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Vegetation serves as a crucial indicator of ecological environment and plays a

vital role in preserving ecosystem stability. However, as urbanization escalates

rapidly, natural vegetation landscapes are undergoing continuous

transformation. Paradoxically, vegetation is pivotal in mitigating the ecological

and environmental challenges posed by urban sprawl. The middle and lower

Yangtze River Basin (MLYRB) in China, particularly its economically thriving lower

reaches, has witnessed a surge in urbanization. Consequently, this study explored

the spatiotemporal variations of normalized difference vegetation index (NDVI) in

the MLYRB, with an emphasis on elucidating the impact of climate change and

urbanization on vegetation dynamics. The results indicate that a significant

increasing trend in NDVI across the MLYRB from 2000 to 2020, a pattern that

is expected to persist. An improvement in vegetation was observed in 94.12% of

the prefecture-level cities in the study area, predominantly in the western and

southern regions. Temperature and wind speed stand out as dominant

contributors to this improvement. Nevertheless, significant vegetation

degradation was detected in some highly urbanized cities in the central and

eastern parts of the study area, mainly attributed to the negative effects of

escalating urbanization. Interestingly, a positive correlation between NDVI and

the urbanization rate was observed, which may be largely related to proactive

ecological preservation policies. Additionally, global climatic oscillations were

identified as a key force driving periodic NDVI variations. These findings hold

significant importance in promoting harmonious urbanization and ecological

preservation, thereby providing invaluable insights for future urban ecological

planning efforts.
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1 Introduction

Climate warming stands as one of the pressing environmental

concerns globally, posing a substantial challenge to achieving the

UN Sustainable Development Goals (SDGs). The greenhouse effect,

primarily caused by CO2 emissions, is a significant contributor to

this warming (IPCC, 2014)., Notably, vegetation performs a critical

function in sequestering carbon within the global carbon cycle

(Chen et al., 2020; Wu et al., 2023), thereby assisting in climate

warming mitigation. Meanwhile, the health and distribution of

vegetation are paramount in attaining the SDGs. Hence,

monitoring vegetation dynamics aids not just in evaluating

ecosystem functions but also furnishes vital insights for

formulating and executing effective ecological management tactics

(Gao et al., 2022).

Under the combined influences of climate change and human

intervention, vegetation cover of the underlying surface has undergone

substantial transformation (Huang et al., 2021b; Piao et al., 2019).

Specifically, there has been a general upward trend in vegetation cover

in the mid-latitudes of the Northern Hemisphere (Myneni et al., 1997;

Zheng et al., 2021). Likewise, Africa has witnessed a slight increase in

vegetation greenness (Umuhoza et al., 2023). A greening trend is also

evident in karst areas globally (Huang et al., 2022). In contrast, North

America and Southwest Asia have experienced severe vegetation

degradation (Lotsch et al., 2005). In China, while there is an overall

increase in vegetation, certain areas such as Northeast China, northern

Xinjiang Uygur Autonomous Region, and the Qinghai-Tibet Plateau

have seen notable vegetation degradation (Zhou et al., 2020).

Alarmingly, there are indications that vegetation browning may

become a more prevalent phenomenon in the foreseeable future (Liu

et al., 2023b). Evidently, the intricate interactions between climate

change and anthropogenic activities are responsible for the

conspicuous regional disparities in vegetation dynamics.

Despite the widespread recognition that both climate change and

human intervention affects vegetation dynamics, quantifying the

relative contributions of these factors to vegetation changes remains

a challenge. Currently, scholars primarily utilize statistical methods

such as Pearson correlation (Chu et al., 2019), partial correlation (Xie

et al., 2022), and multiple linear regression (Long et al., 2023) to

establish a direct linear connection between vegetation patterns and

climatic conditions. This process aids in determining the specific role

played by climatic variables in vegetation dynamics. In terms of

assessing the impact of human intervention on vegetation, common

quantitative techniques include the use of geographic detector (Zheng

et al., 2021) and residual analysis (Lamchin et al., 2020; Liu et al., 2022;

Qi et al., 2019). However, given that the multifaceted nature of

anthropogenic impacts, these methods often struggle to precisely

distinguish the contribution of specific human-induced factors to

vegetation changes, which may lead to potential biases in estimating

the influence of anthropogenic activities. Additionally, as spatial

distance from human activity areas gradually increases, the impact of

anthropogenic factors on vegetation tends to progressively weaken

until it disappears completely (Bernier et al., 2017; Yi et al., 2021a).

In recent years, climate change has emerged as the primary

driving force behind changes in global vegetation greenness

(Lamchin et al., 2020; Lawal et al., 2019). To some extent,
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increasing temperature can enhance vegetation photosynthesis

and extend the growing season (Shen et al., 2014). Meanwhile,

precipitation serves as an crucial water source for vegetation growth

(Wang et al., 2022b). Nevertheless, the impact and magnitude of

temperature and precipitation on vegetation vary greatly across

diverse eco-geographical regions. For instance, vegetation growth in

arid regions is mainly limited by soil moisture (Du et al., 2019b),

whereas temperature plays a pivotal role in high-altitude regions (Li

et al., 2019). Importantly, the effect of temperature and precipitation

on vegetation does not follow a linear enhancement pattern.

Extreme climatic conditions, resulting from excessively high

temperatures and heavy precipitation, can negatively affect

vegetation growth (Zhang, 2020).

The relationship between urbanization and vegetation evolution

is intimate. Rapid urban expansion has resulted in a notable surge of

impervious surfaces, thereby exerting a conspicuous negative

influence on vegetation (Yan et al., 2019). This phenomenon is

evident in numerous cities worldwide (De Carvalho and Szlafsztein,

2019; De La Barrera and Henrıq́uez, 2017; Wu et al., 2019).

Conversely, changes in vegetation serve as a mirror, reflecting

urbanization’s imprint on the terrain and ecological ambiance. To

illustrate, the demolition of vegetation has the potential to spark

urban environmental challenges (IPCC, 2014), ultimately

impinging on the stability and service functions of urban

ecosystems (Alpaidze and Salukvadze, 2023). However, cities

ironically offer novel habitats for vegetation. Research indicates

that urbanization bears an indirect positive effect on vegetation,

evident in the amplified growth of vegetation within urban

boundaries over time (Zhang et al., 2022a). In addition, this

indirect effect is further shaped by a blend of climatic and

anthropogenic factors, which, to a certain degree, counteract the

negative direct impact of urbanization.

Previous studies on vegetation dynamics in China primarily

focused on geographically delimited areas, particularly emphasizing

specific regions such as the Yangtze River Basin (Wang et al., 2022a),

the Yellow River Basin (Liu et al., 2023a), the Loess Plateau (Li et al.,

2021a), and the Tibetan Plateau (Li et al., 2019). Nevertheless, these

macroscopic studies often overlook intricate details concerning

vegetation changes. The middle and lower Yangtze River Basin

(MLYRB), a densely populated and highly urbanized area in China,

highlights the importance of understanding the effects of urban

sprawl on vegetation. Additionally, quantitative investigations into

the impact of urbanization on vegetation remains scarce. Therefore,

the primary goals of this study were to: (1) reveal the unique regional

and municipal patterns of past and future vegetation variations in the

MLYRB; (2) explore the interplay between vegetation and climate

variability; and (3) analyze the impact of urbanization on

vegetation changes.
2 Materials

2.1 Study area

The MLYRB, situated between 24°30′−34°10′ N and 105°52′−122°
25′ E, lies in the southern parts of the central and eastern China. This
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vast region encompasses 13 provincial-level and 68 city-level

administrative regions (Figure 1), with a total area of approximately

78.64×104 km2. By 2020, the urbanization rate in the basin had

surpassed 58%, making it as one of China’s most urbanized levels

and densely populated areas. The terrain of the MLYRB is

predominantly flat, featuring plains such as the Jianghan-Dongting

Lake Plain (also known as the Lianghu Plain), Poyang Lake Plain, and

Central Anhui Riverside Plain. The MLYRB boasts a dense network of

rivers and abundant water resources, including freshwater lakes like

Dongting Lake, Poyang Lake, Taihu Lake, and Chaohu Lake.

Characterized by a subtropical monsoon climate, the basin

experiences moderate temperature and abundant rainfall. The annual

average temperature ranges from 8.79 to 20.50 °C, while the yearly

precipitation varies between 643.19 mm and 2358.40 mm. These

climatic conditions foster healthy vegetation growth, favoring both

forests and croplands. However, from August to October every year, as

the East Asian summer monsoon shifts southward, abnormal

monsoon rain belts can cause floods in MLYRB (Li et al., 2022).

Correspondingly, excessive precipitation in the study area can trigger

hypoxia in the root systems of surface vegetation, hindering their

growth or even causing plant death. Additionally, excessively high

summer temperature can elevate vegetation evaporation, potentially

leading to droughts that inhibit vegetation growth in the study area

(Huang et al., 2021a).
2.2 Data

2.2.1 MODIS data
The MODIS normalized difference vegetation index (NDVI)

time series data utilized in this study, spanning from 2000 to 2020,

were sourced from the Land, Atmosphere Near-real-time Capability

f o r EOS ( LANCE ) s y s t em , a c c e s s i b l e a t h t t p s : / /

ladsweb.modaps.eosdis.nasa.gov/. These data were archived in the

HDF format, featuring a temporal resolution of 16 days and a

spatial resolution of 250 meters. The MODIS Reprojection Tool,

provided by the United States Geological Survey (USGS), facilitated

the mosaicking, format conversion, and projection of the MODIS

data. To account for missing data in January and February of 2000,

multi-year synchronous average values were utilized. Monthly

NDVI datasets were created using the maximum-value

composites procedure to minimize the effects of cloud cover,

atmospheric conditions, and solar zenith angle variability.

Subsequently, the mean method was applied to generate annual

NDVI datasets, aiming to mitigate the impact of climatic anomalies

on NDVI in certain months as much as possible.

Generally, the calculation of NDVI is highly correlated with

near-infrared and red bands. Falling within the range of [−1, 1], this

index effectively indicates vegetation growth status. Specifically, a

negative NDVI value signifies the presence of ground cover, such as

clouds, water, or snow. Conversely, a positive value denotes

vegetation cover, with values closer to 1 exhibiting a greater

degree of coverage. Furthermore, an NDVI nearing 0 suggests the

existence of rocks, bare soil, or other unvegetated surfaces.
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2.2.2 Climate data
The meteorological data utilized in this study were obtained

from the Hunan Meteorological Bureau. It encompassed various

climatic variables for the MLYRB during 2000−2020, including the

annual average temperature (°C), annual average relative humidity

(%), annual average wind speed (m·s−1), annual total precipitation

(mm), and annual total sunshine duration (h). This dataset was

derived from the climate records of 410 Chinese national

meteorological stations within the study area. Also, this dataset

was interpolated by the Inverse Distance Weighting (IDW) method

to generate meteorological raster data with the same projection and

resolution as the NDVI dataset, enabling an analysis of the

contribution of climatic variables to NDVI changes.

Additionally, this study delved into the influence of global-scale

climate oscillations on the periodic variations in NDVI. The specific

climate indices examined include the Atlantic Multidecadal

Oscillation (AMO), North Atlantic Oscillation (NAO), Pacific

Decadal Oscillation (PDO), and Southern Oscillation Index (SOI).

These data were sourced from the Physical Science Laboratory of

National Oceanic and Atmospheric Administration (NOAA)

(https://psl.noaa.gov/) and National Climate Prediction Center of

NOAA (https://www.cpc.ncep.noaa.gov/).

2.2.3 Other data
The Digital Elevation Model (DEM) was accessed from the

Geospatial Data Cloud Platform (http://www.gscloud.cn/).

Administrative division vector data was procured from the Data

Center for Resource and Environment Sciences, Chinese Academy

of Sciences (http://www.resdc.cn/). Details of El Niño and La Niña

events occurring since 2000 were gathered from the National

Climate Center of China website (http://cmdp.ncc-cma.net/). In

addition, the annual urbanization rate data for each county from

2003 to 2020 was extracted from the China Statistical Yearbook,

published by the China National Bureau Statistics (http://

www.stats.gov.cn/).
3 Methods

3.1 Trend detection and analysis

3.1.1 Sen’s slope and Mann-Kendall test
The integration of Sen’s slope estimator (SSE) and Mann-

Kendall (M-K) significance test has proven highly effective in

discerning trends in vegetation cover, be it increasing or

decreasing. This combined approach has gained widespread

application in hydrological and meteorological research (Tong

et al., 2018; Zhang and Jin, 2021). SSE, recognized as a robust

non-parametric statistical method (Sen, 1968; Theil, 1992), excels at

minimizing the influence of error and outliers in the raw data on

statistical outcomes. In this research, this method was applied to

estimate the trend in NDVI. A positive or negative value of the

estimated result indicates corresponding upward or downward

trend in NDVI, respectively. Additionally, the M-K test (Kendall,

1975; Mann, 1945) was leveraged to determine the statistical
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significance of these NDVI trends. In the context of a two-tailed

trend test, if the standardized test statistic meets or exceeds the

thresholds of 1.96 and 2.58, it signifies that the observed trend has

passed the significance test, corresponding to confidence levels of

a = 0:05 and a = 0:01, respectively.

3.1.2 Seasonal Autoregressive Integrated Moving
Average Model

The Autoregressive Integrated Moving Average (ARIMA)

model, originally introduced by Box and Jenkins (Box and

Jenkins, 1970), stands as a prevalent time series forecasting

model. Given that time series data often exhibits patterns of

periodicity or seasonality, the ARIMA model can be extended to

the Seasonal Autoregressive Integrated Moving Average (SARIMA)

model. This method is denoted as SARIMA(p, d, q)(P,D,Q)S,

wherein p and P represent the autoregressive order and the

seasonal autoregressive order, respectively. Similarly, d and D

indicate the trend differences and the seasonal difference order,

while q and Q signify the moving average order and the seasonal

moving average order, respectively. Additionally, S depicts the

seasonal cycle length. Regarding the NDVI time series training set

Xt employed in this study, the SARIMA model can be expressed as

follows:

md mD
S Xt =

q(B)QS(B)
f(B)FS(B)

at (1)

where mdrefers to the d-order difference; mD
S is the D-order

seasonal difference with S as the period; q(B) = 1 − q1B −… − qqBq

denotes the q-order moving average coefficient polynomial, B
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represents the lag operator, and BkXt = Xt − k; f(B) = 1 − f1B −

… − fpBp signifies the p-order autoregressive coefficient

polynomial; QS(B) = 1 −Q1B
S −… −QQB

QS corresponds to the

Q-order seasonal moving average coefficient polynomial; FS(B) =

1 −F1B
S −… −FPB

PS depicts the P-order seasonal autoregressive

coefficient polynomial; and at indicates the random disturbance of

error term at time t.
3.2 Attribution analysis

3.2.1 Multiple linear regression
Compared to the single-factor correlation, multi-factor analysis

offers a more comprehensive understanding of the relationship

between NDVI and diverse climatic factors. The multiple linear

regression (MLR) model is instrumental in examining the interplay

between a dependent variable and multiple independent variables

(Fu et al., 2022, 2024). In this study, the model was employed to

evaluate how temperature, precipitation, relative humidity,

sunshine duration, and wind speed affect NDVI. To neutralize the

impacts caused by the different dimensions of climatic variables, it is

necessary to standardize these variables before applying the MLR.

The formula for MLR can be described below:

YNDVI = a0 + a1XTem + a2XPr + a3XRH + a4XSD + a5XWS (2)

where YNDVI refers to the NDVI time series; XTem, XPr , XRH ,

XSD, and XWS represent the time series for temperature,

precipitation, relative humidity, sunshine duration, and wind

speed, respectively; a0 denotes a constant; ai (i = 1, 2,…, 5) is the
FIGURE 1

Spatial distribution of provinces, cities, meteorological stations, main rivers, and digital elevation model in the middle and lower Yangtze River
Basin, China.
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standard regression coefficients. The absolute values of these

coefficients indicate the significance of each climatic variable to

NDVI. A larger absolute value of the coefficient implies a greater

impact of that particular climatic variable. The relative

contribution of various climatic variables to NDVI can be

determined by computing the ratio of the absolute value of

each variable’s coefficient to the sum of the absolute values of

all climatic variable coefficients.

3.2.2 Cross wavelet transform and
wavelet coherence

Cross wavelet transform (XWT) integrates wavelet transform

(WT) with cross-spectrum analysis, enabling the precise

identification of the significant interactions between two time

series across various time-frequency domains. Furthermore, XWT

reveals the correlation consistency among sequences and elucidates

their phase relationships in the time-frequency space. Assuming

Wx
n(s) and Wy

n(s) represent the XWT of two time series, X and Y

respectively, and their cross wavelet power spectrum (CWPS) was

defined as (Torrence and Compo, 1998)

Wxy
n (s) = Wx

n(s)W
y*
n (s) (3)

where the absolute value of the left-hand side of the equation

corresponds to the density of the CWPS. A larger absolute value

indicates a more significant correlation between the high-energy

regions of two time series.

Provided that the expected spectra of both time series X and

Y are red noise spectra, denoted as Px
k and Py

k respectively, the

distribution relationship of the CWPS can be expressed as

follows:

Wx
n(s)W

y*
n (s)

sxsy

�����
����� = Zv(p)

v

ffiffiffiffiffiffiffiffiffiffi
Px
kP

y
k

q
(4)

where sx , sy represent the standard deviations of time series X

and Y, respectively; v denotes the degrees of freedom for the Morlet

wavelet transform, specifically set at 2. If the left-hand side of the

equation exceeds the upper confidence limit of the 95% red noise

power spectrum, it is considered to have passed the significance

level test at a = 0:05. Furthermore, Zv(p) refers to the confidence

level linked to the probability p, and Z2(95% ) = 3:999 at the

significance level of a = 0:05.

Wavelet coherence (WTC) addresses the limitations of cross

wavelet in detecting correlations between time series, particularly in

low-energy region. The WTC can be written as

R2
n(s) =

S(s−1Wxy
n (s))

�� ��2
S s−1 Wx

n(s)j j2� � � S s−1 Wy
n(s)

�� ��2� � (5)

where S refers to the smoother; s signifies the companion scaling

of wavelet function; jj represents modulus for a complex number;

S(s−1Wxy
n (s))

�� ��2 denotes the cross product of wave amplitude at

certain frequency from two time series; S s−1 Wx
n(s)j j2� �

and S

s−1 Wy
n(s)

�� ��2� �
are the amplitudes of vibration waves in two

time series.
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3.2.3 Pearson correlation
Pearson correlation analysis is a wide-used statistical method.

The Pearson correlation coefficient can effectively express the

degree and direction of a relationship, thereby reflecting

connections between different elements (Pearson, 1920). In this

research, this method was utilized to analyze the correlation

between the urbanization rate and NDVI from 2003 to 2020. The

formula for the calculation is as follows:

Rxy =
o
n

i=1
½(xi − x)(yi − y)�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o
n

i=1
½(xi − x)(yi − y)�2

s (6)

where Rxy represents the correlation coefficient; xi, yi signify

the annual urbanization rate and NDVI, respectively, while x, y

correspond to the average urbanization rate and average NDVI

over the study period; i refers to the year index (ranging from 1 to

18); n indicates the duration of the research, and n =18. Generally,

if Rxy > 0, it suggests a positive correlation between the two

variables; conversely, a negative coefficient describes a negative

correlation. Also, the closer the absolute value of Rxy approaches 1,

the stronger the positive (or negative) correlation. Additionally,

when the correlation coefficient meets the significance test criteria

with a significance level of 95% or above, it demonstrates a

statistically significant correlation between NDVI and the

urbanization rate.
4 Results

4.1 Temporal variability of NDVI

4.1.1 NDVI variations at the whole-domain scale
The annual average NDVI in the MLYRB rose from 0.54 to 0.62,

stabilizing at approximately 0.59. This upward trend was highly

significant, with an increment of 0.0034 year−1 (P < 0.01) (Figure 2).

The NDVI peaked in 2018. By referencing the 2018 China Ecological

Meteorological Bulletin and the meteorological data of this study, it

becomes evident that the majority of the study area enjoyed ample

water and warmth in 2018, while meteorological disasters such as

droughts and heavy rains had minimal impact. Such climatic

conditions are conducive to vegetation growth, and China’s

ecological projects have borne positive outcomes. This could

explain why the NDVI attained the highest value in 2018.

Conversely, the lowest NDVI was occurred in 2000. This can be

attributed to the heavy emphasis on economic development during

that period, coupled with the lack of comprehensive environmental

safeguards and the overexploitation of vegetation resources. The

most rapid growing phase of NDVI occurred between 2012 and

2018 (0.0067 year−1), followed by the period during 2000−2007

(0.0042 year−1). In contrast, the steepest decline in NDVI was

witnessed from 2018 to 2020 (−0.0025 year−1), preceded by a

milder drop from 2007 to 2012 (−0.0017 year−1).
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4.1.2 NDVI variations at the city scale
As shown in Figure 3, five cities in the MLYRB with the highest

NDVI over the past 21 years were Huangshan, Jingdezhen,

Ganzhou, Enshi Tujia and Miao Autonomous Prefecture

(ETMAP), and Huaihua in China. These cities boasted NDVI

values of 0.705, 0.664, 0.662, 0.658, 0.655, respectively. In

contrast, the lowest NDVI values were observed in Suzhou and

Wuxi, at 0.311 and 0.392, respectively. Notably, the NDVI in the

central-western region of the study area is significantly higher than

that in the eastern region.

Regarding the growth rate of NDVI, most cities displayed an

upward trend, accounting for 94.12% of the total cities in the study
Frontiers in Plant Science 06
area. Specifically, Shangluo, Xiangxi Tujia and Miao Autonomous

Prefecture, Chenzhou, Ankang, and Shiyan exhibited pronounced

growth trends, with rates of 0.0053 year−1, 0.0053 year−1, 0.0049

year−1, 0.0049 year−1, and 0.0048 year−1, respectively. The Yangtze

River Delta region (YRD) stands out for its high urbanization level

and consequent vegetation degradation. Within this region, Jiaxing

experienced the steepest NDVI decline at −0.0012 year−1, followed

by Taizhou (−0.0007 year−1) and Nantong (−0.0004 year−1). In

addition, Qianjiang also manifested a downward trend in NDVI

with a decrease rate of −0.0003 year−1.
4.2 Spatial patterns of NDVI

Overall, the majority of the MLYRB was well-covered with

vegetation (Figure 4A). Spatially, NDVI predominantly adhered to

a “high in the west and low in the east, high in the south and low in

the north” pattern, primarily attributed to the advanced

urbanization along the Yangtze River and in the lower reaches of

the Yangtze River Basin (Zheng et al., 2021). The areas with high

NDVI values (> 0.6) accounted for 51.83% of the study area

(Figure 4A). Precisely 22 cities exhibited an NDVI between 0.60

and 0.65, mainly located in the western part of the study area and

central-southern part of eastern region (Figure 4B). Among these,

Huangshan boasted the highest NDVI, followed by Jingdezhen,

then Ganzhou, the ETMAP, and Huaihua. The areas with low

NDVI values (< 0.2) comprised 1.87% of the study area (Figure 4A).

On the city scale, NDVI was relatively lower in Wuhan urban circle

and the YRD (Figure 4B).
FIGURE 3

Temporal variations of NDVI at the city scale in the study area, 2000−2020. The arrow symbols, specifically ↑ and ↓, denote upward and downward
trends, respectively. HZC stands for Hangzhou City, with similar abbreviations employed for the other cities represented.
FIGURE 2

Interannual variations and linear trend of NDVI in the study area,
2000−2020.
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4.3 Spatial variability of NDVI

4.3.1 Trajectory of NDVI centroid migration
As shown in Figure 5A, the NDVI kernel density gradually

decreased from the southwest to the northeast. Regions with high

kernel density were predominantly situated in the central and

southern parts of the MLYRB. Characterized by robust vegetation

growth and dense vegetation cover, these regions were primarily

composed of forests and croplands. Between 2000 and 2020, the

geographic center of NDVI in the MLYRB continuously migrated

(Figure 5B). The longitude of the centroid ranged between 113°10′
23.78′′ E and 113°15′56.20′′ E, and the latitude extended from 29°22′
1.01′′ N to 29°26′32.91′′ N. Overall, the NDVI centroid coordinates

moved from 113°15′56.20′′ E, 29°23′40.29′′N in 2000 to 113°14′5.85′
′ E, 29°24′44.14′′ N in 2020, following a fluctuating trajectory. This

migratory trend indicates significant interannual variability in NDVI

in the study area. Notably, the migrations during 2005−2006, 2011

−2012, 2012−2013, and 2019−2020 were particularly pronounced,

covering distances of approximately 5.92 km, 5.54 km, 8.20 km, and

6.25 km, respectively. These distances exhibit an expansion in

vegetation cover across a wide area of the study area during these

specific periods.
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4.3.2 Spatial variation of NDVI
As shown in Figure 6A, the change rate of NDVI in the MLYRB

during 2000−2020 ranged from −0.0362 to 0.0365 per year. The

majority of the study area, specifically 89.28%, demonstrated an

upward trend in NDVI. These areas were mainly observed in the

Qinling-Daba mountainous area and its adjacent areas (southern

Shaanxi, southern Henan, and northwestern Hubei), as well as the

Wuling-Xuefeng Mountain ranges (western Hunan), and Jiangnan

Hills. Conversely, the areas where NDVI showed a downward trend

accounted for 10.72%, primarily concentrated in central Hubei,

northern Hunan, southern Anhui, and highly urbanized regions in

Jiangsu, Zhejiang, and Shanghai Municipality.

According to Figure 6B, the majority of the study area (62.65%)

exhibited a significant increase in NDVI, followed by regions

showing nonsignificant changes (23.81%) and marked increases

(9.97%). Conversely, areas with significant decreases and marked

decreases only accounted for 3.57%. Specifically, the Dongting Lake

Basin (DLB), Poyang Lake Basin (PLB), and Han River Basin (HRB)

predominantly featured a significant upward NDVI trend. Regions

with marked NDVI increases were dispersed across the study area.

Significant NDVI decreases were primarily identified in Lixian and

Linli Counties of Changde, Dantu County of Ma’anshan, Xuanzhou
FIGURE 5

(A) Kernel density and standard deviational ellipse of annual NDVI. (B) Spatial variations in NDVI centroid migration within the study area, 2000−2020.
FIGURE 4

(A) Spatial pattern of the average annual NDVI in the study area, 2000−2020. (B) Pixel-based statistics of average NDVI at the city scale.
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District of Xuancheng, Gaochun District of Nanjing, and the

vicinity of Taihu Lake. Notably, the Wuhan Metropolitan Area

(WMA), Changsha-Zhuzhou-Xiangtan urban agglomeration

(CZTUA), Poyang Lake urban agglomeration (PLUA), and the

YRD predominantly exhibited a marked decreasing NDVI trend.
4.4 Attribution analysis of NDVI variability

4.4.1 Impact of climate change on NDVI
The regression coefficients indicate a correlation between NDVI

and climatic variables, highlighting notable spatial differences

among cities. For example, excluding Qianjiang and Chuzhou, the

NDVI of the other 66 cities showed a positive correlation with

temperature (Figure 7A). Similarly, the NDVI of 62% of the cities

positively correlated with precipitation, with Huangshi exhibiting

the strongest positive correlation (Figure 7B). Notably, the NDVI of

81% of the cities demonstrated a negative correlation with sunshine

duration, Loudi exhibiting the strongest negative one (Figure 7C).

Evidently, the correlation between NDVI and wind speed was

negative in cities situated along the southeast-northwest axis,

while being positive on both sides of the axis (Figure 7D).

Regarding relative humidity (Figure 7E), 54% of the cities

indicated a negative correlation with NDVI, with Xiantao

presenting the strongest correlation; and the other cities exhibited

a positive correlation, with Xinyu and Chenzhou showing

strong correlations.

As shown in Figure 8, the areas where NDVI demonstrated a

positive correlation with climatic variables accounted for 71.20% of

the study area. Aside from sunshine duration, the correlations

between other variables (i.e., temperature, wind speed, sunshine

duration, relative humidity, and precipitation) and NDVI were

mainly positive. Specifically, temperature exerted the most

significant influence on vegetation changes, affecting 33.33% of

the study area. The regions where NDVI positively correlated with

temperature were mainly distributed in the DLB, PLB, Hanzhong,

certain parts of Shangluo, Suizhou, Xiaogan, and northern

Huanggang. Wind speed ranked as the second dominated factor

of NDVI, encompassing 27.71%. The positive correlation areas of

NDVI and temperature were primarily found in Shanghai, the

ETMAP, parts of Shiyan, central Huanggang, Chizhou, and
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Shaoyang, western Xiangyang and Huangshan, southern

Chenzhou, and eastern Shangrao.

Additionally, sunshine duration, relative humidity, and

precipitation also exerted notable effects on NDVI, accounting for

15.47%, 14.48% and 9.01% of the study area, respectively. NDVI

negatively correlated with Sunshine duration in specific areas like

central Huaihua and Xinhua County of Loudi, Shiyan, central

Ankang, Nanyang, and the intersection of Yichun, and Nanchang.

The areas where NDVI positively correlated with relative humidity

were mainly observed in Quanjiao and Dingyuan Counties of

Chuzhou, Shushan District of Hefei, Jing County of Xuancheng,

Lishui District of Nanjing, Pucheng County of Nanping, Zixi

County of Fuzhou, Guidong County and Zixing City of

Chenzhou, Yongding District of Zhangjiajie, Jingshan of Jingmen,

Liuba County of Hanzhong, Zhashui County of Shangluo. The

positively correlated areas of NDVI and precipitation were mainly

located in southern Xi’an, western and central Hanzhong, eastern

Xianning and Huangshi, and southern Xuancheng.

4.4.2 Impact of global-scale climate oscillations
on NDVI

The cross-wavelet energy spectrum revealed a remarkable resonance

period of 10.5 to 13.1 months (2001−2019) between NDVI and AMO in

the MLYRB. The period between 2008 to 2012 notably exhibited a high-

energy region, and the phase difference pointed towards a positive

correlation between NDVI and AMO (Figure 9A). Moreover, there

were two distinct resonance periods identified between NDVI andNAO:

9.0 to 12.5 months (2001−2009) and 9.2 to 12.7 months (2010−2019).

Predominantly, the high-energy region was evident from 2011 to 2017,

and the phase difference indicated a negative correlation between NDVI

and NAO (Figure 9B). Furthermore, there were two significant

resonance periods uncovered between NDVI and PDO: 8.8 to 14.7

months (2001−2008) and 8.6 to 12.9 months (2009−2019). The year

2005 primarily witnessed a high-energy region, and the phase difference

implied that NDVI responded with a delay to alterations in PDO

(Figure 9C). Lastly, two significant resonance periods were identified

between NDVI and SOI: 11.8 to 13.0 months (2001−2003) and 10.3 to

11.8 months (2005−2016). The former high-energy region was primarily

observed from 2001 to 2002, while the latter was focused in 2007. The

phase difference hinted at a negative correlation between NDVI and

SOI (Figure 9D).
FIGURE 6

Variability and trends of NDVI in the study area, 2000−2020. (A) Spatial patterns of pixel-by-pixel NDVI variations; (B) significance of NDVI trends.
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In the low-energy region of the wavelet coherence power spectrum,

NDVI exhibited a significant resonance period with AMO, spanning

from 10.3 to 13.5 months (2008−2012). Notably, the phase difference

was predominantly positive (Figure 9E), suggesting that a positive

influence of AMO on the periodic variation of NDVI. Similarly, NDVI

demonstrated a pronounced resonance period with NAO between 8.3

and 13.0 months (2014−2017). The phase difference was significantly

negative (Figure 9F), implying that NDVI was strongly impacted by the
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counteracting effects of the NAO. Notably, a significant resonance

period was observed between NDVI and PDO for a duration of 10.4 to

15.7 months (2005). This resonance was characterized by an upward

phase difference, indicating that NDVI responded with a lag to PDO

changes (Figure 9G). Additionally, NDVI displayed a significant

resonance period with SOI from 3.3 to 4.7 months (2018−2019)

(Figure 9H). The phase difference was markedly positive, showing

that SOI facilitated the enhancement of NDVI.
FIGURE 8

(A) Spatial pattern of the dominant factors influencing vegetation changes in the study area, 2000−2020. (B) Proportions of positive and negative
dominant areas for climatic variables based on pixel statistics.
FIGURE 7

Spatial distribution of regression coefficients between NDVI and climatic variables at the city scale in the study area, 2000−2020. (A) Correlation between
NDVI and Temperature; (B) correlation between NDVI and precipitation; (C) correlation between NDVI and sunshine duration; (D) correlation between NDVI
and wind speed; and (E) correlation between NDVI and relative humidity.
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4.4.3 Impact of urbanization on NDVI
The correlation between urbanization and NDVI exhibited

notable spatial heterogeneity. Among the examined areas, 86.43%

demonstrated a positive correlation between NDVI and

urbanization rate, whereas 13.57% showed a negative correlation

(Figure 10A). Specifically, 65.18% of these areas displayed a marked

or significant positive correlation (Figure 10B). Notably, 54.32%

presented a significant positive correlation, predominantly

distributed in regions like Qinling-Daba Mountains, Wuling-

Xuefeng Mountains, Dabie Mountains, Jiangnan Hills, Southern

Anhui Mountainous Areas, and Western Zhejiang Hills. The

remaining 10.86% had a marked positive correlation scattered

across the study area. These mountainous regions had relatively

lower urbanization rates. Simultaneously, the Chinese government’s

emphasis on ecological environment protection has led to the

implementation of various ecological preservation such as natural
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forest conservation and converting farmland back to forests,

positively impacting NDVI.

Areas exhibiting a significant or marked negative correlation

accounted for 4.30% (Figure 10B). Specifically, 2.73% showed a

significant negative correlation, mainly distributed in the WMA, the

CZTUA, the PLUA, and the YRD urban agglomeration. The 1.57%

areas with a marked negative correlation were primarily

concentrated in Lianghu Plain and along the Yangtze River. With

urban expansion and rapid population growth, these regions saw

rising urbanization rates, leading to the conversion of natural

vegetation into urban land. This transformation resulted in

reduced vegetation cover. Consequently, NDVI is negatively

correlated with the urbanization rate.

This study focused on the provincial capital cities of Wuhan

(Figure 11B), Changsha (Figure 11C), Nanchang (Figure 11D), and

Nanjing (Figure 11E) within the study area (Figure 11A) to examine
FIGURE 9

(A−D) Cross wavelet power spectrum and (E−H) wavelet coherence between NDVI and climate indices (i.e., AMO, Atlantic Multidecadal Oscillation;
NAO, North Atlantic Oscillation; PDO, Pacific Decadal Oscillation; and SOI, Southern Oscillation Index). The thick black contours depict the 5%
significance level, highlighting the areas of strongest correlation. Here, WTC and XWT denote wavelet coherence and cross wavelet
transform, respectively.
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effects of urban expansion on vegetation. By monitoring the NDVI

change rate, it was observed that the NDVI generally exhibited a

negative trend in the outskirts of each provincial capital.

Specifically, the western region of Wuhan, the central area of

Changsha, and the southern part of Nanjing all displayed a

decreasing NDVI. Similarly, most areas in Nanchang also

demonstrated a decline in NDVI, suggesting significant vegetation

degradation in these regions. With the accelerating pace of

urbanization, urban development continued to encroach upon the

periphery of these cities. This haphazard expansion often came at

the expense of the surrounding vegetation. Consequently, this

destruction led to direct changed in land cover, resulting in a

decrease in NDVI. This observation underscores the contribution

of urban expansion to vegetation degradation.
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4.5 Future trends of NDVI

The proportions of regions with high NDVI values (> 0.6)

within the study area are 67.35%, 72.72%, and 76.02% for the

periods of 2021−2030 (Figure 12A), 2031−2040 (Figure 12B), and

2041−2050 (Figure 12C), respectively. These proportions suggest

that the vegetation coverage in the study area is projected to

continue on a greening trend, especially in the western region and

Jiangnan Hills. This trend holds great significance not only for

maintaining regional ecological balance and regulating climate but

also offering robust support towards achieving China’s dual carbon

goals. Areas with lower vegetation coverage are mainly located in

the urban agglomeration in the middle reaches of Yangtze River, the

Chaohu Lake Basin, the Taihu Lake Basin, and the YRD. These
FIGURE 11

Impact of urban expansion on NDVI change rate. (A) Variations in NDVI, as well as exemplary cities such as (B) Wuhan; (C) Changsha; (D) Nanchang;
and (E) Nanjing.
FIGURE 10

Correlation between NDVI and urbanization rate in the study area, 2003−2020. (A) Correlation coefficient; (B) significance of correlation.
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locations are characterized by rapid economic progress, a sizable

population, and a relatively advanced level of urbanization,

resulting in a degradation in vegetation (Qu et al., 2020).

Figures 12D–F illustrate a steady growth trend in NDVI across

all cities spanning from 2021 to 2050. The proportions of cities

where the NDVI exceeds 0.6 stand at 58.82%, 63.24%, and 66.18%

for the decades 2021−2030, 2031−2040 and 2041−2050,

respectively. Throughout the study period referenced, the NDVI

of Huangshi consistently tops the list with the highest NDVI,

followed by Ganzhou, Chenzhou, and Shangluo. In contrast,

Suzhou persistently registers the lowest NDVI. Other highly

urbanized areas, such as Shanghai Municipality, Wuxi, and

Jiaxing, also exhibit relatively low NDVI values.
5 Discussion

5.1 NDVI variability

This study explores the spatiotemporal variations of vegetation

in the MLYRB using multi-temporal remote sensing data. The

results indicate a significant improvement in vegetation over the

past 21 years, corroborating the conclusions of previous studies (Yi

et al., 2021b; Zhang et al., 2023). Specifically, there has been a
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marked enhancement in vegetation coverage, particularly in the

western and central regions of the study area. As suggested by some

researchers, this pronounced trend can be attributed to the

conversion of a significant portion of croplands into forests (Zhu

et al., 2016). Also, climatic factors and ecological conservation

efforts have positively contributed to this vegetation growth

(Zhang et al., 2020). The NDVI has shown significant

improvement in areas constituting 62.65% of the study area,

especially in the DLB, PLB, and HRB. Since these three basins are

pivotal commodity grain production centers in China, the observed

NDVI dynamics align with changes in crop patterns (Han et al.,

2020; Liu et al., 2021; Long et al., 2021). However, vegetation

degradation accounted for merely 3.57% of the study area,

primarily affecting urban areas. This result underscores the

profound negative impact of urban expansion on vegetation

coverage (Guan et al., 2019).

In this study, the SARIMA model was utilized to project future

NDVI trends over multiple periods. The model relies on multiple

non-seasonal and seasonal parameters. Notably, their estimation is

solely based on a historical dataset, which may be influenced by

factors such as sample size, data quality, and data distribution

characteristics. Consequently, these estimations inherently carry a

certain degree of uncertainty, thereby affecting the predictive

accuracy. Nonetheless, the SARIMA model has been verified to
FIGURE 12

Spatial patterns of future NDVI based on (A−C) the whole-domain scale and (D−F) the city scale for the periods of 2021−2030, 2031−2040, and 2041
−2050, respectively.
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exhibit high stability, and its predictive approach integrates both

numerical values and noise, resulting in simulated values

remarkably close to the actual ones (Jiang et al., 2010). This

conclusion indicates that parameter estimation has a negligible

effect on the model’s predictive accuracy.
5.2 Driving mechanisms of
vegetation dynamics

A thorough comprehension of the relationship between climatic

factors and NDVI is crucial for predicting vegetation dynamics and

managing ecological restoration projects. Among various climatic

factors, temperature and precipitation play a vital role in shaping

regional NDVI variations (Li et al., 2021a, 2021). Numerous studies

have predominantly focused on exploring the effects of temperature

and precipitation on NDVI by calculating correlation coefficients

(Gao et al., 2022; Yu et al., 2020). This research reveals a

predominantly positive correlation between NDVI and

temperature, echoing previous research findings (Hua et al., 2017;

Zhang et al., 2020). Furthermore, moderate wind speeds expedite

the transpiration rate of plant leaves, elevate CO2 levels within plant

cells, enhance the net photosynthetic rate, and subsequently foster

vegetation growth (Zhang et al., 2022b). Conversely, excessive

precipitation can lead to vegetation root rot, while rainy

conditions diminish solar radiation reaching the earth’s surface,

ultimately impeding vegetation growth (Hussien et al., 2023).

Urban expansion profoundly impacts vegetation dynamics (Du

et al., 2019a). As depicted in Figure 12, the vegetation in the primary

provincial capitals and adjacent regions of the MLYRB exhibits a

marked degradation trend. This degradation is largely attributed to

the adverse effects of urban expansion. The negative correlation

between urban development and vegetation can be ascribed to

factors such as environmental deterioration, habitat loss, and

changes in land cover during the urbanization process (He et al.,

2014; Kowarik, 2011). Furthermore, vegetation changes are

associated with different stages of urbanization (Fu et al., 2018).

Cities in their early development stage often reduce vegetation cover

to meet residential space demands (Wu et al., 2019). Conversely,

more mature cities may prioritize increasing urban green spaces,

which could facilitate vegetation regeneration. Hence, as the

demand for better urban living standards persists, vegetation

degradation will gradually give way to improvement (Li et al., 2020).

Climatic variables, including temperature, precipitation, wind

speed, relative humidity, and sunshine duration, directly shape the

growth cycle, water demand, and light conditions of vegetation

(Wang et al., 2024). Meanwhile, human activities primarily impact

vegetation changes through land use/cover changes (Yin et al., 2018),

population migrations (Inderjit et al., 2017), urban expansion (De La

Barrera and Henrıq́uez, 2017), and artificial afforestation (Fu et al.,

2024). These anthropogenic effects are often localized and direct,

intricately tied to the intensity and patterns of human intervention. In

summary, vegetation change is a multifaceted phenomenon

influenced by various factors, and the degree of this influence

varies across regions. Notably, climatic factors exert a long-term

influence on vegetation changes, whereas human activities typically
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have a more immediate and visible impact. Consequently, it is

imperative to separately explore the effects of climate factors and

human activities on vegetation changes to gain a deeper

understanding of their respective mechanisms and impact levels.
5.3 Limitations and future prospects

Examining the regional patterns of vegetation dynamics and

their responses to climate change aids in gaining a better

understanding of the driving forces behind vegetation variability.

Nevertheless, in exploring the impacts of climate change on

vegetation, this study neglected the time lag and cumulative

effects of climatic factors on vegetation growth. Obviously, the

significance of these time lags and cumulative effects has been

verified in numerous studies (Wu et al., 2015; Zuo et al., 2021).

Meanwhile, this research has not fully considered other potential

factors influencing vegetation dynamics, such as CO2 fertilization

(Zhu et al., 2016), extreme climatic events (Zscheischler et al., 2014),

and anthropogenic activities (Jiang et al., 2017). Additionally, the

period for the urbanization rate used in this study spans from 2003

to 2020, with missing statistical information for the preceding three

years (2000−2002), might undermine the reliability of evaluating

the impact of urbanization on vegetation changes. Consequently,

future research could endeavor to develop a comprehensive model

capable of quantifying most relevant factors to explore the driving

mechanisms of vegetation dynamics at regional and even

global scales.
6 Conclusion

This study investigated the impact of climate change and

urbanization on NDVI variations in the MLYRB, and projected

future NDVI trends. The primary findings are summarized below:
1. The annual average NDVI in the study area exhibited a

significant upward trend from 2000 to 2020. This growing

trend was evident in 89.38% of the area, with western and

southern cities boasting significantly higher NDVI values

than their counterparts. Meanwhile, 67.76% of the area

underwent significant NDVI changes, with extremely

significant increases and decreases accounting for 53.56%

and 2.59%, respectively. Over the study period, the centroid

of NDVI consistently displaced, with the migration

distance progressively increasing, underscoring the

significant NDVI variations.

2. Temperature and wind speed positively impacted 32.54%

and 20.92% of the study area, respecti vely. Conversely,

11.63% of the area was adversely affected by sunshine

duration. Precipitation and relative humidity exerted a

comparatively minor effect on vegetation. Global climate

oscillations are capable of influencing periodic variations in

NDVI. Additionally, despite urbanization being a pivotal

contributor to NDVI decline, a positive correlation between

the two was noted.
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Fron
3. Vegetation is anticipated to sustain its greening trend in the

foreseeable future, evident in the increasing NDVI values

across all cities. Nevertheless, areas with low vegetation

cover remain predominantly in highly urbanized zones.
Data availability statement

The original contributions presented in the study are included

in the article/supplementary material. Further inquiries can be

directed to the corresponding author.
Author contributions

JL: Writing – original draft, Software, Funding acquisition. JF:

Writing – review & editing, Funding acquisition, Formal Analysis,

Conceptualization. JQ: Writing – review & editing, Supervision,

Project administration. BS: Writing – original draft, Visualization,

Software, Methodology. YH: Writing – original draft, Validation,

Data curation.
Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. This
tiers in Plant Science 14
research received supports from Hunan Provincial Education

Department (grant numbers CX20221269, 22C0408) and Hunan

Key Laboratory of Geospatial Big Data Mining and Application

(grant number 2020-01).
Acknowledgments

The authors would like to thank the editors and reviewers for

their valuable comments on this paper.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
References
Alpaidze, L., and Salukvadze, J. (2023). Green in the city: Estimating the ecosystem
Services Provided by Urban and Peri-Urban Forests of Tbilisi Municipality, Georgia.
Forests 14, 121. doi: 10.3390/f14010121
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