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Wheat exhibits complex characteristics during its growth, such as extensive

tillering, slender and soft leaves, and severe organ cross-obscuration, posing a

considerable challenge in full-cycle phenotypic monitoring. To address this, this

study presents a synthesized method based on SFM-MVS (Structure-from-

Motion, Multi-View Stereo) processing for handling and segmenting wheat

point clouds, covering the entire growth cycle from seedling to grain filling

stages. First, a multi-view image acquisition platform was constructed to capture

image sequences of wheat plants, and dense point clouds were generated using

SFM-MVS technology. High-quality dense point clouds were produced by

implementing improved Euclidean clustering combined with centroids, color

filtering, and statistical filtering methods. Subsequently, the segmentation of

wheat plant stems and leaves was performed using the region growth

segmentation algorithm. Although segmentation performance was suboptimal

during the tillering, jointing, and booting stages due to the glut leaves and severe

overlap, there was a salient improvement in wheat leaf segmentation efficiency

over the entire growth cycle. Finally, phenotypic parameters were analyzed

across different growth stages, comparing automated measurements of plant

height, leaf length, and leaf width with actual measurements. The results

demonstrated coefficients of determination (R2) of 0.9979, 0.9977, and 0.995;

root mean square errors (RMSE) of 1.0773 cm, 0.2612 cm, and 0.0335 cm; and

relative root mean square errors (RRMSE) of 2.1858%, 1.7483%, and 2.8462%,

respectively. These results validate the reliability and accuracy of our proposed

workflow in processing wheat point clouds and automatically extracting plant

height, leaf length, and leaf width, indicating that our 3D reconstructed wheat

model achieves high precision and can quickly, accurately, and non-destructively

extract phenotypic parameters. Additionally, plant height, convex hull volume,

plant surface area, and Crown area were extracted, providing a detailed analysis

of dynamic changes in wheat throughout its growth cycle. ANOVA was

conducted across different cultivars, accurately revealing significant differences
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at various growth stages. This study proposes a convenient, rapid, and

quantitative analysis method, offering crucial technical support for wheat plant

phenotypic analysis and growth dynamics monitoring, applicable for precise full-

cycle phenotypic monitoring of wheat.
KEYWORDS

wheat plant, multi-view stereo reconstruction, phenotype analysis, point cloud
processing, growth dynamics analysis
1 Introduction

With the rapid growth of the global population and the

intensification of environmental challenges, global agriculture

faces serious challenges of ensuring food safety, necessitating the

breeding of high-yield, stable crop genotypes that can adapt to

climate change to secure future food and fuel supplies (Furbank and

Tester, 2011). As one of the three major global food crops, wheat

plays a crucial role in global food safety (Erenstein et al., 2022).

Accurate acquisition of wheat phenotypic traits is of great practical

importance for crop growth assessment, yield estimation, strain

breeding and variety improvement (Fiorani and Schurr, 2013;

Araus and Cairns, 2014). However, traditional manual

measurements are inefficient and destructive in modern plant

sciences, making it difficult to capture small changes in crop

growth, thereby impacting breeding efficiency and progress (Das

Choudhury et al., 2019; Liu et al., 2023). Therefore, there is an

urgent call to develop advanced phenotypic data acquisition

techniques (Yang et al., 2020; Li et al., 2022) to obtain plant

phenotypic parameters in a non-destructive, rapid, efficient, and

precise manner (Xie and Yang, 2020).

To this end, researchers have widely applied various high-tech

sensors to collect plant morphological phenotypic information,

including RGB cameras (Wu et al., 2022b; Wei et al., 2024; Yang

et al., 2024), depth cameras (Teng et al., 2021; Ma et al., 2022; Liu

et al., 2023), LiDAR (Sun et al., 2018; Forero et al., 2022; Liao et al.,

2022), and three-dimensional (3D) scanners (Chenxi et al., 2022;

Wu et al., 2022a), etc. Depth cameras offer high precision and real-

time capabilities; however, they are constrained by range,

environmental factors, typically lower resolution, complex data

processing, and higher costs. Similarly, LiDAR and 3D scanners

provide high precision and accuracy in capturing detailed 3D point

clouds, but they are limited by the need for high computational

resources, elevated costs, and sensitivity to environmental

conditions (Rongsheng et al., 2021; Yu et al., 2024). In contrast,

RGB cameras are widely used due to the advantages of low cost, ease

of use, reliable imaging, and strong environmental adaptability

(Paproki et al., 2012; Wu et al., 2022b). However, 2D image data

from RGB cameras often face challenges in addressing the

complicated shielding between plant organs, and the accuracy of

morphological parameter extraction is frequently limited by
02
shooting angles. To overcome these limitations, researchers have

developed the image sequence-based SFM-MVS (Structure-from-

Motion, Multi-View Stereo) reconstruction technique, which

generates a point cloud through multi-view image reconstruction,

capturing rich and abundant 3D information of the plant and

considerably improving measurement accuracy (Yang et al., 2024).

This technique has been successfully applied to crop phenotyping,

enabling the construction of high-precision 3Dmodels and accurate

extraction of phenotypic parameters for various crops such as corn

(Wu et al., 2020; Li et al., 2022), cotton (Hao et al., 2024), soybean

(He et al., 2023), sugar beet (Xiao et al., 2020, 2021), and more.

Compared to other plants, current 3D reconstruction

techniques for wheat and rice are mainly applicable to early-stage

plants with relatively simple structures or few tillers. The

generalization and robustness of these techniques in dealing with

the entire growth cycle of wheat still require improvement (Gu

et al., 2024). In recent years, substantial progress has been achieved

and accomplished in wheat phenotyping research. For example, Fu

et al. (Fu et al., 2021) used Mask R-CNN technology to extract leaf

length and plant height from 2D images of wheat seedlings, with

coefficients of determination (R2) of 0.87 and 0.98, respectively.

Zheng et al. (Chenxi et al., 2022) manually labeled key points using

a 3D digitizer to obtain 3D data of wheat and gleaned phenotypic

parameters during standing, jointing, and heading stages, with R2

for plant height, leaf length, and leaf width being 0.98, 0.87, and

0.75, respectively.

Additionally, studies based on SFM algorithms for multi-view

image reconstruction have gained advanced developments. For

example, Duan et al . (Duan et al. , 2016) successfully

reconstructed a 3D model of wheat at the seedling stage using the

SFM algorithm, achieving an R2 of 0.98 for leaf length. The MVS-

Pheno V2 platform, developed by Wu et al (Wu et al., 2022b),

utilized the SFM algorithm to focus on analyzing the shoots of low

plants and acquired wheat point clouds from the beginning of

returning to green stage to booting stage with notable success,

obtaining R2 for plant height, leaf length, and leaf width reaching

0.9991, 0.9949, and 0.9693, respectively. Combining with multi-

view images and new virtual design method, Gu et al. (Gu et al.,

2024) reconstructed a wheat plant model at heading stage, and

attained plant height, crown width, plant leaf area, and coverage

parameters, with an average R2 of 0.78. Wheat exhibits complicated
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changes throughout its growth cycle (Liu et al., 2023), such as dense

tillers, thin and soft leaves, and cross-obscuration between organs,

making phenotypic monitoring throughout its full cycle a

challenging and arduous task. Although current research has

yielded some results, existing methods still require advancement

to continuously track wheat growth dynamics and accurately

extract phenotypic parameters.

In view of this, this study designed a comprehensive SFM-MVS-

based methodological workflow to process and segment wheat

point clouds and automatically extract phenotypic parameters,

covering the entire growth period (from seedling to grain-filling

stages) for three varieties. First, we propose a new method for point

cloud preprocessing that improves algorithm efficiency by using

centroid-based segmentation to enhance the Euclidean clustering

algorithm. Meanwhile, in the preprocessing workflow, noise is

successfully removed through scale reduction, coordinate system

correction, and combining color and statistical filtering algorithms,

resulting in high-quality, 1:1 restored wheat point cloud models.

To enhance the efficiency of stem and leaf segmentation, a

region growing algorithm was employed to automatically segment

wheat stems and leaves, achieving notable success and improved

segmentation efficiency to some extent. Important phenotypic

parameters such as wheat plant height, leaf length, and leaf width

were also extracted and compared with manual measurements for

an in-depth assessment of the model reconstruction’s accuracy.

Ultimately, this study analyzed changes in growth dynamics

throughout the growth cycle by extracting phenotypic parameters

such as plant height, convex volume, plant surface area, and crown

area, and ANOVA was performed according to different varieties in

order to accurately demonstrate and differentiate the significant

differences among different varieties of wheat at each growth stage.
2 Materials and methods

In this study, the 3D morphology of wheat plants with multiple

life cycles was reconstructed using the SFM-MVS (Structure-from-

Motion, Multi-View Stereo) algorithm, selecting three wheat

cultivars with different plant characteristics as subjects. Main

steps are introduced as follows (Figure 1):(1)Sample field-grown

wheat plants and transplant them into pots without damaging their

three-dimensional morphological structure; (2) Acquire multi-view

image sequences of the plants using the image acquisition platform;

(3) Reconstruct the three-dimensional point cloud using the SFM-

MVS algorithm; (4) Restore the real-world scale of the point cloud

by measuring the width of the marker stickers and rotate the point

cloud to the real-world coordinate system using the RANSAC

algorithm; (5) Use improved Euclidean clustering, color filtering,

and statistical filtering to remove noise; (6) Perform stem-leaf

segmentation using the region growing algorithm; (7) Down-

sample the leaf point cloud and fit the leaf midrib with a local

polynomial function; (8) Extract plant height, leaf length, and leaf

width automatically to compare with the measured data to assess

the accuracy of the wheat model; (9) Obtain crown width, convex

volume, and plant surface area, and combine with ANOVA based

on species effect to reveal differences and growth dynamics among
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different varieties and periods. Detailed descriptions of the specific

experiments and the technologies and methods used are provided in

the following sections.
2.1 Experimental environment

Three winter wheat cultivars with distinct plant characteristics

were used in this study: FuMai1 (FM), PinHong1 (PH), and PinBai1

(PB). FM, a common commercial variety, has a compact plant type,

moderate tillers, and average uniformity. PH and PB, intermediate

varieties bred by the Fujian Academy of Agricultural Sciences, differ

in their plant types; PH has a loose plant type with more tillers,

while PB has a moderately compact plant type with fewer tillers.

The experiment was conducted at the National Digital Plantation

Innovation Center test field of the Institute of Agricultural

Information, Chinese Academy of Agricultural Sciences (26°07′N,
119°20′E). Wheat was sown on November 27, 2023, at a density of

10 kg per mu. Each variety was planted in two plots, totaling six

plots, with each plot divided into three rows spaced 30 cm apart.

Adequate water and fertilizer were provided throughout the growth

period. Plant samples were collected at the seedling, tillering,

jointing, booting, heading, and grain filling stages, with four

replicates per variety. The wheat samples were quickly

transplanted into pots, and adequate water was added to prevent

leaf wilting. Image sequences were collected after the wheat

morphology stabilized.

An automated multi-view image acquisition platform,

consisting of a rotating imaging arm, a lifting platform,

supplementary lights, and a black background cloth, was self-

constructed for the entire growth period of wheat (Figure 1A).

Three RGB industrial cameras, each with 20 million effective pixels,

were mounted on a rotating imaging arm, spaced 25 cm apart. The

height of the plants was adjusted using a lifting platform to

accommodate the cameras. The rotating arm with cameras

rotated around the plants, capturing image sequences at intervals

of 7° to 10° over a 360° range, with the camera and plant positions

referenced, as shown in Figure 1A. After imaging, the plant height

of the sampled wheat was measured immediately, and 2-3 leaves

were randomly selected for measuring leaf length and width, with

the leaves marked for subsequent verification.
2.2 SFM-MVS based 3D reconstruction and
point cloud preprocessing

In this paper, Agisoft Metashape (version 2.1.0, Agisoft LLC, St.

Petersburg, Russia), a software integrating SFM (structure from

motion) and MVS (multi-view stereo) algorithms, was used for 3D

point cloud reconstruction of wheat image sequences. Image-based

3D reconstruction converts a set of 2D images into a 3D model

(Aharchi and Ait Kbir, 2020), utilizing SFM and MVS techniques,

and is considered a powerful method (Kholil et al., 2021) capable of

generating high-quality 3D models from 2D images.

SFM-MVS works as follows: first, the image sequence is

analyzed by SFM to obtain the camera pose and create a sparse
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3D point cloud. This step involves feature detection, matching, and

bundle adjustment to estimate the camera pose and the sparse 3D

point cloud (Westoby et al., 2012). Subsequently, MVS generates a

dense point cloud by estimating depth information for each pixel,

utilizing multiple viewpoints to improve accuracy (Furukawa et al.,

2015). This process includes techniques such as stereo matching for

calculating pixel differences and generating depth maps, which are
Frontiers in Plant Science 04
then fused to create a coherent representation of the scene

geometry, resulting in high-quality 3D reconstruction.

During the point cloud reconstruction process, the generated

point cloud usually differs in scale and coordinate system from the

real world. To accurately restore the wheat point clouds to a 1:1

scale, two key steps were taken. First, the scaling factor was obtained

by repeatedly measuring the width of marker stickers in the point
FIGURE 1

Overall process of phenotypic parameter extraction and analysis of wheat. (A) Image acquisition platform and camera pose. (B) Point cloud 3D
reconstruction using SFM-MVS (a-c). (C) Preprocessing of point cloud data, including scale recovery, coordinate correction (d), noise removal (e-g),
and segmentation (h). (D) Statistical analysis.
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cloud and comparing it to the real sticker width, and then adjusting

the scale of the point to match the real-world dimensions. Second,

the ground is detected using the RANSAC (Random Sample

Consensus) algorithm (Fischler and Bolles, 1981), and the

rotation matrix of the point cloud is calculated based on the

detection results. By rotating the point cloud to the real-world

coordinate system, it was ensured that the plants were aligned along

the Z-axis from top to bottom (Figure 1C.d).

Additionally, during the wheat image data acquisition process,

numerous noise points may exist in the generated point cloud due

to environmental influences and equipment accuracy. External

factors such as view obscuration and obstacles can also result in

unrelated discrete points and other object point clouds (Figures 1B,

C, Figure 1C.d). To eliminate these irrelevant points and improve

subsequent point cloud processing speed, an improved Euclidean

clustering algorithm combined with centroid calculation was

proposed to segment the main plant point cloud (Figure 1C.e).

The RGB frequency distribution of the segmented point cloud was

calculated (Figure 2), categorizing the point cloud into three

clusters: soil, pot, and plant, from left to right in the R-B

distribution cluster. A boundary threshold of G-R=5 and G-B=30

was set to remove most unrelated points connected to soil and pots

(Figure 1C.f). Finally, statistical filtering was applied to remove

outliers from the plant point cloud (Figure 1C.g). Based on above

steps, a high-quality wheat point cloud was acquired, with the

preprocessing algorithm workflow used in this study shown

in Figure 1C.
2.3 Point cloud scaling and coordinate
system correction

To accurately restore the wheat point clouds to a 1:1 scale, a

scaling factor S was calculated and applied to match the real-world

scale. This is done by taking the average of three measurements of

the width of the marker sticker in the point cloud to obtain Wvirtual

and comparing it to the real sticker width Wreal (3cm). The scaling

factor S is determined using Equation 1.
Frontiers in Plant Science 05
S = Wreal
Wvirtual

  (1)

The original coordinates (Xold,Yold,Zold) of each point were

scaled according to Equation 2.

(Xscaled,Yscaled,Zscaled) = (Xold � S,Yold � S,Zold � S) (2)

Next, coordinate system correction was performed by detecting

the ground using the RANSAC algorithm to obtain the normal

vector n1 of the fitted plane (ground). The normal vector n2 of the

reference plane was set as (0, 0, 1), representing the Z-axis direction.

The rotation matrix R, was calculated to align the fitted plane with

the reference plane using Equation 3.

R = n2�n1
∥n2�n1 ∥ (3)

Each point in the point cloud, represented in homogeneous

coordinates (x, y, z, 1), was transformed using the rotation matrix R

to achieve coordinate system correction, ensuring alignment with

the reference plane. The transformation process is outlined in

Equation 4.

(Xrotated,Yrotated,Zrotated) = (Xscaled,Yscaled,Zscaled)� R (4)

This resulted in a rotated point cloud, with the plant oriented along

the Z-axis and the ground aligned with the XOY plane, ensuring

accurate dimensions and coordinates for the reconstructed wheat point

cloud model, providing a reliable foundation for subsequent analysis.
2.4 Improved Euclidean clustering
algorithm combined with centroid

When processing the rotated point cloud, a considerable

portion of points, such as those from the ground, lifting platform,

and pots, are unrelated to the plant and constitute over 90% of the

overall point cloud. Direct application of Euclidean clustering to the

entire point cloud leads to extensive computational demands,

prolonged processing time, and high computer performance

requirements. Therefore, an improved Euclidean clustering

algorithm, combined with centroid calculation, is proposed to
FIGURE 2

RGB color distinction frequency distribution of wheat point cloud. (A) G-R distribution with red dotted lines indicating G-R=5. (B) G-B distribution
with red dotted lines indicating G-B=30.
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markedly enhance segmentation efficiency. Traditional Euclidean

clustering (Sun et al., 2020; Miao et al., 2023) is based on Euclidean

distance metrics, where the core idea is to determine distances

between points by distinguishing their proximity to neighbors,

thereby clustering the spatial point cloud. To accelerate the

Euclidean clustering algorithm, KD-Tree nearest neighbor search

is often employed as a crucial preprocessing step. The specific steps

are as follows: randomly selecting an initial point P, finding k

nearest neighborhood points of P through a KD-Tree, calculating

the Euclidean distance between each neighborhood point and P,

and clustering points with distance smaller than the presetting

threshold (e) into the set Q. This process is iterated until the

number of elements in Q stabilizes.

The improved Euclidean clustering algorithm combined with

centroid calculation follows these steps:
Fron
(1) Perform Voxel Down-sampling: Apply voxel down-

sampling (Sun et al., 2022) on the rotated point cloud to

reduce density and computational load.

(2) Detect Ground and Calculate Centroids: Use the RANSAC

algorithm to detect and mark the ground point cloud set

and calculate its centroid (xground , yground , zground). Use color

filtering to isolate the majority of the plant point cloud set

and calculate its centroid (xplant , yplant , zplant). (3) Determine
tiers in Plant Science 06
the cut-off threshold: The cut-off threshold Zthreshold is

calculated using Equation 5.
Zthreshold = zground + a(zplant − zground),  0 ≤ a ≤ 1 (5)

This threshold effectively isolates plant points from non-plant

points, ensuring accurate separation.
(4) Preliminary Segmentation: Remove points below the

Zthreshold to eliminate the ground, lifting platform, and

most pot points.

(5) Secondary Segmentation: Use the Euclidean clustering

algorithm for secondary segmentation of the point clouds

after preliminary segmentation to obtain the accurate plant

point cloud set.
Compared to the original algorithm (Figure 3A) , the improved

Euclidean clustering algorithm incorporated centroid calculation

and Euclidean clustering in a two-step segmentation process, and

the implementation of adaptive determination of the cut-off

threshold allowed for preliminary segmentation, reducing the

volume of point cloud data (Figure 3B). After that, Euclidean

clustering was used for fine segmentation, effectively removing

irrelevant points and markedly enhancing segmentation efficiency

and accuracy. These improvements enabled the efficient removal of
FIGURE 3

Comparison of wheat point cloud segmentation methods. (A) Result of the traditional Euclidean clustering algorithm. (B) Result of the improved
Euclidean clustering algorithm combined with centroid.
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most non-plant points, facilitating more effective Euclidean

segmentation of the rotated point cloud.
2.5 Region growing
segmentation algorithm

In this study, the region growing segmentation algorithm (Vo

et al., 2015; Li et al., 2018) is employed to automatically segment

wheat stems and leaves, drastically reducing the labor-intensive

manual segmentation process and greatly improving the efficiency

of obtaining leaf phenotypes. The region growing segmentation

algorithm operates by comparing the angles between normals and

curvatures of points, merging points that are sufficiently close under

smoothness constraints, thereby combining similar points into

regions for effective point cloud segmentation. The algorithm’s

workflow is as follows:

Step 1: Calculate normals and curvatures for all points, then sort

the points based on their curvature values.

Step 2: Select the point with the smallest curvature as the initial

seed point. Compare the normal angles and curvature differences of

neighboring points. Points meeting the predefined normal angle

and curvature difference thresholds are added to the seed point’s

region, while points meeting only the normal angle threshold are

classified separately. Finally, all points were traversed to segment

the point cloud into multiple regions with similar attributes.
2.6 3D phenotype extraction of wheat

Using pre-processed wheat point clouds, 3D phenotypic

parameters of wheat plants were extracted, including plant height,

leaf length, leaf width, crown area, plant surface area, and convex

volume. Among these, plant height, leaf length, and leaf width

during various growth stages were used to quantitatively assess the

accuracy of the reconstructed point clouds.

Plant height serves as a crucial metric for evaluating the scaling

precision of the reconstructed point clouds (Wu et al., 2022b).

Crown area, plant surface area, and convex volume are essential

indicators for monitoring wheat growth dynamics (Che et al., 2020;

Paturkar et al., 2020). The selection of a suitable calculation method

is crucial for obtaining accurate values of wheat phenotypic

parameters. In this study, the following definitions and methods

were used to measure key phenotypic traits:

Plant height H is defined as the vertical distance from the base

of the stem at the soil interface to the highest point of the plant,

represented by the height difference between the maximum and

minimum Z-axis values of the plant point cloud (Figure 4A), given

by Equation 6.

H = Zmax − Zmin (6)

Crown area C is defined as the product of the maximum

horizontal distance of the wheat canopy projected onto the

ground and its perpendicular vertical distance, which corresponds

to the base area of the bounding box in Figure 4A. The relevant
Frontiers in Plant Science 07
formula is provided in Equation 7.

C = Lmax �Wmax (7)

Plant surface area refers to the total surface area of the wheat

stems and leaves, calculated by reconstructing the surface area from

the point cloud. The calculation process is as follows (Figure 4E):

Voxel down-sampling of point clouds was applied (Voxel

Size=0.01) to the point cloud to reduce computational load and

ensure uniformity. Subsequently, the triangular mesh

reconstruction was then performed using the Ball Pivoting

(Bernardini et al., 1999). Finally, we calculated the sum of the

areas of all triangular facets after reconstruction as the plant surface

area. The left side of Figure 4D illustrates the originally colored

point cloud and the rendered plant after surface reconstruction.

Convex volume is estimated by calculating the convex hull of the

plant point cloud (Wu et al., 2022b), which forms the outermost

convex polygon or polyhedron enc los ing the point

cloud (Figure 4B).

Leaf length refers to the maximum surface distance from the

leaf base to the leaf tip, and leaf width is the maximum surface width

perpendicular to the leaf length. The automatic acquisition of leaf

length is achieved by fitting the leaf midrib as follows (Figure 4C):

(1) Apply voxel down-sampling to the segmented individual leaf

point cloud to reduce computational load and ensure uniformity.

(2) Conduct principal component analysis (PCA) on the sampled

leaf point cloud coordinates to obtain the direction of the principal

axis, then rotate the leaf point cloud so that the principal axis aligns

with the X-axis, and also determining the leaf base and tip locations.

(3) Use a local polynomial regression algorithm to fit the leaf midrib

(Duan et al., 2016) and calculate its length. Additionally, the

maximum width perpendicular to leaf length is chosen by the

interactive selected point measurement method (Li et al., 2022),

representing the leaf width (Figure 4C).
2.7 Statistical accuracy
evaluation indicators

To evaluate the accuracy of point cloud parameter extraction

and model precision, we calculated several statistical indicators

including the Coefficient of Determination (R2), Root Mean Square

Error (RMSE), and Relative Root Mean Square Error (RRMSE).

These are defined in Equations 8-10.

R2 = 1 −o
n
i=1(yi − ŷ i)

2

on
i=1(yi − �y)2

(8)

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
on

i=1(yi − ŷ i)
2

n

r
(9)

RRMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
non

i=1(yi − ŷ i)
2

q
1
non

i=1yi
(10)

Where yi is the observed value (manual measurement), and ŷ i is

the predicted value (model extracted value).
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3 Results

3.1 Reconstruction and preprocessing of
wheat point clouds

According to the preprocessing workflow of point clouds

mentioned in 2.2, the point cloud data of three wheat species

were meticulously processed throughout their entire growth

periods, including seedling, tillering, jointing, booting, heading,

and grain filling stages. This comprehensive process included

scale restoration, coordinate system correction, improved

Euclidean clustering segmentation, color filtering, and statistical

filtering. Subsequently, the generated plant point clouds underwent

triangular surface reconstruction and rendering, ensuring accurate

representation of plant characteristics at each stage. The
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reconstruction results of the three wheat species at various stages

are shown in Figure 5, providing a clear visualization of the 3D

structures and morphological changes of the wheat plants

throughout their growth periods.
3.2 Region growing segmentation results

The region growing segmentation algorithm performed well in

segmenting wheat leaves with simple and non-overlapping

structures. Specifically, during the seedling stage, the algorithm

accurately separated each leaf due to the small number of leaves and

simple structure, as shown in Figure 6A, consistent with the

findings of Duan et al (Duan et al., 2016; Li et al., 2022).

Even during the heading and grain filling stages, despite an
FIGURE 4

Automated extraction of 3D phenotypes in wheat. (A) Plant height and crown width. (B) Convex hull. (C) Leaf length and width measurement,
including steps from leaf point cloud segmentation to measuring leaf width. (D) Surface reconstruction of the wheat plant. (E) Detailed view of the
reconstructed surface.
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increase in leaf number, the algorithm remained effective due to the

pronounced leaf extension (Figure 6B). However, during the

tillering and jointing stages (Figures 6C, D), segmentation

performance was compromised by high leaf density, severe

overlapping, and leaf curling. The algorithm could not fully

segment all leaves, achieving only partial segmentation of

complete leaves.
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Manual segmentation was employed to supplement these

unsegmented parts, resulting in more complete and accurate

segmentation outcomes. Although manual intervention was

required, the overall efficiency of wheat leaf segmentation was

considerably improved. In summary, the region growing

segmentation algorithm exhibits limitations when dealing with

complex overlapping leaf structures, particularly during specific
FIGURE 5

Visualization of point clouds for three wheat cultivars (FM, PH, PB) across different growth stages: seedling, tillering, jointing, booting, heading, and
grain filling.
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growth stages. Nonetheless, combining this algorithm with manual

segmentation can remarkably enhance segmentation efficiency and

accuracy, laying a solid foundation for subsequent leaf

phenotypic extraction.
3.3 Accuracy evaluation of 3D wheat
point clouds

Using the phenotypic extraction methods described in section

2.6, we automatically extracted and compared 72 sets of plant

height, 160 sets of leaf length, and 160 sets of leaf width with

manually measured values (Figure 7) to quantitatively assess the

accuracy of point cloud parameter extraction and model precision.

The results demonstrated a significant linear relationship between

the automatically extracted plant height, leaf length, and leaf width

from the wheat point clouds and the manual measurements. The

coefficients of determination (R2) were 0.9979, 0.9977, and 0.995,

respectively; the root mean square errors (RMSE) were 1.0773 cm,

0.2612 cm, and 0.0335 cm, respectively; and the relative root mean

square errors (RRMSE) were 2 .1858%, 1 .7483%, and

2.8462%, respectively.

By comparing point cloud measurements with manual

measurements, the proposed algorithm demonstrated high
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accuracy in multi-view imaging reconstruction and phenotypic

extraction of wheat. This also validated, to a certain extent, the

practicality and stability of using 3D imaging to extract crop

phenotypic parameters, enabling rapid and non-destructive

extraction of plant phenotypic values.
3.4 Evaluation of wheat growth dynamics
and variance analysis

The average plant height, crown area, convex volume, and plant

surface area of different wheat cultivars at various growth stages

were meticulously extracted and calculated to reflect the growth

dynamics of each variety (Figure 8). Meanwhile, a quantitative

analysis of differences among wheat species in term of plant height,

canopy area, convex hull area and plant surface area was carried out

through one-way analysis of variance (ANOVA) (Figure 9).

Regarding plant height, there were no significant differences

among the three wheat cultivars across these growth stages

(Figure 9A, p > 0:05). Plant height increased progressively

throughout the growth cycle, with the most notable growth

occurring from the jointing stage to the booting stage

(Figure 8A). In contrast, growth from the heading stage to the

grain filling stage was less pronounced.
FIGURE 6

Region growing segmentation results of wheat point clouds: (A) Seedling, (B) Grain filling, (C) Tillering, (D) Jointing. Leaves are marked with different
colors, and red point clouds represent unclassified points.
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For crown area, significant differences were observed between

PH and both FM and PB (p ≤ 0:01), with PH demonstrating a

larger crown area, while FM and PB showed no significant

differences (Figure 9B, p > 0:05). The crown area followed a trend

of initially increasing, then decreasing, and subsequently increasing

again throughout the growth cycle (Figure 8B). The turning points

for PH and PB were at the jointing and heading stages, with the
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maximum crown area reached at the jointing stage. Conversely,

FM’s turning points were at the booting and heading stages, with

the peak at the booting stage.

When examining convex volume, significant differences were

noted (p ≤ 0:05), with PH having a larger convex volume compared

to both FM and PB, while FM and PB showed no significant

differences (Figure 9C, p > 0:05). The convex volume for each
FIGURE 7

Accuracy evaluation of extracted wheat point cloud parameters. (A) Plant height comparison. (B) Plant length comparison.
(C) Plant width comparison.
FIGURE 8

Dynamic growth changes in wheat cultivars. (A) Average plant height, (B) Average crown area, (C) Average convex volume, (D) Average plant surface
area across different growth stages.
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wheat variety exhibited a pattern of increasing, then decreasing, and

increasing once more throughout the growth cycle, with turning

points at the booting and heading stages, reaching a maximum at

the grain filling stage (Figure 8C).

In terms of plant surface area, significant differences were

identified between PH and PB (p ≤ 0:05), with PH having a

larger plant surface area (Figure 9D). No significant differences

were observed among the other combinations. The plant surface

area of each wheat variety showed an initial increase, followed by a

decrease, and another increase throughout the growth cycle, with

turning points at the booting and heading stages (Figure 8D). PH

and PB had the largest plant surface area during the grain filling

stage, whereas FM reached its largest plant surface area at both the

booting and grain filling stages, with minimal difference between

the two stages.

Consequently, the proposed methodology effectively captures

phenotypic differences across different growth stages and wheat

cultivars, enabling dynamic monitoring of wheat growth status.
4 Discussion

With considerations to complicated features (e.g. multiple

tillers, slender leaves, and organ cross-obscuration) during wheat

growth, a set of method and procedure based on multi-view
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geometric technology was proposed in this study to process and

segment wheat point clouds and automatically extract phenotypic

parameters. The accuracy of phenotypic parameters for three wheat

cultivars, which exhibited distinct characteristic differences

throughout the growth period, was analyzed, and their growth

dynamics were compared. The results demonstrate that this

methodology is highly accurate and consistent, effectively

monitoring phenotypic changes across the entire life cycle of

wheat and the phenotypic differences among different varieties.

Those discoveries have profound implications for wheat breeding

and plant architecture development as well. Additionally, the study

highlights the substantial potential of multi-view imaging and 3D

reconstruction techniques for monitoring wheat growth dynamics

and extracting high-precision phenotypic traits. Based on these

findings, a detailed discussion is provided to explore the

implications, limitations, and future research directions.
4.1 Significance of full-cycle monitoring of
wheat phenotypes based on multi-
view geometry

In the field of botany, traditional methods of plant phenotyping

are destructive, time-consuming, inefficient, and costly, making

non-destructive, rapid, and accurate acquisition of plant
FIGURE 9

ANOVA results comparing different wheat cultivars. (A) Plant height comparison. (B) Crown area comparison. (C) Convex volume comparison. (D)
Plant surface area comparison. Asterisks indicate levels of statistical significance: * p ≤ 0.05, ** p ≤ 0.01.
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phenotypes a current research focus (Xie and Yang, 2020; Yang

et al., 2020). Compared to 2D images, 3D reconstruction-based

phenotypic extraction can express richer and more detailed 3D

information (Yang et al., 2024). With the development of 3D

reconstruction technology, remarkable progress has been made in

crop 3D reconstruction studies using various sensors (Gibbs et al.,

2016). Among these, using RGB cameras to capture multi-view

images and performing 3D reconstruction based on SFM-MVS is

widely applied by virtue of its low cost, strong environmental

adaptability, and the capability to generate colored point clouds.

This method has been successfully applied to extract high-precision

phenotypic parameters for crops such as maize (Wu et al., 2020; Li

et al., 2022), cotton (Hao et al., 2024), soybean (He et al., 2023), and

sugar beet (Xiao et al., 2020, 2021), and others.

Compared to other crops, wheat’s growth characteristics,

including dense tillers, slender leaves, and overlapping organs,

make full-cycle phenotypic monitoring more complex and

challenging. Previous studies on wheat phenotypic parameter

extraction have used different methods. One method involves

directly extracting phenotypic parameters from 2D images, such

as using Mask R-CNN (Fu et al., 2021) to extract leaf length and

plant height of seedling-stage wheat, with R2 of 0.87 and 0.98,

respectively. Another method involves high-precision instruments,

such as LiDAR (Sun, Li et al., 2018; Forero et al., 2022; Liao et al.,

2022) and 3D digitizers (Chenxi et al., 2022; Wu et al., 2022a).

Zheng et al. (Chenxi et al., 2022) manually annotated key points to

obtain 3D data of wheat, extracting phenotypes at different stages

with R2 of 0.98, 0.87, and 0.75 for plant height, leaf length, and leaf

width, respectively. This study focuses on a simpler, cost-effective

image-based SFM reconstruction method by integrating low-cost

RGB cameras into our phenotyping platform. Compared to LiDAR

and digitizers, this method not only captures the plant’s

morphological structure but also its color characteristics,

reflecting growth conditions and ensuring crop health. Our

method extracts richer and more abundant information than 2D

images, achieving higher accuracy and consistency in extracting

plant height, leaf length, and leaf width, with R2 of 0.9979, 0.9977,

and 0.995, respectively. Next, we focused more on the application of

Structure from Motion (SFM) in wheat reconstruction. Although

previous studies have made notable progress in specific stages such

as the seedling stage (Duan et al., 2016) (with an R2 of 0.98 for leaf

length), the greening to booting stages (Wu et al., 2022b) (R2 of

plant height, leaf length and leaf width: 0.9991, 0.9949 and 0.9693),

and the heading stage (Gu et al., 2024) (average R2 of plant height,

crown width, total leaf area and coverage: 0.78), they have yet to

comprehensively characterize the growth dynamics of wheat

throughout the entire growth period.

Compared to previous studies, this study used more data

spanning the entire growth cycle from seedling to grain filling. By

combining various algorithms for point cloud processing and

phenotypic extraction, more precise and efficient wheat

phenotypic extraction was achieved, comprehensively monitoring

growth changes and significant differences throughout the growth

period. This is of practical importance for wheat breeding and plant

architecture development.
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4.2 Accuracy assessment and error analysis

Through quantitative accuracy evaluation (Figure 7), a highly

consistent linear relationship was identified between the wheat plant

parameters extracted from the 3D point cloud model and those

obtained through manual measurements. This result not only

validates the reliability and completeness of the proposed algorithm

for processing wheat point clouds but also confirms the accuracy of

the automatic methods for obtaining plant height, leaf length, and leaf

width through relatively low RMSE and RRMSE values. Compared to

previous studies on wheat phenotyping, this study demonstrates a

high level of accuracy, with R2 values for all phenotypes exceeding

0.995. However, RMSE still can be improved to some extent (RMSE

of plant height, leaf length and leaf width values 1.0773cm, 0.2612cm

and 0.0335cm, respectively). With comprehensive and thorough

considerations to experimental process, processing flow of the

algorithm and previous research results, the differences in wheat

phenotypic parameters may stem from several factors: 1)

measurement errors in the actual data; 2) potential reconstruction

deficiencies in the leaf edge regions during the point cloud

reconstruction process (Duan et al., 2016); 3) possible

measurement errors during the point cloud scale recovery process;

4) the potential filtering out of some plant points during the point

cloud preprocessing workflow; and 5) errors in the phenotypic

extraction algorithm. Optimizing these aspects is crucial for

improving accuracy and represents a key direction for future work.

Furthermore, during the experiments, various quantities and

distributions of images were tested to improve the resolution and

quality of the wheat 3D point cloud reconstruction. The results

indicated that an excessive number of images (>200) did not

enhance the reconstruction resolution and sometimes resulted in

poorer outcomes; conversely, an insufficient number of images

(<50) led to fewer matching points, making it impossible to

reconstruct the wheat plants. Considering the different

characteristics of the wheat growth cycle, we recommend

capturing 60-80 images during periods with fewer tillers, simpler

structure and less cross-shading, and 100-140 images during

periods with more tillers, more complicated structures and more

cross-shading, aiming to get better reconstruction results.
4.3 Improvement of Euclidean
clustering segmentation

Noteworthy advancements were achieved in the improvement of

Euclidean clustering segmentation in this study. During the

preprocessing of point clouds, the initial point cloud was found to

contain a large number of irrelevant points, such as ground, pots, and

lift platforms, accounting for more than 90% of the point cloud.

Directly applying the traditional Euclidean clustering algorithm (Li

et al., 2022) posed challenges, including high computational demands,

time consumption, and substantial computer performance

requirements. Hence, an improved Euclidean clustering segmentation

algorithm was proposed, which remarkably enhanced segmentation

efficiency and reduced algorithm runtime by incorporating centroid
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calculations. This improvement facilitated faster and more efficient

processing of large-scale wheat point cloud data.
4.4 Growth dynamics monitoring
and prospects

In assessing growth dynamics, ANOVA was introduced

alongside traditional crop growth dynamics characterization to

demonstrate significant differences among different wheat

cultivars at various growth stages (Figures 8, 9). For instance, PH

exhibited greater crown area, higher convex hull volume and larger

plant surface area than the rest two cultivars. This analysis

highlights the structural differences among wheat cultivars.

Moreover, trends in plant height, crown area, convex volume, and

plant surface area were observed throughout the growth cycle,

closely linked to physiological changes during development. Non-

destructive and high-throughput phenotypic analysis of wheat

plants enables early monitoring of crop structural morphology

and growth conditions, providing valuable insights for wheat

breeding and variety development. Our method allows for precise,

automated, and high-throughput phenotyping of key growth

metrics, offering breeders accurate and detailed growth data. This

method can also be combined with genomic data to explore the

associations between phenotypes and genotypes, thereby enhancing

the selection process for superior genotypes, accelerating breeding

cycles, and improving trait selection. In the realm of precision

agriculture, this method can be integrated with UAV systems and

ground-based sensing platforms to extract crop phenotypes and

monitor crop health and development (Varela et al., 2021). Experts

can use this growth and development data to provide timely

interventions and prescriptions based on specific crop needs,

optimizing resource use and increasing yield (Araus et al., 2022).

The ability to quantify growth dynamics and trait variation also

provides valuable data for crop modeling, precision agriculture, and

decision support systems. Future research could focus on

integrating phenotypic analysis with plant structure-function

models, coupling multiple models to construct crop digital twins

(Nasirahmadi and Hensel, 2022; Purcell and Neubauer, 2023), and

combining crop prescription decisions to offer more precise

decision support for optimizing agricultural production.
4.5 Limitations and prospects

The effectiveness of region growing segmentation was suboptimal

during certain growth stages of wheat. Although the introduction of

region growing segmentation algorithms improved segmentation

efficiency and achieved some success during seedling and heading

stages, overall segmentation performance was still not very satisfying

during periods with extensive tillers, cross-obscuration between organs,

and greater curling angles (tillering, jointing, and booting stages). The

algorithm could only partially segment complete wheat leaves;

moreover, achieving satisfactory segmentation results required

iterative adjustments of the point cloud segmentation thresholds,

which was a time-consuming process. These findings exhibit
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congruity with current advancements in traditional segmentation

algorithms for plants. Traditional segmentation algorithms perform

well on plants with few or no tillers, such as seedling wheat (Duan et al.,

2016), barley (Wahabzada et al., 2015), seedling maize (Li et al., 2022),

etc. However, achieving fully automated segmentation for structurally

complex crops like wheat and rice remains a major challenge. Future

research will focus on addressing this issue by exploring the use of

neural network models (e.g., PointNet (Qi et al., 2017a), PointNet++

(Qi et al., 2017b), PointCNN (Li et al., 2018), KPConv (Kernel Point

Convolution) (Thomas et al., 2019) for point cloud segmentation.

Building large-scale wheat point cloud datasets for model training and

optimization will help develop more effective and targeted

segmentation algorithms, aiming for fully automated segmentation

and improved efficiency in wheat phenotyping segmentation.
5 Conclusions

Considering the complex characteristics of wheat growth (e.g.,

extensive tillers, slender leaves, and organ cross-obscuration), this study

proposed and validated an algorithm based on multi-view geometric

technology. This method effectively processes point cloud data of

different wheat plants at various growth stages and automatically

extracts phenotypic parameters, enabling the monitoring of dynamic

growth changes throughout the entire growth period of wheat. Image

sequences were captured using a constructed image acquisition

platform and reconstructed into wheat point clouds using the SFM-

MVS algorithm. Later, wheat point clouds were extracted using a series

of point cloud preprocessing algorithms. Specifically, the improved

Euclidean clustering segmentation algorithm increased segmentation

efficiency, reduced point cloud processing time, and effectively

segmented the main parts of the plants. By comparing the extracted

wheat plant height, leaf length, and leaf width with measurement

results, an average R2 of 0.9969 was achieved, indicating that this point

cloud processing and phenotypic extraction method is highly accurate

and efficient, making it suitable for wheat phenotypic analysis.

Although RMSE still can be improved to some extent, some

optimization directions are proposed to further improve accuracy

and efficiency. Furthermore, through dynamic growth monitoring

and ANOVA, the study demonstrated the structural growth changes

and differences among different wheat varieties at various growth

stages, providing valuable references for wheat plant breeding and

variety development. We have recognized that the region growing

segmentation algorithm performs well when wheat leaf structures are

simple and non-overlapping, but its performance diminishes during

periods of extensive tillers, leaf occlusion, and greater curling angles.

However, future improvement directions have been proposed to

achieve fully automated segmentation and enhance the efficiency of

wheat phenotypic analysis.

In summary, this study proposes an effective method for

monitoring the dynamic growth and phenotypic characteristics of

wheat, offering insights into the relationship between plant structure

and function, and optimizing agricultural production. With continued

research and technological advancements, this method is expected to

play a greater role in plant science and agriculture, contributing to

precise and sustainable agricultural development.
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