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Anthocyanins are plant secondary metabolites belonging to the polyphenol class

of natural water-soluble phytopigments. The accumulation of anthocyanins in

different plant tissues can improve plant survival under adverse conditions. In

addition, plants with the resulting colorful morphology can be utilized as

landscape plants. Triticum boeoticum (syn. Triticum monococcum ssp.

aegilopoides, 2n=2x=14, AbAb) serves as a valuable genetic resource for the

improvement of its close relative common wheat in terms of enhancing

resilience to various biotic and abiotic stresses. In our previous study, the EMS-

mutagenized mutant Z2921 with a red glume, stem, and rachis was generated

from T. boeoticum G52, which has a green glume, stem, and rachis. In this study,

the F1, F2, and F2:3 generations of a cross between mutant-type Z2921 and wild-

type G52 were developed. A single recessive gene, tentatively designated

RgM4G52, was identified in Z2921 via genetic analysis. Using bulked segregant

exome capture sequencing (BSE-Seq) analysis, RgM4G52 was mapped to

chromosome 6AL and was flanked by the markers KASP-58 and KASP-26

within a 3.40-cM genetic interval corresponding to 1.71-Mb and 1.61-Mb

physical regions in the Chinese Spring (IWGSC RefSeq v1.1) and Triticum

boeoticum (TA299) reference genomes, respectively, in which seven and four

genes related to anthocyanin synthesis development were annotated. Unlike

previously reported color morphology-related genes, RgM4G52 is a recessive

gene that can simultaneously control the color of glumes, stems, and rachis in

wild einkorn. In addition, a synthetic Triticum dicoccum–T. boeoticum

amphiploid Syn-ABAb-34, derived from the colchicine treatment of F1 hybrids
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between tetraploid wheat PI 352367 (T. dicoccum, AABB) and Z2921, expressed

the red stems of Z2921. The flanking markers of RgM4G52 developed in this

study could be useful for developing additional common wheat lines with red

stems, laying the foundation for marker-assisted breeding and the fine mapping

of RgM4G52.
KEYWORDS

Triticum boeoticum, synthetic amphiploid, red glume, gene mapping, recessive gene,
BSE-Seq
Introduction

Anthocyanins are flavonoid pigments that are important for

plant adaptation to biotic and abiotic stress conditions (Laikova

et al., 2005). In common bread wheat (Triticum aestivum L.),

pigmentation caused by anthocyanins can occur on leaves, stems,

auricles, glumes, pericarp aleurone, coleoptiles, and anthers.

Pigment accumulation in crop plants can not only be used as a

morphological marker to assist in breeding and research related to

impurity removal, gene functions, pigment synthesis pathways,

photosynthesis, and other related theories but also provide

agroecological tourism value for humans (Song et al., 2020). The

anthocyanin pigmentation of different parts of plants is related to

their adaptation to environmental stress conditions. In wheat,

purple coleoptiles, stems, and anthers are reportedly related to

resistance to bunt (Bogdanova et al., 2002). It was shown that the

lines with dark-purple grains and coleoptiles demonstrated a higher

seedling drought tolerance than plants with uncolored pericarp and

light purple coleoptiles (Shoeva et al., 2017). The relationship

between accumulation of anthocyanins in wheat coleoptiles and

cold treatment has been shown (Gordeeva et al., 2013).

Furthermore, the purple-grained NILs had better viability after

accelerated aging compared with the recurrent parent lacking

anthocyanins (Gordeeva and Khlestkina, 2013). The knowledge

about specific features of anthocyanin biosynthesis regulation in

wheat can be useful for improvement of its adaptation to biotic and

abiotic stress conditions. In addition, anthocyanins are important

for maintaining human health and preventing cardiovascular

diseases, carcinogenesis, inflammation, and many other human

pathological conditions (Lila, 2004).

Anthocyanin accumulation occurs naturally in some species.

However, it has also been reported that some changes in pigment

accumulation occur in mutant plant populations induced by

chemical mutagens. Chemical mutagens, among which ethyl

methane sulfonate (EMS) is the most widely used and effective in

crop mutagenesis breeding, can induce plants to produce heritable

mutants (Li et al., 2017; Greene et al., 2003; Henry et al., 2014).

There is a high frequency of EMS-induced point mutagenesis,

primarily involving G–C to A–T conversion, with relatively few

chromosomal aberrations. Most of the mutations are easy to screen
02
(Greco et al., 2001) and can be used to induce variation in plants,

construct mutant libraries, and provide rich basic genetic material

for the study of plant gene function. Liu et al. (2009) obtained a rice

(Oryza sativa L.) YGL4 mutant with a yellow–green leaf color

through the EMS mutagenesis of Jinhui 10 cultivar. EMS-induced

mutant germplasm can be effectively used to mine new genes,

facilitate functional genomics research, and accelerate breeding

programs (Hohmann et al., 2005). Mutagenetic breeding

techniques make it possible to overcome the disadvantages of the

long conventional breeding cycle, which is slow and comes with

difficulties in producing mutation variation. Moreover, mutagenic

breeding techniques can bring about breakthroughs in the creation

of new crop cultivars, germplasms, and genetic materials and can

enable some special problems in breeding work to be solved.

Triticum boeoticum (Syn. Triticum monococcum ssp.

aegilopoides, 2n=2x=14, AbAb), the wild progenitor of Triticum

monococcum ssp. monococcum (2n=2x=14, AmAm), represents a

valuable genetic resource for improving the ability of its close

relative common wheat in terms of coping with various biotic

and abiotic stresses (Budak et al., 2013; Ahmed et al., 2023; Wang

et al., 2023). In addition, T. boeoticum is one of the sources of the

blue grain trait controlled by blue aleurone layer 2 (Ba2) (Zeller

et al., 1991; Zeven, 1991; Dubcovsky et al., 1996; Singh et al., 2007;

Yu et al., 2017; Liu et al., 2021). To date, the salt tolerance genes

Nax2 and Nax1; the powdery mildew resistance genes Pm25,

PmTb7A.1, and PmTb7A.2; the leaf rust resistance gene Sr22; the

stripe rust resistance locus QYrtb.pau-5A; and the stripe rust

resistance gene YrZ15-1370 have been successfully introduced

into common wheat (Paull et al., 1994; Shi et al., 1998; Chhuneja

et al., 2008; Munns et al., 2012; Tounsi et al., 2016; Elkot et al., 2015;

Zhang et al., 2021).

Synthetic amphiploids play an important role in wheat breeding

and evolutionary studies (Gill et al., 1988; Megyeri et al., 2011;

Ahmed et al., 2014; Badaeva et al., 2016; Li et al., 2018; Liu et al.,

2022, 2023). Many studies have aimed to generate amphidiploids

from hybrids of wheat with related species from the genera Aegilops,

Secale, Thinopyrum, and Triticum (Nemeth et al., 2015). Recently,

18 synthetic Triticum turgidum–Triticum boeoticum amphiploids

were identified using cytological methods, and their nutritional

compositions were evaluated (Liu et al., 2023). Artificial
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amphidiploids are regarded as a source of genetic variation for

improving wheat (Kroupin et al., 2019).

Since the first mention of the expression of purple color traits in

wheat, studies on the inheritance of these characteristics have made

great progress in revealing the molecular-genetic mechanisms of

anthocyanin pigment biosynthesis and its regulation in wheat

(Shoeva and Khlestkina, 2015). In our previous study, a mutant,

Z2921, with a red glume, stem, and rachis was produced from an

EMS-mutagenized population of T. boeoticum G52 in M4

generation. In addition, a synthetic T. dicoccum–T. boeoticum

amphiploid, Syn-ABAb-34, derived from the colchicine treatment

of F1 hybrids of T. dicoccum PI 352367 and Z2921, expressed the red

stem from Z2921. The objectives of the present study were (1) to

identify and map the genes conferring resistance to the red glume,

stem, and rachis in Z2921 by using bulked segregant exome capture

sequencing (BSE-Seq) analysis and (2) to characterize the new

synthetic T. dicoccum–T. boeoticum amphiploid Syn-ABAb-34 via

cytological methods.
Materials and methods

Plant materials

T. boeoticum G52, the Z2921 mutant, T. dicoccum PI352367, and

the synthetic T. dicoccum–T. boeoticum amphiploid Syn-ABAb-34 were

used in this study. The M4 generation of Z2921, which originated from

the 0.4% EMS treatment of 3,000 seeds of the T. boeoticum accession

G52, was used. Syn-ABAb-34 was derived from the colchicine treatment

of F1 hybrids from PI 352367×Z2921. G52 was kindly provided by

George Fedak at the Ottawa Research and Development Centre for

Agriculture and Agri-Food (Ottawa, ON, Canada) in 2012. PI 352367

was kindly provided by the USDA-ARS germplasm bank (http://

www.ars-grin.gov). All materials used in this study were kept at

the Triticeae Research Institute of Sichuan Agricultural University.
Cytological observations

Sc-GISH was conducted using T. boeoticum genomic DNA as a

probe according to previously published methods (Wang et al.,

2019). Total genomic DNA from G52 was labeled with fluorescein-

12-dUTP (Roche Diagnostics Australia, Castle Hill, NSW) using

nick translation. The chromosomes were counterstained with 4′,6-
diamidino-2-phenylindole (DAPI) and pseudocolored red.

Hybridization signals were visualized and captured using an

Olympus BX-63 epifluorescence microscope equipped with a

Photometric SenSys DP70 CCD camera (Olympus, Tokyo,

Japan). The raw images were processed using Photoshop v.7.1

(Adobe Systems Inc., San Jose, CA, USA).

Chromosome pairing observation in pollen mother cells

(PMCs) was performed as described previously (Zhang et al.,

2007). For meiotic analysis, at least 50 PMCs were observed for

Z5471. Ring bivalents (ring II) and rod bivalents (rod II) were

counted, and their average numbers were calculated.
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Phenotypic investigation

Field evaluations of glumes, stems, and rachides in G52, Z2921,

PI 352367, Syn-ABAb-34, G52×Z2921 F1, and G52×Z2921 F2
individuals as well as their corresponding F2:3 families were

performed at the experimental field of the Triticeae Research

Institute, Sichuan Agricultural University, Wenjiang. The colors

of the glumes, stems, and rachides were recorded as red or green

from the jointing stage to the mature stage during the growth cycle.

Each plant was 10 cm apart within rows and 30 cm apart between

rows and was 1.5 m in length. The color phenotypes of all the

materials in each generation were investigated.
Bulked segregant exome
capture sequencing

Genomic DNA was extracted via the CTAB method (Chatterjee

et al., 2002). Phenotypically contrasting F2:3 families with different

glume/stem/rachis colorations in the field were used to construct

red and green glume/stem/rachis DNA pools for BSE-Seq. Equal

amounts of DNA from 20 homozygous red-phenotype families and

20 homozygous green-phenotype families were pooled for bulked

segregant exome capture sequencing (Ji et al., 2023). The DNA

samples were subjected to exome capture sequencing, a technology

developed by Chengdu Tcuni Technology (Chengdu, China).

Sequence quality was controlled using Trimmomatic v0.36

software (Bolger et al., 2014). DNA reads of the wild-type and

mutant bulks were aligned to the reference genome sequence of

Chinese Spring v1.1 (IWGSC 2018) using STARv2.5.1b software

(Dobin et al., 2013). The unique and high-confidence alignments

were applied to call SNP variants using GATK v3.6 software

(McKenna et al., 2010). SNP variants with Fisher’s exact test

(FET) P values < 1e−8 and allele frequency difference (AFD) >0.6

were considered associated with the red glume/stem/rachis

phenotype and were then used as templates to develop SNP

markers (Li et al., 2020).
Kompetitive allele−specific PCR assays

The red-phenotype-related SNPs and the 500-bp flanking

sequences were used to design the Kompetitive allele−specific

PCR (KASP) primers and test polymorphisms in the parental

lines and the wild-type and mutant DNA bulks. Polymorphic

markers that could be reliably scored were genotyped in the F2
segregation population of G52×Z2921. For each KASP assay, a 10-

µl reaction volume containing 5 µl of 2 KASPmaster mix (Biosearch

Technologies), 1.4 µl of primer mix (a mixture of 0.168 µM each

forward A1 and A2 primer and 0.42 µM of reverse primer), 100 ng

of genomic DNA, and 2.6 µl of ddH2O was prepared. The CFX96

Touch™ real-time PCR detection system (Bio-Rad, USA) was used

for amplification under the following conditions: 15 min at 94°C, 10

touchdown cycles of 20 s at 94°C, 60 s at 65°C–57°C (decreasing by

0.8°C per cycle), and 32 cycles of 20 s at 94°C, 60 s at 57°C.
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Data analysis

Chi-square (c2) tests were used to determine the goodness of fit

for the observed segregation and expected ratios of the F2 and F2:3
populations. Linkage analysis was performed using MAPMAKER/

EXP v3.0b (Lander et al., 1987). The Kosambi function was used to

convert recombination values to genetic distances (Kosambi, 1943).

A logarithmic odds (LOD) ratio of 3.0 and a maximum distance of

50.0 cM were set as the thresholds for the declaration of linkage.

The genetic linkage map was drawn using MapDraw v2.1 software

(Liu and Meng, 2003).
Candidate gene analysis

The corresponding sequences of the markers KASP-58 and

KASP-26 linked to RgM4G52 were subjected to BLAST searches

against the genomes of common wheat cv. Chinese Spring v1.1

(Appels et al., 2018) and the genome of Triticum boeoticum TA299

(Ahmed et al., 2023). Gene annotations between the flanking

markers of the two genomes were retrieved from the databases

Ensembl Plants (http://plants.ensembl.org/index.html) and Swiss-

Prot (http://www.gpm-aw.com/html/swi-ss-prot .html) .

Collinearity analysis was performed on the DEGs related to the

function of anthocyanin synthesis among the parents and

mixed pools.
Results

Genetic analysis of genes related to red
glumes, stems, and rachides

From the jointing stage to the mature stage, the EMS mutant

Z2921 exhibited red glumes, stems and rachides (Figures 1A–D),

and G52 exhibited green glumes, stems, and rachides. Z2921 was

crossed with G52 to develop F1, F2, and F2:3 populations for genetic

analysis of the genes conferring red glumes, stems, and rachides in

Z2921. The glume, stem, and rachis coloration of all the F1 plants

were similar to those of the parent G52 plants, with green glumes,

stems, and rachides (Figures 1E–H). The F2 population segregated

into 46 green-phenotype and 18 red-phenotype strains (Figures 1I–

L), fitting a 1G:3R ratio (c2 = 0.333, p=0.564) (Table 1), indicating

that the red phenotype was conferred by a single recessive gene,

tentatively designated RgM4G52. The segregation rate of the F2:3
population composed of 64 families was 14 (homozygous green

type):30 (heterozygous):17 (homozygous red type) (c1:2:12 = 0.097, p

= 0.953), which is consistent with the segregation results of the F2
population (Table 1).
BSE-Seq analysis

The DNA samples of the red bulk and the green bulk were

subjected to BSE-Seq analysis, which generated 224,290,036 and
Frontiers in Plant Science 04
177,194,890 raw reads, respectively. After quality control,

224,266,906 and 177,176,312 high-quality reads from the red bulk

and the green bulk, respectively, were uniquely mapped to the Chinese

Spring genome (IWGSC RefSeq v1.1). A total of 5651 SNPs (p< 1e-8

and |AFD|>0.6) were identified from these reads using GATK v4.0

software (Figure 2B). A total of 348 SNPs were located within a 5-Mb

genomic interval (555 Mb–560 Mb) on the long arm of chromosome

6A (Figure 2A) in the Chinese Spring reference genome; these SNPs

were regarded as candidate SNPs linked to RgM4G52.
Molecular mapping of RgM4G52

There were 59 of the 171 clustered SNPs on 6AL 555–560 Mb

(p<1e-8 and |AFD|>0.6) chosen for the development of KASP

markers. Four of them were successfully converted into KASP

markers (KASP-7, KASP-26, KASP-58, KASP-59) (Table 2) and

scored reliably on the parents as well as the red and green bulks

(Table 3). These KASP markers were subsequently used to genotype

64 F2 plants derived from a cross between green-type G52 and red-

type Z2921. Linkage analysis indicated that KASP-58 was mapped

2.73 cM distal and that KASP-26 was located 0.67 cM proximal to

RgM4G52 (Figures 3A–C).
Gene analysis of the RgM4G52
genomic region

The sequences of the closely linkedmarkers KASP-26 andKASP-58

were subjected to BLAST searches against the genome of Chinese

Spring and that of T. boeoticum TA299 to determine their physical

positions. RgM4G52 was physically mapped to a 1.71-Mb region

between the 557.09-Mb and 558.97-Mb regions of the Chinese Spring

6AL chromosome (IWGSC RefSeq v1.1) and between the 580.72-Mb

and 582.33-Mb regions (1.61 Mb) of the TA299 6AbL chromosome (T.

boeoticum) (Figures 3A–C). There were 40 and 42 predicted genes in

the target physical regions in Chinese Spring and T. boeoticum TA299,

respectively (IWGSC RefSeq v1.1; T. boeoticum TA299, Supplementary

Tables S1, S2). In the Chinese Spring genome, seven genes may be

associated with the anthocyanin biosynthesis pathway, including four

cytochrome P450 family protein-related genes (Tanaka et al., 2009;

Yang et al., 2004) (TraesCS6A02G509500LC, TraesCS6A02G323900,

TraesCS6A02G324000, TraesCS6A02G510200LC), one universal stress

protein family gene (Song et al., 2023a, 2023b; Gonzalez et al., 2008;

Baudry et al., 2004; Stracke et al., 2010). (TraesCS6A02G323800), one

peroxidase gene (TraesCS6A02G324200) (Grommeck and Markakis,

1964; Zapata et al., 1995; Kader et al., 2002; Zhang et al., 2005), and one

F-box family protein-encoding gene (Zhang et al., 2017; Feder et al.,

2015) (TraesCS6A02G324300). Four genes, namely, one cytochrome

P450 protein-related gene (Tm.TA299.r1.6AG0120810), one peroxidase

gene (Tm.TA299.r1.6AG0120940), a universal stress protein family

gene, Tm.TA299.r1.6AG0120790, and an F-box family protein-

encoding gene, Tm.TA299.r1.6AG0121100LC, were found in the T.

boeoticum (TA299) genome and had a good collinear relationship with

those of Chinese Spring (Figures 3D–F).
frontiersin.org

http://plants.ensembl.org/index.html
http://www.gpm-aw.com/html/swi-ss-prot.html
https://doi.org/10.3389/fpls.2024.1459505
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Chen et al. 10.3389/fpls.2024.1459505
Phenotypic and cytological molecular
characterization of the amphiploid
Syn-ABAb-34

An investigation of the number of chromosomes in the root tip

showed that seven plants had 42 chromosomes and 2 plants had 41
Frontiers in Plant Science 05
chromosomes in the nine plants tested from amphiploid Syn-ABAb-

34. Plants with 42 chromosomes were used for mc-GISH

identification and chromosome pairing observation. Mc-GISH

revealed 28 A-genome chromosomes among the amphiploid Syn-

ABAb-34 chromosomes in the A-genome of Z5471 (Figure 4A).

Chromosome pairing in PMCs (observed PMCs >50) at meiotic
FIGURE 1

The coloration of spikes (A), spikelets (glumes) (B), stems (C) and rachides (D) of Z2921 and G52; The coloration of spikes (E), spikelets (glumes) (F),
stems (G), and rachides (H) of G52×Z2921 F1; The coloration of spikes (I), spikelets (glumes) (J), stems (K), and rachides (L) of G52×Z2921 F2
individual plants.
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metaphase I was 2.58 rod II+17.92 ring II+0.16 I+0.16 III+0.08 IV in

these plants with 42 chromosomes (Figure 4B), indicating the

cytological stability of amphiploid Syn-ABAb-34. The amphiploid

Syn-ABAb-34 was detected using the KASP markers KASP-26 and

KASP-58 linked to RgM4G52; the results indicated that Syn-ABAb-34

carried the gene RgM4G52 (Figures 4C, D). Field evaluation revealed

that the color of stem changes from green to purple over time and

finally changes from purple to red. Syn-ABAb-34 exhibited stem

pigment accumulation similar to the diploid parent Z2921, whereas

no pigment accumulation was detected in the tetraploid parent

PI352367 (Figures 5A–C). Additionally, it was observed that the

average length and width of 10 grains of Syn-ABAb-34 were greater

than those of the parents Z2921 and PI352367 (Figures 5D, E).
Frontiers in Plant Science 06
Discussion

Anthocyanins cause pigmentation in plant tissues and enhance

plant resistance to biotic and abiotic stresses (Laikova et al., 2005).

To date, there have been some reports of genes associated with

pigmentation on leaves, glume shells, culms, seeds, etc., in wheat. Rg

genes control glume shell color in diploid, tetraploid, and hexaploid

wheat and are located on chromosomes 1A, 1B, 1D, and 2A

(Khlestkina et al., 2010; McIntosh et al., 2013). Among these

genes, Rg-A1b and Rg-A1c control the red and black (dark

brown) glumes of diploid, tetraploid, and hexaploid wheat,

respectively (Blanco et al., 1998; Salina et al., 2006) whereas Rg-

D1b and Rg-D1c control the red (brown) and gray glumes,
TABLE 1 Genetic analysis of red genes in F1, F2, and F2:3 families of Z2921 × G52.

Parents
and cross

Generationa
No. of
plants/
families

Observed ratiob

Actual ratio
Expected

ratio
c2 P-value

G Seg R

G52 Pg 10 10

Z2921 PR 10 10

Pg × PR

F1 10 10

F2 64 46 18 2.6:1 3:1 0.333 0.564

F2:3 61 16 28 17 1:1.75:1.06 1:2:1 0.097 0.953
aPS, wild-type (green color) parent G52; PSs, mutant type (red color) parent Z2921.
bR, homozygous red; Seg, segregating within F2:3 families; G, homozygous green.
FIGURE 2

Distribution of SNPs from DNA bulks. (A) Number of SNPs (|AFD| > 0.6, P value <1e−8) distributed on different wheat chromosomes; (B) enrichment
of SNPs within a 1-Mb window size on wheat chromosomes.
TABLE 2 Primer sequences of KASP markers used for genetic mapping of RgM4G52.

Marker Physical position (bp) Allele 1 primera Allele 2 primerb Common/reverse primer

KASP-7 556979833 GGGATTGGGGGAGCAGAGCA GGGATTGGGGGAGCAGAGCG GAGACGTCCTGTTGACTCCT

KASP-26 557091256 ACGTTATTCATACCAGAGCGTT ACGTTATTCATACCAGAGCGTG TGGAGGGAAAGGATGACACT

KASP-58 558796229 TGTGGACACCTTCAAGATGATC TGTGGACACCTTCAAGATGATT CTTCTTGCACTTGCCTTCCG

KASP-59 559401024 AGATCGAGCACGCCACGA AGATCGAGCACGCCACGG TCACTCCTCTCGTCCTTCCC
a A1 primer labeled with FAM: GAAGGTGACCAAGTTCATGCT.
b A2 primer labeled with HEX: GAAGGTCGGAGTCAACGGATT.
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respectively, of hexaploid wheat (Khlestkina and Salina, 2006,

2009b, 2002a, 2002b). Three homoeologous genes for purple

stems (Pc-A1, Pc-B1, Pc-D1), three homoeologs for purple leaf

sheaths (Pls-A1, Pls-B1, Pls-D1), and three homoeologs for purple

leaf blades (Plb-A1, Plb-B1, Plb-D1) have been mapped in close

linkage with the red coleoptile genes Rc-A1, Rc-B1, and Rc-D1 in

wheat (Khlestkina et al., 2009a, 2010). Two genes responsible for

purple anthers (Pan-A1 and Pan-D1) have been mapped on

chromosomes 7A (Blanco et al., 1998) and 7D (Khlestkina et al.,

2009a) at short distances from Rc-A1 and Rc-D1, respectively.

However, there have only been a few reports of pigmentation in

glumes, culms, and rachides being simultaneously controlled by a

single gene. In this study, a new pigmentation gene, RgM4G52,

conferring red glumes, stems, and rachides, was identified in the T.

boeoticum mutant Z2921 and mapped on chromosome arm 6AL

flanked by the markers KASP-26 and KASP-58 within a 3.40-cM

genetic interval corresponding to a 1.71-Mb physical region in the

Chinese Spring genome (IWGSC RefSeq v1.1).
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RgM4G52 was physically mapped to a 1.61-Mb region between

580.72 Mb and 582.33 Mb on the TA299 6AbL chromosome arm

(T. boeoticum TA299) (Figures 3A–C). Based on the gene functional

anno ta t ion , the re were four pro t e in -cod ing genes ,

Tm.TA299.r1 .6AG0120790 , Tm.TA299.r1 .6AG0120810 ,

Tm.TA299.r1.6AG0120940, and Tm.TA299.r1.6AG0121100LC, in

the target physical regions of the T. boeoticum genome

(Supplementary Tables S1, S2; Figures 3D, E).

Tm.TA299.r1.6AG0120790 was not annotated, and the

homologous gene of Tm.TA299.r1.6AG0120790 in Chinese Spring

was TraesCS6A02G323800. Its functional annotation was that of a

universal stress protein family gene. The universal stress protein

family is involved in UV-B-induced flavonoid biosynthesis, and

VcUSPs are coexpressed mainly with transcription factors from the

MYB, AP2, zinc finger, and bHLH families (Song et al., 2023a,

2023b; Gonzalez et al., 2008; Baudry et al., 2004; Stracke et al., 2010).

Tm.TA299.r1.6AG0121100LC was not annotated, and the

homologous gene of Tm.TA299.r1.6AG0121100LC in the Chinese
FIGURE 3

Genetic linkage map of the RgM4G52 gene on chromosome 6AL showing the physical location of RgM4G52. (A) Linkage map of RgM4G52;
(B) physical interval (blue) where the four KASP markers are linked to RgM4G52 anchored in Chinese Spring, with orange dots representing
centromeres and dotted lines indicating the physical positions of each marker; (C) physical intervals anchored by markers linked to RgM4G52 in T.
boeoticum. Collinearity relationship of candidate genes in the RgM4G52 gene mapping interval between T. aestivum Chinese Spring and T.
boeoticum TA299. (D) Genetic linkage map of RgM4G52; (E, F) physical mapping of candidate genes in Chinese Spring and TA299.
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FIGURE 4

Cytological observations of the T. dicoccum–T. boeoticum amphiploid Syn-ABAb-34 and molecular detection using KASP markers linked to
RgM4G52. (A) GISH identification of Syn-ABAb-34 using G52 genomic DNA as a probe; (B) chromosome pairing of PMCs in Syn-ABAb-34 with 21
bivalents; (C) molecular marker detection of Syn-ABAb-34 and its parents G52 and Z2921 using the KASP marker KASP-26, which is linked to
RgM4G52. G52 in blue, Z2921 and Syn-ABAb-34 in yellow; (D) molecular marker detection of Syn-ABAb-34 and its parents G52 and Z2921 using the
KASP marker KASP-58 linked to RgM4G52. G52, blue; Z2921 and Syn-ABAb-34, yellow.
FIGURE 5

Phenotype of the T. dicoccum–T. boeoticum amphiploid Syn-ABAb-34 and its parents PI 352367 and Z2921. (A) The coloration of different stems
from T. dicoccum–T. boeoticum amphiploid Syn-ABAb-34; (B) the stem coloration of Syn-ABAb-34 and its parents Z2921 and PI352367; (C) the
plants of Syn-ABAb-34 and its parents Z2921 and PI352367; (D) the seed length of Syn-ABAb-34 and its parents Z2921 and PI352367; (E) the seed
width of Syn-ABAb-34 and its parents Z2921 and PI352367.
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Spring is TraesCS6A02G324300. Its functional annotation was that

of an F-box family protein. Members of the F-box serve as crucial

negative regulators by mediating CHS and PAL degradation, which

coordinately controls flavonoid biosynthesis (Zhang et al., 2017;

Feder et al., 2015).

Tm.TA299.r1.6AG0120810 was annotated as a desmethyl-

deoxy-podophyllotoxin synthase, and the homologous gene of

Tm .TA299 . r 1 . 6AG012 0 8 10 i n Ch i n e s e Sp r i n g wa s

TraesCS6A02G323900. Its functional annotation was that of a

cytochrome P450 protein-related gene. The enzymes flavonoid 3′-
hydroxylase (F3′H) and flavonoid 3′,5′-hydroxylase (F3′5′H) play

important roles in the anthocyanin biosynthesis pathway, and the

genes encoding flavonoid 3′5′-hydroxylase (F3′5′h) and flavonoid

3′-hydroxylase (F3′h) belong to the cytochrome P450

monooxygenase gene family (Tanaka et al., 2009). There are no

data on the cloning and/or mapping of these genes in wheat, except

regarding one partial nucleotide sequence, F3′5′h (Yang et al.,

2004). In the present study, Tm.TA299.r1.6AG0120940 was

annotated as a peroxidase gene, and the gene homologous to

Tm .TA299 . r 1 . 6AG012 0 9 40 i n Ch i n e s e Sp r i n g wa s

TraesCS6A02G324200. Its functional annotation was the same as

that for Tm.TA299.r1.6AG0120940. All flavonoids have shown great

binding affinity to peroxidase, and peroxidase can be degraded by

anthocyanins as direct crop plant substrates or in the presence of

H2O2 with anthocyanidins as substrates to oxidize and decolorize

the anthocyanidins. The activity of peroxidase is negatively

correlated with that of anthocyanins (Grommeck and Markakis,

1964; Zapata et al., 1995; Kader et al., 2002; Zhang et al., 2005).

Now, the work is ongoing to clone and sequence these four genes,

namely, Tm.TA299.r1.6AG0120790, Tm.TA299.r1.6AG0120810,

Tm.TA299.r1.6AG0120940, and Tm.TA299.r1.6AG0121100LC.

Then, candidate genes will be screened by sequence alignment.

Finally, the function of candidate genes will be verified by the

transgenic technique.

The flanking markers KASP-26 and KASP-58 developed in this

study could be used as molecular markers to screen recombinant

heterozygous plants, construct secondary F2 populations and

develop markers, and further narrow the location interval to

finely map and clone RgM4G52. There have been rare reports of

pigmentation in glumes, culms, and rachides being simultaneously

controlled by a single gene. RgM4G52 may be a new recessive

pigmentation gene. According to previous reports on the

relationship between anthocyanin accumulation and plants, the

red pigment accumulation in wheat with RgM4G52 may be related

to their adaptation to environmental stress conditions. It may be
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used as a morphological marker to assist in breeding and research

related to gene functions and pigment synthesis pathways.

Furthermore, it can also be used as a landscape crop for agro-

ecological popular science tourism.

The expression of superior genes has been found to decrease

or be completely inhibited when foreign genes have been

transferred from a lower ploidy level (Ma et al., 1997; Ahmed

et al., 2014). In this study, the amphiploid Syn-ABAb-34 had red

stems at the jointing stage but had green glumes and rachides,

indicating that the expression of RgM4G52 was suppressed in the

glumes and rachides. According to Hao et al. (2019), the

amphiploid Syn-ABAb-34 can serve as a bridge to hybridize

with elite wheat varieties, transferring this trait to common

wheat and providing new germplasm resources for wheat

breeding. Combined with molecular marker-assisted selection,

the transfer of RgM4G52 from diploid wheat to common wheat

cultivars are ongoing using the amphiploid Syn-ABAb-34 as a

bridge. The breeding of new wheat cultivars with red glumes/

stems/rachides will provide new materials for the breeding of

widely adaptable wheat varieties.
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