the discrepancy between the true category

distribution and the predicted probability distribution by

computing the negative log-likelihood between the actual labels

and the predicted probabilities. This function ensures numerical

stability by converting the output into a probability distribution

using the Softmax function. Additionally, the gradient of the

CrossEntropyLoss function is relatively easy to compute,

facilitating the implementation of the back-propagation algorithm

and model optimization. By directly quantifying the alignment

between predicted probabilities and actual labels, it accurately

reflects the performance of the class ificat ion model .

Consequently, we apply the CrossEntropyLoss function to the

hyperspectral corn image classification task. Its computational

expression is as

CrossEntropyLoss = −o
N

i=0
 yi log (ŷ i) (6)

where yi represents the true label of the sample, N is the total

number of samples, and ŷ i is the predicted probability from the

model. The network model converts the output to a probability

distribution using the Softmax function

ŷ i =
ezi

oje
zj

(7)

where zi represents the linear output of the model. For a given

category c, the true label yc =  1 while the labels for all other

categories are 0. The predicted probability ŷ i corresponding to

the true label yi is substituted into Equation 6, and the loss value for

each sample is

Loss = −o
i
 yi log (ŷ i) (8)

By measuring the difference between actual and predicted labels

and updating the model parameters through the backpropagation

algorithm to minimize the loss, this approach effectively guides the

model in learning to handle complex hyperspectral corn image

features. Consequently, it improves both the classification accuracy

and robustness.
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4 Experiment and analysis

In this section, we will first discuss the dataset used, detail the

specific implementation of SSATNet, and then present the

evaluation metrics, multi-classification results, and ablation study.
4.1 Experimental dataset

To verify the effectiveness of the SSATNet, we utilized the

hyperspectral corn image dataset from SSTNet (Zhang et al.,

2022b). This dataset contains 10 corn varieties, each with 120

samples. The collected images cover a spectral range from 400 to

1000 nm, encompassing 128 bands. To reduce computational

overhead and focus on retaining only the core area of the corn

seeds, the collected raw data resolution of 696 × 520 was reduced to

210 × 200 for feature extraction. The corn seed images were sourced

from planting areas in Henan Province, including varieties such as

FengDa601, BaiYu9284, BaiYu8317, BaiYu918, BaiYu897,

BaiYu879, BaiYu833, BaiYu818, BaiYu808, and BaiYu607.

Figure 3 shows different spectral band maps of a sample

randomly selected from FengDa601, BaiYu818, and BaiYu833.

This corn image dataset was obtained by contacting the authors.
4.2 Implementation details

The hyperspectral corn image dataset includes 10 varieties,

totaling 1200 samples, divide into training and test sets in a 4:1

ratio. We conducted our experiments on a Windows 10 PC with an

Intel® Xeon® Gold 5218 CPU @ 2.30GHz x64, an NVIDIA

GeForce RTX 3090*2 graphics card, and 256 GB RAM. The

Batch size is set to 16 for the training and 8 for the testing. We

used Adamax as the optimizer with a learning rate of 0.01, an

exponential decay rate of 0.9, a gradient squared moving average

rate of 0.999, and 250 iterations. Additionally, we implemented a

Dropout mechanism that randomly deactivates 10% of nodes,

effectively preventing overfitting.
4.3 Evaluation metrics

To thoroughly assess the performance of our SSATNet in

classifying hyperspectral corn images, we employ four standard

evaluation metrics: F1-Score, Recall, Precision, and the Kappa

coefficient(KA). Precision assesses the accuracy of the

classification model by evaluating the proportion of instances

predicted to be positive that are actually positive. There exists a

trade-off between Precision and Recall; increasing Precision may

lead to a decrease in Recall and vice versa. Therefore, the F1-Score,

derived as the harmonic mean of Precision and Recall, is often used

for a more balanced evaluation of model performance, and its

calculation expression is shown in Equation 9. The KA is a

consistency test metric that evaluates the agreement between the

classified image and the reference image in hyperspectral remote
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sensing classification tasks, providing a more comprehensive

reflection of the overall classification accuracy. Higher scores in

these four evaluation metrics indicate better model performance.

Figure 4 shows the confusion matrix of our model’s classification

results for hyperspectral corn images and the results of one of the

training and testing sessions.

F1 − Score  =  2 ▪
Precision ▪ Recall
Precision + Recall

(9)
4.4 Multi-classification results

Extensive experiments were performed to thoroughly test the

generalization and effectiveness of our model for hyperspectral corn

image classification. The comparison methods include KNN (Kumbure

et al., 2020), SGD (Lei and Tang, 2021), RFA (Chen et al., 2021b),

HybridNet (Roy et al., 2019), SSTNet (Zhang et al., 2022b), CTMixer

(Zhang et al., 2022a), MSTNet (Yu et al., 2022), MATNet (Zhang et al.,

2023a), and 3DCT (Wang et al., 2024a). The experimental results are

presented in Table 1. The source code and parameters for the

comparison methods were acquired from the original authors.

The results presented in Table 1 demonstrate the performance of

various methods on the hyperspectral corn images dataset. Traditional

machine learning models such as KNN (Kumbure et al., 2020), RFA

(Chen et al., 2021b), and SGD (Lei and Tang, 2021) show subpar
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performance across all evaluation metrics, with RFA (Chen et al., 2021b)

performing the worst across all metrics. These traditionalmodels, lacking

nonlinear activationmechanisms, struggle to extract deep spectral-spatial

features effectively. In contrast, HybridNet (Roy et al., 2019), SSTNet

(Zhang et al., 2022b), and 3DCT (Wang et al., 2024a), which integrate

3D convolution, demonstrate superior results due to their ability to

capture spectral and spatial features simultaneously. Models like

CTMixer (Zhang et al., 2022a), MSTNet (Yu et al., 2022), and

MATNet (Zhang et al., 2023a) further leverage the Transformer

architecture to address the complex relationships inherent in

hyperspectral data. Our proposed model, which combines

convolutional networks with Transformers and incorporates a novel

spectral-spatial attention mechanism, achieves the best overall

performance across all metrics. The integration of local and global

feature extraction methods allows our model to substantially improve

Precision, Recall, F1-Score, and KA, surpassing existing state-of-the-art

methods. These results validate the effectiveness of our design in

capturing the complex spectral-spatial features of hyperspectral corn

images and its superior ability to generalize to high-dimensional datasets.
4.5 Ablation study

To further evaluate the contribution of each module in SSATNet

to the classification performance of hyperspectral corn seed images, we

conducted ablation experiments on the dataset introduced by SSTNet
FIGURE 3

Randomly select a sample from three corn varieties, FengDa601 (A–D), BaiYu818 (E–H), and BaiYu833 (I–L), and display their partial spectral bands.
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(Zhang et al., 2022b). In these experiments, we systematically removed

individual components of the network while retaining the remaining

modules unchanged. Specifically, we excluded the following

components: 1) the 3D convolution module (-w/o 3DConv); 2) the

2D convolution module (-w/o 2DConv); 3) the spectral morphology

structure (-w/o SpectralMorph); and 4) the spatial morphology

structure (-w/o SpatialMorph). The Table 2 below illustrates the
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quantitative analysis metrics for each ablation experiment. The

results demonstrate that the removal of the 3D convolution module

leads to the most significant degradation in performance,

underscoring its crucial role in capturing both spectral and spatial

features in hyperspectral corn seed images. Without 3D convolution,

the model’s ability to integrate spatial-spectral correlations is

substantially weakened. Similarly, the removal of the 2D
TABLE 1 Test results of various methods on the hyperspectral corn images dataset.

Models
Hyperspectral Corn images

Precision Recall F1-Score KA

KNN (Kumbure et al., 2020) 96.12 ± 0.35 95.72 ± 0.32 95.90 ± 0.24 0.9675 ± 0.011

SGD (Lei and Tang, 2021) 96.98 ± 0.28 96.50 ± 0.18 96.70 ± 0.21 0.9721 ± 0.008

RFA (Chen et al., 2021b) 94.50 ± 0.40 94.10 ± 0.38 94.22 ± 0.39 0.9519 ± 0.009

HybridNet (Roy et al., 2019) 96.72 ± 0.30 96.44 ± 0.28 96.34 ± 0.21 0.9772 ± 0.007

SSTNet (Zhang et al., 2022b) 98.12 ± 0.18 97.78 ± 0.15 97.95 ± 0.17 0.9887 ± 0.005

CTMixer (Zhang et al., 2022a) 97.38 ± 0.33 97.75 ± 0.30 97.20 ± 0.32 0.9827 ± 0.008

MSTNet (Yu et al., 2022) 97.00 ± 0.38 96.95 ± 0.35 96.80 ± 0.36 0.9802 ± 0.009

MATNet (Zhang et al., 2023a) 98.27 ± 0.16 98.34 ± 0.14 98.25 ± 0.15 0.9930 ± 0.004

3DCT (Wang et al., 2024a) 98.30 ± 0.28 98.12 ± 0.25 98.19 ± 0.27 0.9928 ± 0.004

Our 98.65 ± 0.18 98.57 ± 0.15 98.60 ± 0.17 0.9965 ± 0.003
Optimal, bolded; Suboptimal, blue.
FIGURE 4

(A) The confusion matrix of our SSATNet classification results. (B) The results of one of the testing. (C) The results of one of the training.
TABLE 2 Quantitative test results of ablation experiments.

Module Precision Recall F1-Score KA

-w/o 3DConv 86.42 ± 0.31 87.33 ± 0.29 87.05 ± 0.36 0.8768 ± 0.006

-w/o 2DConv 89.51 ± 0.25 90.35 ± 0.25 90.52 ± 0.29 0.9117 ± 0.004

-w/o SpectralMorph 93.65 ± 0.22 93.27 ± 0.19 93.86 ± 0.25 0.9408 ± 0.004

-w/o SpatialMorph 92.59 ± 0.20 92.69 ± 0.21 92.31 ± 0.21 0.9332 ± 0.005

SSATNet (full model) 98.65 ± 0.18 98.57 ± 0.15 98.60 ± 0.17 0.9965 ± 0.003
Optimal, bolded.
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convolution module also causes a noticeable decline in performance,

although to a lesser extent compared to the absence of 3D convolution.

This is because 2D convolution primarily focuses on extracting local

spatial features and refining feature representations. The exclusion of

the spectral morphology structure results in performance degradation,

highlighting its importance in enhancing spectral feature

representation and managing the complex spectral relationships

inherent in hyperspectral data. Likewise, the spatial morphology

structure significantly contributes to the model’s performance by

extracting and enhancing spatial features, enabling more accurate

classification of corn seed images.

In summary, each module is crucial to the overall performance

of SSATNet. The 3D convolution module provides the most

significant enhancement to classification performance, followed

by the spectral morphology structure and the spatial morphology

structure. The 2D convolution module also provides substantial

support in refining feature representation. Through the synergy of

these modules, SSATNet excels in the hyperspectral corn seed

classification task, demonstrating the effectiveness of its design.
5 Conclusion

In this paper, we propose the SSATNet method for non-

destructive identification of hyperspectral corn varieties. First, we

design a 3D-2D cascade structure to reduce image data complexity

and effectively extract local feature information, facilitating the

Transformer structure’s processing. Additionally, we introduce a

spectral-spatial morphology structure combined with 2D

convolution to perform expansion and erosion operations on the

data, providing a deeper understanding of the data’s nature. Finally,

we employ the Transformer structure to extract global feature

information from hyperspectral corn images through the self-

attention mechanism, achieving efficient capture of global

dependencies between corn spectra. Ablation experiments highlight

the effectiveness of each component of SSATNet in extracting

features and classifying hyperspectral corn images. This method

offers a new approach to non-destructive corn variety identification

and significantly promotes the development of intelligent agriculture.
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