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Introduction: Tobacco is a critical economic crop, yet its cultivation heavily relies on

chemical pesticides, posing health risks to consumers, therefore, monitoring pesticide

residues in tobacco is conducive to ensuring food safety. However, most current

research on pesticide residue detection in tobacco relies on traditional chemical

methods, which cannot meet the requirements for real-time and rapid detection.

Methods: This study introduces an advancedmethod that combines hyperspectral

imaging (HSI) technology with machine learning algorithms. Firstly, a hyperspectral

imager was used to obtain spectral data of tobacco samples, and a variety of

spectral pre-processing technologies such as mean centralization (MC), trend

correction (TC), and wavelet transform (WT), as well as feature extraction methods

such as competitive adaptive reweighted sampling (CARS) and least angle

regression (LAR) were used to process the spectral data, and then, grid search

algorithm (GSA) is used to optimize the support sector machine (SVM).

Results: The optimized MC-LAR-SVM model achieved a pesticide classification

accuracy of 84.1%, which was 9.5% higher than the original data model. The

accuracy of the WT-TC-CARS-GSA-SVM model in the fenvalerate concentration

classification experiment was as high as 91.8 %, and it also had excellent

performance in other metrics. Compared with the model based on the original

data, the accuracy, precision, recall, and F1-score are improved by 8.3 %, 8.2 %,

7.5 %, and 0.08, respectively.

Discussion: The results show that combining spectral preprocessing and feature

extraction algorithms with machine learning models can significantly enhance the

performance of pesticide residue detectionmodels and provide robust, efficient, and

accurate solutions for food safety monitoring. This study provides a new technical

means for the detection of pesticide residues in tobacco, which is of great

significance for improving the efficiency and accuracy of food safety detection.
KEYWORDS

pesticide residue detection, hyperspectral imaging technology, machine learning,
support sector machine, food safety
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1 Introduction

Tobacco is one of the most important economic crops in the

world, necessitating the employment of chemical control methods

in its cultivation to minimize the adverse effects of pests and

diseases on both its yield and quality (Lecours et al., 2012).

However, the use of chemical pesticides can have adverse effects

on the environment and the health of smokers (Dai et al., 2019).

Therefore, the issue of pesticide residue has always been a major

concern within the tobacco industry.

Traditional pesticide residue detection techniques include Gas

Chromatography (GC), Gas Chromatography-Mass Spectrometry

(GC-MS), High-Performance Liquid Chromatography (HPLC),

Supercritical Fluid Chromatography (SFC) and other methods,

although these detection methods have high accuracy for the

detection of pesticide residues, the detection process is relatively

complicated and costs labor and financial resources (Grimalt and

Dehouck, 2016; Zhang et al., 2018; Pérez-Navarro et al., 2019;

Simonetti et al., 2020).

Hyperspectral imaging (HSI) is a technique that combines

spectral technology with image technology to obtain spectral

information in each pixel space of the research object (Gowen

et al., 2007). In recent years, HSI technology has garnered

significant attention in the field of pesticide residue detection. Ye

et al. (2022) established an LR model using HSI technology to

effectively detect pesticide residue levels in grapes, with an accuracy

of more than 97%. He et al. (2021) combined HSI technology to

establish a one-dimensional convolutional neural networks (1D-

CNN) model to detect pesticide residues in leek leaves and the

accuracy of the test set was 97.9%. Jun et al. (2016) utilized HSI

technology and chlorophyll fluorescence spectroscopy to

quantitatively analyze the residues of dichlorvos at various

concentrations on lettuce leaves and the SVM model exhibited a

strong correlation coefficient of 0.987 and a low root mean square

error of 0.005. Jia et al. (2018) developed a detection model for

cypermethrin and carbendazim pesticide residues on apple surfaces

by integrating HSI technology with a machine learning algorithm,

achieving a classification accuracy of 95%. In conclusion, HSI

technology has been widely utilized for non-destructive detection

of pesticide residues in agricultural products. However, most

current research on pesticide residue detection in tobacco relies

on traditional chemical detection methods, which cannot meet the

requirements for real-time and rapid detection. Hyperspectral

imaging technology offers the advantages of rapid, non-

destructive, and accurate quality detection and has been

extensively applied across various crops. Therefore, it is feasible to

employ hyperspectral imaging technology for detecting the levels of

pesticide residues on the surface of tobacco leaves.

As high-dimensional data, including spectral and spatial

features, it is still a difficult task to mine the effective information

of hyperspectral data. The utilization of machine learning

algorithms is crucial in the prediction and analysis of spectral

information, as it enables automatic pattern recognition and rule

derivation from data, leading to accurate predictions. Its advantages

lie in its automation, adaptability, high efficiency, and predictive
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capabilities, making it widely applicable in pesticide residue

detection (Saha and Manickavasagan, 2021). Tan et al. (2024)

utilized HSI technology for the detection of pesticide residues in

cantaloupe, achieving an SVM model with an accuracy of up to

93.13%. Zhan-qi et al. (2018) utilized HSI technology in

conjunction with a machine learning algorithm to detect

dimethoate pesticide residues at various concentrations in spinach

leaves. The optimal linear discrimination model achieved a

prediction accuracy of 0.997 with a standard deviation of 0.008.

Cong et al. (2021) developed a support vector machine model

utilizing HSI technology for the identification of pesticide residues

on lettuce surfaces, achieving a test set accuracy of 96.08%. Sun et al.

(2022) utilized fluorescence spectroscopy technology to develop a

random forest classifier model based on a one-dimensional

convolutional neural network for the detection of pesticide

residues on black tea, achieving a test set accuracy of 99.05%.

In this study, HSI technology was utilized to analyze various

types of pesticides and their residues to capture spectral

discrepancies among different pesticide types or residues.

Concurrently, a machine learning algorithm detection model was

developed and fine-tuned.
2 Materials and methods

2.1 Sample handling

Fenthion, dimethoate, and fenvalerate, which were purchased

fromMerck with a purity greater than 98%, were used as test agents.

Tobacco plants were cultivated in the greenhouse of Sichuan

Agricultural University with a photosynthetic photon flux density

(PPFD) of 600 mmol·m-2·s-1 and a photoperiod of 16 h light (25°C),

and 8 h dark (22°C) for four weeks.

After dilution at a ratio of 1:1000, the test agent was uniformly

sprayed onto the surface of tobacco leaves. Distilled water was used

as the control. Each group consisted of 20 tobacco plants,

designated as T1 - T4, each plant selected 3-5 leaves for

hyperspectral imaging, details of the sample are shown in Table 1.

Fenvalerate was diluted at ratios of 1:200, 1:1000, 1:500, 1:25,000,

and 1:100,000 before being evenly sprayed onto the surface of tobacco

leaves. Distilled water was used as the control. Each group consisted

of 20 tobacco plants labeled C1 – C6, each plant selected 3-5 leaves for

hyperspectral imaging, details of the sample are shown in Table 2.
2.2 Hyperspectral image acquisition
and correction

In this study, Resonon’s Pika XC2 hyperspectral imager was

used for spectral image acquisition. It covers the spectral range from

400 nm to 1000 nm with a spectral resolution of 1.9 nm,

encompassing 462 bands, more details are shown in Table 3. As

shown in Figure 1A, the entire system comprises the imaging

spectrometer (Pika XC2), camera light sources (The host model is

DMX-J-SA-17), stage, and computer.
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Each tobacco leaf sample was positioned horizontally on the

stage for data acquisition. The original hyperspectral images were

then grayscale corrected to reduce noise caused by changes in

illumination and camera dark current. This was achieved by

placing a standard reflection whiteboard perpendicular to the

imaging lens and capturing a single frame of whiteboard data

corresponding to the current slit was acquired. Furthermore, by

employing a lens cover over the lens, corresponding black frame

data could be obtained. The calculation is as follows:

I =
R − B
W − B

� 100% (1)

W is all-white image reflectivity; B is all-black image reflectance;

R is the reflectance of the original spectral image; I is the reflectance

of the corrected spectral image.
2.3 Data analysis

2.3.1 Hyperspectral data extraction
As shown in Figure 1B, The ENVI5.6 software was used to select

the 80 × 80pixel region at the location to avoid the vein as the region

of interest (ROI), and the average spectral value within ROI was

calculated as the original spectrum of the sample (Figure 1C).
2.3.2 Spectral preprocessing and sample division
In the process of spectral data acquisition, different

environmental factors and individual differences of samples may

introduce interference such as stray light, strong electric noise, and

artificial transmission noise, which will affect the establishment of
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the model and the final detection result. The application of the

spectral preprocessing algorithm has been proven to significantly

improve classification accuracy (Mishra et al., 2020).

As shown in Figure 1D, after the box plot method is used to

eliminate abnormal samples, first order differential (D1), second

order differences (D2), trend correction (TC), mean centering

(MC), moving average filters (Move-Avg), multiple scattering

correction (MSC), savitzky-golay (SG) smoothing, standard

normalized variable (SNV), wavelet transform (WT) are

respectively used for spectral data preprocessing (Figures 2A-F,

H, I). In this study, the specific parameters are set as follows: in the

Move-Avg algorithm, the window size is specified as 2. In the SG

algorithm, the window size is specified as 21 and the polynomial

order is 3 to smooth the data, to reduce the random fluctuations in

the data. In WT algorithm, Daubechies 8 wavelet is used to

transform, and the noise is suppressed by setting the threshold

value to 0.04. Use the default settings for other algorithms. The

results of modeling based on nine methods were compared and

analyzed, and the best spectral pretreatment algorithm was selected

for subsequent research and analysis. The preprocessed spectral

data set is randomly divided into a training set and a test set

according to the ratio of 4:1 for model training.

2.3.3 Spectral feature extraction method
To improve the accuracy and efficiency of hyperspectral data

modeling, a feature selection algorithm is employed to address

redundant information and dimensionality issues (Medjahed and

Ouali, 2018). In this study, we used the competitive adaptive

reweighted sampling (CARS), successive projection algorithm

(SPA), uninformative variable elimination (UVE), least angle

regression (LAR), and genetic algorithm (GA) for feature band

extraction, the specific parameters are set as follows: In the CARS

algorithm, 50 subsets, 20 maximum principal component numbers,

and 10 cross-validations are used to determine the optimal

wavelength. In the SPA algorithm, variable selection is done by

automatic scaling and default minimum variable number 1. The

UVE algorithm evaluates features by setting the number of potential

components to 50, the number of repetitions to 500, and the size of

the test set to 20%. GA algorithm sets the crossover probability as

0.5 and the mutation probability as 0.2, and sets the variable

selection threshold as 0.5 to determine the selected characteristic

variable. The LAR algorithm uses default Settings for feature

selection. The modeling results based on five methods were

compared and analyzed, and the best feature band extraction

algorithm was selected for subsequent research and analysis.
TABLE 2 Sample treatment of fenvalerate concentration
grading experiment.

Group
name

Dilution
ratio

Number of
tobacco (plant)

Sample
size

C1 1:200 20 68

C2 1:1000 20 78

C3 1:5000 20 67

C4 1:25000 20 68

C5 1:100000 20 81

C6 – 20 68
TABLE 1 Sample processing of different pesticide classification experiments.

Group name Category Dilution ratio Number of
tobacco (plant)

Sample size

T1 fenthion 1:1000 20 412

T2 Dimethoate 1:1000 20 382

T3 Fenvalerate 1:1000 20 447

T4 water – 20 429
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2.3.4 Software environment
The training was performed on a local machine with an

NVIDIA GeForce RTX 4060 GPU and a 13th Gen Intel(R) Core

(TM) i713700F CPU. Use Python language, Keras 2.4.3, scikit-learn

0.24.1, and Tensorflow 2.4.1 served as the framework, with CUDA

11.8 and cuDNN 8.9.4 for acceleration.

2.3.5 Establishment and evaluation of tobacco
pesticide residue detection model

In this study, k-nearest neighbor (KNN), decision tree (DT),

support vector machine (SVM), logistic regression (LR), random

forest (RF), gradient boosting (GB), adaboost and extreme gradient

boosting (XGboost) were chosen to construct models for pesticide

residue detection. To ensure a fair and comprehensive comparison of

the performance of various machine learning algorithms for pesticide
FIGURE 1

Workflow of hyperspectral data acquisition, processing and modeling. (A) Hyperspectral imager. (B) Selection of ROI. (C) Original spectral curve of
fresh tobacco leaf sample. (D) Box plot method to remove abnormal samples.
TABLE 3 Hyperspectral cameras specifications.

Hyperspectral cameras specifications Pika XC2

Spectral range (nm) 400-1000

Spectral resolution (nm) 1.9

Bin spectral channels 447

Spatial channels 1600

Max frame rate (fps) 165

Sampling interval (nm) 1.3

Weight (kg) 2.51

Connection type USB

Dimensions (cm) 26.5 x10.6 x 7.5
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residue detection, all models were initially trained using their default

parameters. This approach was taken to establish a baseline for model

performance without any bias introduced by parameter tuning.

After establishing the baseline performance, the grid search

algorithm (GSA) was then applied to fine-tune the models. GSA

systematically explores a predefined range of parameter values to

identify the combination that maximizes model performance, as

evaluated by the chosen metrics: accuracy (A), precision (P), recall

(R), and F1-score (F). These metrics are shown in Equation 2,

Equation 3, Equation 4, and Formula 5.

Accuracy =
TP + TN

TP + TN + FP + FN
(2)

Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)
Frontiers in Plant Science 05
F1 − score =
2*Recall*Precision
Recall + Precision

(5)

TP is to predict the correct category as the correct category. FN

is to predict the correct category as the wrong category. FP is to

predict the wrong category as the correct category. TN is to predict

the wrong category as the wrong category.

Figure 1 summarizes the workflow from sample collection to

data modeling.
3 Results and analysis

3.1 Extraction and analysis of
spectral information

The extracted spectral data is shown in Figure 1C. Within the 400

~ 700nm range, a minor peak in reflectivity emerges around the 560nm

green light, while a trough in reflectivity appears near the 700nm red
FIGURE 2

The spectral curve after pretreatment. (A) Spectra after trend correction. (B) Spectra after mean centering. (C) Spectra after moving average filters.
(D) Spectra after multiple scattering correction. (E) Spectra after savitzky-golay. (F) Spectra after standard normalized variable. (G) Spectra after
wavelet transform. (H) Spectra after first order differential. (I) Spectra after second order differences.
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light. There is a sharp increase in reflectance in the 700 ~ 780nm range.

Within the band of 780 ~ 1000nm, reflectivity tends to stabilize.

To clearly discern the differences in spectral curves among tobacco

samples within each group, the average spectral curves for each type of

sample were computed as depicted in Figure 3, where T1 – T4 represents

the average spectral curves for various pesticide species. C1 – C6 denotes

the average spectrum of fenvalerate diluted in varying proportions.

The spectral curves in Figure 3 demonstrate that the average

trends of all samples are largely similar, with peaks and troughs

occurring at approximately 560, 700, and 800nm. However, these

features do not overlap completely. At these specific wavelengths,

the spectral reflectance of tobacco leaves varies depending on the

type and concentration of pesticide applied. This suggests that it is

feasible to identify pesticide residues in tobacco and potentially

quantify their concentrations using spectral information.
3.2 Spectral preprocessing

The spectral curve after the removal of abnormal samples is

shown in Figure 4. The box plot method can effectively remove
Frontiers in Plant Science 06
outliers in the data according to the distribution characteristics of

the data. In this study, we used 9 kinds of spectral preprocessing

techniques to process the spectral data and conducted a

comprehensive evaluation of their effects. As shown in Figure 2,

the original spectral data underwent different pretreatment

methods, and its characteristic performance and noise level

changed significantly. For example, D1 and D2 reduce the impact

of baseline fluctuations by highlighting spectral features, but this

may also be responsible for the loss of some important spectral

information, as reflected in the lower performance indicators in

Table 4. TC and MC effectively remove the uncorrelated variability

in the spectrum and improve the prediction accuracy of the model,

which is reflected in the high accuracy, precision, recall, and F1-

score in Table 4. In particular, the MC method performs well in the

classification of pesticide residues, the identification model of

different pesticide species established using spectral data

processed by MC outperforms the original model by 8% in

accuracy, 7.5% in precision, 8.2% in recall, and 0.08 in F1-score.

While the purpose of using SNV was to reduce the effects due to

changes in the physical properties of the sample, it resulted in a

substantial decline in performance in our dataset, possibly due to its
FIGURE 4

Spectral curve of fresh tobacco leaf samples after removal of outliers.
FIGURE 3

(A) The average spectral curve of the three pesticides, in which T1, T2, and T3 are fenthion, dimethoate, and fenvalerate, and T4 is treated with water
as the control. (B) the average spectral curve of six concentration levels of fenvalerate, in which C1-5 were diluted according to 1:200, 1:1000, 1:500,
1:25,000, and 1:100,000 respectively, and C6 was treated with water as the control.
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excessive standardization process which weakened useful spectral

information. As shown in Figure 2G, WT improved the

performance of the model by removing high-frequency noise

components, especially in the fenvalerate concentration

classification experiment, its F1-score reached 0.84. However,

when WT is combined with TC (WT-TC), although the

performance in the classification experiment of pesticide residues

is decreased, the highest accuracy of 89.4%, precision of 89.2%,

recall of 89.0%, and F1-score of 0.88, are achieved in the fenvalerate

concentration classification, indicating that the combination of the

two methods can provide the best prediction effect under

certain circumstances.
3.3 Extraction of spectral feature bands

Raw spectral data (Raw) is used as a benchmark, and its

performance indicator reflects the classification ability of the

model without the application of a feature band extraction

algorithm. As shown in Table 5, the original data achieved an

accuracy of 74.6% in the classification of pesticide types and 83.5%
Frontiers in Plant Science 07
in the concentration classification of fenvalerate. These baseline

results provide a reference for subsequent comparisons.

The performance of the CARS method in pesticide classification

was slightly lower than the original data, and the accuracy dropped

to 72.5%, indicating that CARS may not effectively extract out the

optimal characteristic bands in this dataset. The performance of

CARS also decreased in concentration classification. The

performance of SPA in the classification of pesticide types was

significantly lower than other methods, with an accuracy of only

26.6%, which may indicate that SPA had limitations in processing

the spectral data of this study and did not retain enough

information for the model to accurately classify. The UVE

method showed a similar performance to the original data in the

classification of pesticide species, with an accuracy of 74.9%, while

the fenvalerate concentration classification showed a similar

performance to the original data, with an accuracy of 84.7%,

indicating that UVE maintained the classification ability of the

model in feature selection. LAR performed well in the classification

of pesticide species with an accuracy of 78.7%, the highest of all

methods, but it performed poorly in the concentration classification

of fenvalerate with an accuracy of only 61.2%, which may mean that
TABLE 5 Classification results based on five feature band extraction algorithms.

Feature
band

extraction

Classification of pesticide types Concentration classification of fenvalerate

A (%) P (%) R (%) F A (%) P (%) R (%) F

Raw 74.6 74.5 73.3 0.73 83.5 83.5 84.2 0.83

CARS 72.5 72.5 71.8 0.72 81.2 80.0 79.2 0.79

SPA 26.6 6.8 25.0 0.10 74.1 74.0 73.5 0.73

UVE 74.9 74.3 73.8 0.73 84.7 84.5 84.2 0.83

LAR 78.7 78.5 77.8 0.77 61.2 60.5 59.2 0.59

GA 76.3 76.8 75.5 0.75 83.5 83.5 83.8 0.82
TABLE 4 Classification results of nine preprocessing algorithms.

Preprocessing
Classification of pesticide types Concentration classification of fenvalerate

A (%) P (%) R (%) F A (%) P (%) R (%) F

Raw 74.6 74.5 73.3 0.73 83.5 83.5 84.2 0.83

D1 76.0 75.8 74.8 0.75 74.1 73.0 72.2 0.72

D2 68.3 67.5 66.5 0.66 64.7 62.7 62.5 0.61

TC 78.4 78.5 77.3 0.77 87.1 87.3 87.7 0.86

MC 82.6 82.0 81.5 0.81 83.5 83.5 84.2 0.83

Move-Avg 71.0 70.8 70.0 0.70 80.0 80.7 79.3 0.78

MSC 75.7 75.3 74.3 0.74 83.5 82.7 82.7 0.82

SG 77.5 76.5 76.3 0.76 67.1 67.3 67.0 0.66

SNV 48.2 48.8 48.3 0.48 48.2 51.3 47.5 0.45

WT 76.6 75.5 75.3 0.75 84.7 85.0 85.3 0.84

WT-TC 74.0 73.0 72.5 0.72 89.4 89.2 89.0 0.88
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the characteristic bands selected by LAR are not representative

enough for the concentration classification task. GA showed good

performance in both classification tasks, the accuracy of pesticide

classification was 76.3%, while the accuracy of fenvalerate

concentration classification was 83.5%, which was close to the

performance of the original data, indicating that GA had high

robustness in the selection of characteristic bands (Table 5).
3.4 Classification model building

In this study, Firstly, we comprehensively evaluated the

performance of eight machine learning algorithms on pesticide

classification and fenvalerate concentration classification tasks. By

analyzing the confusion matrix and the classification results in

Table 6, the results showed that SVM showed excellent classification

accuracy in all the evaluated categories, reaching 74.6% in the

classification task of pesticide types, and the F1-score was 0.73.

The fenvalerate concentration classification task was far ahead with

an accuracy of 83.5% and an F1-score of 0.83, underscoring the

SVM’s ability to handle high-dimensional data and nonlinear

problems. As shown in Figure 5, RF and GB show balanced

performance in most categories, but the diagonal values are not

optimal in some specific categories, suggesting possible overfitting

or feature space mismatches. Although LR algorithm performed

slightly better than KNN and DT in pesticide classification, it did

not show obvious advantages in fenvalerate concentration

classification task. Relatively speaking, KNN and DT have poor

classification performance on multiple categories, which may be

due to their limitations when dealing with complex data

distributions. Adaboost and XGboost, while performing well in

some categories, are inconsistent overall. To sum up, this study

selects SVM as the benchmark model for experimental analysis.

Secondly, we thoroughly analyzed the effects of combining

different spectral pretreatment techniques and characteristic

wavelength extraction algorithms on the performance of pesticide

residue classification models. According to the results in Table 7, it

can be clearly seen that the specific combination of pretreatment

and feature selection significantly improves the classification effect
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of the model. In particular, after selecting the features of MC

combined with LAR, SVM was adopted as the classifier (MC-

LAR-SVM), which performed well in the classification experiment

of pesticide types. The average classification accuracy of the test set

reached 84.1%, the precision was 83.3%, the recall was 83.0%, and

the F1-score was 0.83. Compared with the SVMmodel based on raw

data, the average classification accuracy increased by 9.5%, the

precision increased by 8.8%, the recall increased by 9.7%, and the

F1-score increased by 0.1. Additionally, the training time of the

MC-LAR-SVM model is 52.18 seconds, which is not the shortest

compared with other combination methods, but considering its

advantages in classification performance, this training time is

acceptable. This result highlights the effectiveness of MC and LAR

in enhancing spectral data characteristics and reducing noise,

thereby improving the predictive power of models.

Then, we conducted a comprehensive analysis of fenvalerate

concentration classification. As shown in Table 8, among the

various combinations, the WT-TC-CARS-SVM model has the

best performance, reaching an average classification accuracy of

90.6%, and also has an excellent performance in precision, recall,

and F1-score, which are 90.3%, 90.3% and 0.9 respectively. It is

worth noting that the WT-TC-CARS-SVM model not only has

excellent classification performance but also shows good efficiency

in training time (1.27 seconds), which indicates the potential and

advantages of this model in practical applications.

Finally, we used the fenvalerate concentration classification

experiment as an example to optimize the model parameters by

grid search algorithm (GSA). The results in Table 9 show that after

parameter optimization, the recognition rate has been improved to

some extent. Specifically, the Raw-SVM model has demonstrated a

high accuracy of 83.5% without any preprocessing. The accuracy of

the WT-TC-SVM model was improved to 89.4%. Furthermore, the

average classification accuracy of the WT-TC-CARS-GSA-SVM

model on the test set reached 91.8%. This significant performance

improvement is not only reflected in the accuracy but also the

precision, recall, and F1-score. Compared with the Raw-SVM

model, the accuracy, precision, recall, and F1-score were

improved by 8.3%, 8.2%, 7.5%, and 0.08, respectively. After GSA

parameter tuning, it is determined that the kernel function is a
TABLE 6 Classification results of eight machine learning algorithms.

Model
Classification of pesticide types Concentration classification of fenvalerate

A (%) P (%) R (%) F A (%) P (%) R (%) F

KNN 46.1 48.5 46.5 0.46 25.9 26.8 27.3 0.26

DT 41.0 41.5 41.0 0.41 37.3 38.5 38.5 0.37

SVM 74.6 74.5 73.3 0.73 83.5 83.5 84.2 0.83

LR 50.9 51.0 50.8 0.50 50.6 49.5 49.8 0.49

RF 53.0 53.3 53.3 0.53 44.7 43.8 45.7 0.43

GB 51.8 53.5 52.5 0.51 48.2 50.2 48.7 0.48

Adaboost 45.8 48.5 46.5 0.46 27.1 27.7 28.7 0.25

XGboost 56.6 57.0 56.5 0.56 48.2 48.5 47.7 0.47
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multinomial kernel function (Poly), the best penalty factor c is 0.1,

and the best kernel parameter g is 1e-4.
4 Discussion

The hyperspectral data of tobacco collected in this study showed

“green peak”, “red valley”, “red edge” and “infrared high step”

(Figure 1C), which aligns with the observed trend in spectral curves

discussed by predecessors, indicating conformity with the spectral

reflectance properties of green leaves (Asner, 1998; Ma et al., 2023).

To enhance the signal-to-noise ratio by reducing spectral noise,

this study used nine preprocessing methods for spectral data.

Notably, the combined WT-TC processing method further

optimized model performance. Compared with the model based

on the original data, the accuracy rate increased from 83.5% to
Frontiers in Plant Science 09
89.4%. Furthermore, compared with the research conducted by Sun

et al. (2022) on the detection of pesticide residues in black tea, the

accuracy of the MSC-SVM and SNV-SVM models was improved

from 81% to 84.8% and 82.9%, respectively, whereas the model

established based on theWT-TC combined pretreatment method in

this study achieved even higher accuracy. The results show that the

detection performance of the model can be significantly improved

by selecting the preprocessing technology suitable for the

data characteristics.

Although full-band spectral data can be utilized for modeling,

the redundant information within the data may lead to decreased

computational efficiency and recognition accuracy of the model (Lei

et al., 2022). In the two experiments of this study, it can be found

that when the pre-processing or feature extraction algorithm is only

applied to the spectral data, the model performance improvement

space is small, and sometimes even the model performance is
FIGURE 5

Confusion matrix for different machine learning models, in which T1, T2, and T3 are fenthion, dimethoate, and fenvalerate, and T4 is treated with
water as the control. C1-5 indicated that fenvalerate was diluted according to 1:200, 1:1000, 1:500, 1:25,000, and 1:100,000 respectively, and C6 was
treated with water as the control.
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TABLE 7 The results of pesticide classification experiment.

Preprocessing
Feature

band extraction
A (%) P (%) R (%) F

Training
time (second)

– – 74.6 74.5 73.3 0.73 12.84

D1

CARS 74.9 74.0 74.0 0.74 21.41

SPA 28.7 28.8 28.8 0.28 4.03

UVE 67.7 67.3 66.5 0.66 24.73

LAR 75.7 75.5 73.5 0.74 0.55

GA 61.7 61.5 60.8 0.60 68.18

D2

CARS 61.7 61.3 61.3 0.61 94.00

SPA 34.4 34.3 34.3 0.34 2.52

UVE 66.8 66.8 66.3 0.66 120.18

LAR 68.9 68.3 67.5 0.67 1.46

GA 59.0 58.3 57.8 0.57 331.74

TC

CARS 76.6 76.0 75.8 0.75 4.78

SPA 32.0 16.0 30.5 0.19 0.22

UVE 73.7 73.3 73.0 0.72 4.55

LAR 75.7 76.5 74.8 0.75 10.05

GA 71.6 71.3 70.3 0.70 7.78

MC

CARS 79.9 79.3 79.0 0.79 480.24

SPA 46.4 44.3 45.0 0.44 0.54

UVE 77.8 76.8 77.0 0.76 690.23

LAR 84.1 83.3 83.0 0.83 52.18

GA 76.0 76.0 75.3 0.75 1393.16

Move-Avg

CARS 72.8 72.5 72.0 0.72 3.44

SPA 34.1 18.0 31.0 0.21 0.22

UVE 68.6 69.5 68.0 0.68 2.49

LAR 72.8 73.0 72.0 0.72 6.48

GA 71.2 71.3 70.5 0.70 6.66

MSC

CARS 79.0 78.5 78.0 0.78 1.02

SPA 25.7 6.5 25.0 0.10 0.22

UVE 73.4 72.8 72.8 0.72 0.58

LAR 75.4 75.3 74.5 0.74 1.60

GA 72.5 72.5 71.8 0.71 3.23

SG

CARS 73.4 73.0 73.0 0.72 0.48

SPA 38.9 38.5 38.5 0.37 4.80

UVE 76.9 76.3 76.3 0.76 2.49

LAR 77.5 76.5 76.3 0.73 1.53

GA 69.5 68.8 68.8 0.68 2.92

SNV
CARS 45.5 46.0 46.0 0.44 0.06

SPA 37.7 35.8 36.5 0.29 1.67

(Continued)
F
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TABLE 7 Continued

Preprocessing
Feature

band extraction
A (%) P (%) R (%) F

Training
time (second)

UVE 36.8 29.3 37.8 0.31 0.03

LAR 48.2 48.8 48.3 0.48 0.14

GA 44.9 45.5 45.3 0.43 0.10

WT

CARS 76.0 75.5 75.8 0.75 5.10

SPA 27.8 7.0 25.0 0.11 0.22

UVE 66.8 67.5 65.8 0.66 3.88

LAR 74.3 73.3 73.0 0.73 9.79

GA 71.9 70.8 70.8 0.70 6.06
F
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TABLE 8 The results of concentration classification experiment of fenvalerate.

Preprocessing
Feature

band extraction
A (%) P (%) R (%) F

Training
time (second)

– – 83.5 83.5 84.2 0.83 1.00

D1

CARS 67.1 67.0 65.7 0.65 0.02

SPA 50.6 50.5 49.5 0.48 0.50

UVE 70.6 69.0 68.0 0.68 0.00

LAR 55.3 54.3 55.0 0.54 0.03

GA 70.1 70.0 68.7 0.68 0.02

D2

CARS 48.2 50.8 47.8 0.47 0.03

SPA 27.1 26.7 26.3 0.24 0.06

UVE 52.9 51.7 52.0 0.50 0.02

LAR 44.7 43.2 44.0 0.42 0.63

GA 62.4 62.5 61.0 0.60 0.02

TC

CARS 87.1 86.7 86.2 0.86 79.0

SPA 57.6 53.8 54.3 0.53 0.69

UVE 84.7 85.2 84.2 0.83 0.56

LAR 69.4 69.3 69.0 0.68 1.12

GA 87.1 88.8 85.8 0.86 0.63

MC

CARS 83.5 83.8 81.7 0.82 2.90

SPA 76.5 77.2 77.2 0.76 12.41

UVE 85.9 85.0 85.3 0.85 0.41

LAR 63.5 63.0 62.2 0.62 26.18

GA 89.4 89.7 90.0 0.89 0.29

Move-Avg

CARS 71.8 72.3 71.5 0.71 2.25

SPA 72.9 72.8 73.3 0.72 1.30

UVE 75.3 75.0 75.0 0.74 3.37

LAR 74.1 75.2 74.5 0.74 3.18

GA 76.5 75.0 75.3 0.74 1.77

(Continued)
frontiersin.org

https://doi.org/10.3389/fpls.2024.1459886
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Liang et al. 10.3389/fpls.2024.1459886
reduced. For example, in the fenvalerate experiment, the accuracy of

the established CARS-SVM model was even reduced by 2.3%

compared with Raw-SVM, while the accuracy of the WT-TC-

CARS-SVM model established by CARS combined with WT-TC

was increased by 7.1%. Similar research results have been reported
Frontiers in Plant Science 12
in previous studies. Sun et al. (2023) utilized HSI technology to

investigate pesticide residues on lettuce leaves and achieved

correlation coefficients of 0.8132 for the full-band model and

0.8234 for the feature-band model they established. Furthermore,

when applying a convolutional smoothing pre-processing algorithm

in combination with principal component analysis for feature

extraction, the predictive correlation coefficient of their

established model reached 0.901, representing a significant

improvement over the feature band-based model. In addition, to

explore how the model works, this study attempted to draw a

decision boundary graph to better evaluate the model. For this

reason, principal component analysis was used to reduce the

dimensionality of the data. Unfortunately, when we reduced the

data of the 462 band to only two dimensions, it resulted in a

considerable loss of key features, and the classification result of the

established model was quite poor, with the accuracy reduced to

28.1%. In summary, choosing the right feature band extraction

algorithm, combined with effective preprocessing techniques, is
TABLE 8 Continued

Preprocessing
Feature

band extraction
A (%) P (%) R (%) F

Training
time (second)

MSC

CARS 84.7 85.8 83.8 0.84 0.09

SPA 56.5 55.5 56.8 0.55 0.31

UVE 85.9 84.7 84.7 0.84 0.08

LAR 56.5 58.3 56.8 0.56 0.10

GA 76.5 75.2 74.8 0.74 0.14

SG

CARS 75.3 74.2 74.3 0.74 0.01

SPA 45.9 43.3 43.5 0.43 0.02

UVE 69.4 69.3 69.2 0.68 0.00

LAR 57.6 58.2 57.2 0.55 0.00

GA 63.5 63.5 63.7 0.61 0.05

SNV

CARS 36.5 26.5 36.2 0.28 0.02

SPA 14.1 2.3 16.7 0.4 0.02

UVE 38.8 51.7 38.2 0.32 0.02

LAR 27.1 10.2 25.8 0.13 0.00

GA 37.6 51.2 37.3 0.31 0.00

WT

CARS 83.5 84.2 82.7 0.82 1.13

SPA 64.7 64.2 63.7 0.63 1.16

UVE 80.0 78.8 79.3 0.78 0.49

LAR 56.5 55.7 57.2 0.55 2.87

GA 84.7 85.0 85.2 0.84 0.58

WT-TC

CARS 90.6 90.3 90.3 0.90 1.27

SPA 72.9 72.2 72.2 0.71 1.41

UVE 87.1 86.5 86.2 0.85 0.60

LAR 84.7 83.8 84.2 0.83 0.41

GA 81.2 80.7 81.2 0.80 0.91
TABLE 9 The results of fenvalerate concentration classification
ablation experiment.

Model A (%) P (%) R (%) F

Raw-SVM 83.5 83.5 84.2 0.83

WT-TC-SVM 89.4 89.2 89.0 0.88

CARS-SVM 81.2 80.0 79.2 0.79

WT-TC-CARS-SVM 90.6 90.3 90.3 0.90

WT-TC-CARS-
GSA-SVM

91.8 91.7 91.7 0.91
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critical to optimizing the performance of the model to reach its

maximum potential.

In comparison with eight machine learning models, the SVM

model demonstrated superior performance and higher classification

accuracy on the test set, whether in the context of pesticide residue

identification or fenvalerate concentration classification

experiments. SVM also demonstrated superior performance and

higher predictive accuracy compared to other machine learning

algorithms (Jia et al., 2018; Hu et al., 2023). This can be attributed to

SVM’s ability to select an optimal decision boundary by maximizing

the margin and its capacity to map data into a higher-dimensional

feature space using kernel functions, thereby exhibiting strong

generalization capabilities and enabling nonlinear classification

(Kotsiantis et al., 2006).

The partial least squares (PLS) model established by Shen et al.

(2022), achieved an average classification accuracy of 80% for the

test set of three pesticides in detecting pesticide residues in

cauliflower, while the MC-LAR-SVM model developed in this

study demonstrated a recognition accuracy of 84.1%, showing a

significant improvement of 4.1%. Compared with the study of

pesticide residue detection in beef by Jiang et al. (2022), the

accuracy of multilayer perceptron (MLP), SVM, and RF models

was 88.6%, 87.6%, and 86.2% respectively, while the WT-TC-

CARS-GSA-SVM model developed in this study for fenvalerate

concentration classification reached an accuracy of 91.8%. In a

word, the optimization of spectral pretreatment technology and

feature extraction algorithm highlights its great potential in

improving the detection accuracy of pesticide residues and

provides strong technical support for the strengthening of food

safety monitoring.
5 Conclusion

The study successfully explored the possibility and efficiency of

combining hyperspectral imaging technology with machine learning

algorithms for pesticide residue detection. Through a series of

experiments, this study verified the effectiveness of the proposed

method in the task of pesticide types classification and fenvalerate

concentration classification. The SVM model, especially the SVM

model after WT-TC-CARS pretreatment and GSA parameter

optimization performed well in improving classification accuracy

(WT-TC-CARS- GSA-SVM), with an average classification accuracy

of 91.8% on the test set, and the precision, recall, and F1-score were

90.3%, 90.3% and 0.9, respectively, which outperforms the original

model by 8.3% in accuracy, 8.2% in precision, 7.5% in recall, and 0.08

in F1-score. Furthermore, the enhanced model maintains a

comparable level of computational complexity to that of the

original model. The experimental results confirm the effectiveness

of the comprehensive pretreatment and feature extraction algorithm

in improving the model performance, which is of great significance in

realizing rapid and accurate pesticide residue analysis.

However, the study also revealed the limitations of this approach.

The influence of environmental factors on hyperspectral data

acquisition, equipment cost, computational cost and time of model

training, and the limitation of model generalization ability are all
Frontiers in Plant Science 13
problems that need to be further solved in the practical application of

this technology.

Future research should focus on improving the stability of data

collection, lowering the technical threshold, enhancing the

generalization and interpretation ability of the model, and developing

more efficient optimization algorithms to promote the practical

application of this technology in the field of pesticide residue detection.

In conclusion, this study provides a new technical approach for

the rapid detection of pesticide residues in tobacco and provides

empirical support for the combined application of hyperspectral

imaging technology and machine learning algorithms. As the

technology continues to advance and optimize, we believe that

this method will have the potential to play a greater role in the field

of food safety detection.
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