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Integrated hormone and
transcriptome profiles provide
insight into the pericarp
differential development
mechanism between
Mandarin ‘Shatangju’
and ‘Chunhongtangju’
Yongjing Huang1, Congyi Zhu1, Yibo Hu2, Sanjiao Yan3,
Zhimin Luo3, Yanping Zou3, Wen Wu1 and Jiwu Zeng1*

1Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of
South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural
Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Trees,
Guangzhou, China, 2Deqing County Agricultural Technology Promotion Center, Zhaoqing, China,
3Longmen County Agricultural and Rural Comprehensive Service Center, Huizhou, China
Introduction: Citrus reticulata cv. ‘Chunhongtangju’was mutated fromMandarin

‘Shatangju’, which has been identified as a new citrus variety. Mandarin

‘Chunhongtangju’ fruits were late-ripening for about two months than

Mandarin ‘Shatangju’.

Methods: To understand the pericarp differential development mechanism in

Mandarin ‘Shatangju’ (CK) and ‘Chunhongtangju’ (LM), hormones and

transcriptome profiles of pericarps were performed in different development

stages: Young fruit stage (CK1/LM1), Expansion and Turning color stage (CK2),

Expansion stage (LM2), Turning color stage (LM3), and Maturity stage (CK3/LM4).

Results: In this study, the development of LM was significantly slower, and the

maturity was significantly delayed. At the same stage, most hormones in

Mandarin ‘Chunhongtangju’ pericarps were higher than that in ‘Shatangju’ such

as gibberellin A24, cis(+)-12-oxophytodienoic acid, and L-phenylalanine. The

deficiency of hormones in late-maturing pericarps wasmainly manifested in ABA,

12-OHJA, MeSAG, and ABA-GE. Differences in transcriptome profiles between

the two citrus varieties are primarily observed in energy metabolism, signal

transduction such as MAPK signaling pathway and plant hormone signaling,

and biosynthesis of secondary metabolites. After analyzing the hormones and

transcriptome data, we found that the top genes and hormones, such as

Cs_ont_5g020040 (transcription elongation factor, TFIIS), Cs_ont_7g021670

(BAG family molecular chaperone regulator 5, BAG5), Cs_ont_2g025760

(40S ribosomal protein S27, Rps27), 5-deoxystrigol, salicylic acid 2-O-b-
glucosid, and gibberellin A24, contributed significantly to gene transcription

and hormone synthesis.
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Discussion: This study suggests that the variances of pericarp development

between the two varieties are linked to variations in the transcription levels of

genes associated with energy and secondary metabolism, signal transduction

related genes. These findings expand our understanding of the complex

transcriptional and hormonal regulatory hierarchy during pericarp development.
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1 Introduction

Citrus is widely cultivated around the world. Mandarin

‘Shatangju’ (Citrus reticulata cv.) is a unique citrus variety in

Guangdong Province, China. Mandarin fruits have many

advantageous characteristics including smell, thin exocarp, and

enriched second metabolites (Zhang et al., 2012; Yu et al., 2018;

Barry et al., 2020). The development of citrus fruits involves

numerous biochemical and physiological changes within the

fruit such as sugar accumulation and organic acid degradation

(Lin et al., 2015). During the expansion stage, the acidity increases

and then declines, and total soluble sugars (TSS) increase after the

expansion stage (Carvalho et al., 2020; Silveira et al., 2020). The

development of fruits is related to a variety of biotic and abiotic stress

factors (Barry et al., 2020), such as hormones (Salehin et al., 2019),

rootstock (Hernández et al., 2023), climate (Luo et al., 2023), and so

on. The development and maturation of citrus fruits are also mainly

by genetic factors (Shimada et al., 2005). Stiff person syndrome,

glutamic acid decarboxylase, aspartate transferase, and ATP-citrate

lyase genes contribute to fruit maturation (Lin et al., 2015).

The color transformation of citrus fruit pericarps from green to

yellow or red is caused by changes in pigment composition

and concentration, including chlorophylls and carotenoids

(Conesa et al., 2019). Citrus pericarps were a complex source of

carotenoids (Wang et al., 2008). Chlorophyll degradation and

carotenoid biosynthesis are important processes in citrus fruit

development and other metabolisms involved in fruit

development (Sun et al., 2020). The pericarp tissue contains a

variety of carotenoids, which contribute to the wide range of

colors in citrus fruits (Sun et al., 2020). The characteristic color of

most citrus fruits is mainly due to the accumulation of (9Z)-

violaxanthin and b-cryptoxanthin (Iglesias et al., 2007). The

metabolic signal regulatory network controls the color break

during citrus fruit development, including ripening inducers

and retardants such as ethylene, sucrose, gibberellins, and

nitrogen (Alós et al., 2006). b-Limonin is a red pigment in the

citrus pericarps of clementine and sweet orange. Its biosynthesis is

regulated by the carotenoid lytic dioxygenase (CitCCD4) gene (Bilal

et al., 2013; Wurtzel, 2013). Due to complex regulatory networks,
02
The color transformation of the ‘Verna’ lemon is slower than the

‘Fino’ variety (Conesa et al., 2019). ‘Eureka Frost’, ‘Lisbon Frost’, and

‘Fino 49’ varieties start to carry out the color transformation two

months earlier than the ‘Verna’ variety (Porras et al., 2010).

The development and maturation of plant fruits is a complex

biological process that involves several intricate biological processes.

These processes include the formation of flowers, pigments, aroma,

sugar accumulation, and acid degradation and require the precise

expression of numerous structural genes and transcriptional

regulatory genes (Giovannoni, 2004; Jin et al., 2014). For example,

the MADS-box family plays a crucial part in regulating the

development of flowers (Theissen and Melzer, 2007), roots (Ku

et al., 2008), and fruit (Bemer et al., 2012; Shima et al., 2014). The

MYB transcription factor family is deeply involved in regulating plant

secondary metabolism, hormone response, and pigment synthesis

(Lea et al., 2007; Medina-Puche et al., 2014). MaNACs can interact

with ethylene insensitive 3 (EIN3) and contribute to banana fruit

ripening (Shan et al., 2012). Plant hormones regulate the growth and

development of roots (Xie et al., 2021), leaves (Liu et al., 2022),

flowers (Chandler, 2011), and so on. In particular, gibberellic acid

(GA) can promote cell elongation (Kumar et al., 2014), while ethylene

stimulates the development and ripening of non-climacteric fruits

(Gapper et al., 2013; Osorio et al., 2013). Studies have revealed that

GA3 does not delay citrus fruit coloration, but ethylene can accelerate

degreening (Zacarias et al., 1998). Thus, the interplay between

transcription factors and hormones is important in the

development and maturation of citrus fruits. However, despite

having similar genetic backgrounds, the differential developmental

mechanisms of citrus fruits between the two citrus varieties,

Mandarin ‘Shatangju’ , and Mandarin ‘Chunhongtangju’ ,

remain unclear.

Omics is a powerful tool used to analyze complex regulatory

networks in various situations such as between varieties, processing,

and tissues (Wang et al., 2015; Zhong et al., 2015; Wang et al., 2017).

RNA-seq has been widely used to reveal various regulatory

mechanisms and identify genes for different functions in citrus

(Yu et al., 2012; Zheng et al., 2012; Aritua et al., 2013; Wang et al.,

2015; Bi et al., 2022; Chen et al., 2022). In this study, the

transcriptome was used to systematically analyze the different
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expression patterns of genes between two citrus varieties and during

the development and ripening process of Mandarin ‘Shatangju’ and

‘Chunhongtangju’ fruits. Key differentially expressed genes were

screened to explore the different mechanisms of fruit pericarps

between the two citrus varieties during fruit ripening. Hormones

play a crucial role in fruit development and ripening.

Comprehensive research of transcriptome and hormone analysis

can reveal key metabolism-related gene expression patterns of

different citrus cultivars and key hormones for developing citrus

fruits. Therefore, they would indicate the key genes and hormones

that contribute to the development of citrus fruits.

In this research, the pericarps of citrus fruits were collected and

analyzed to study the gene transcription patterns and hormone

levels of two citrus varieties during different stages of fruit

development. The study was conducted using transcriptome and

UPLC-MS/MS techniques. This research aims to provide new

insights into the molecular mechanisms that regulate fruit

development in two closely related citrus varieties, namely

Mandarin ‘Shatangju’ and ‘Chunhongtangju’.
2 Materials and methods

2.1 Plant materials

Two citrus varieties, namely Citrus reticulata cv. ‘Shatangju’ and

‘Chunhongtangju’, were selected for this study. The pericarp

samples of both varieties were obtained from the citrus research

orchard at the Institute of Fruit Tree Research, GDAAS, China (E

113°21’59’, N 23°9’15’). The fresh fruits were collected every two

months from August 2022 to February 2023. Mandarin ‘Shatangju’

fruits were classified into three stages, named ‘Control_1/2/3’ (CK1/

2/3) according to the development stages A. Whereas,

‘Chunhongtangju’ were classified into four stages, named ‘Late-

maturing_1/2/3/4’ (LM1/2/3/4). The CK1/2/3 samples were

collected at 220, 250, and 280 days after flowering (DAF), and the

LM1/2/3/4 samples were collected at 220, 250, 280, and 310 DAF.

The colorimeter (Minolta CR-300, Konica Minolta Investment Ltd,

Shanghai, China) was used for detecting the coloration of citrus

pericarps. Three biological replicates were set for each sample

containing 30 fruits randomly collected from twenty Mandarin

‘Shatangju’ or ‘Chunhongtangju’. The pericarp was excised with

scalpels, frozen in liquid nitrogen, and kept at ultra-

low temperature.
2.2 Detection of hormones

The contents of various hormones such as auxin, cytokinins

(CK), abscisic acid (ABA), jasmonates (JA), salicylic acid (SA),

gibberellins (GA), ethylene (ETH), strigolactones (SL), and

melatonin (MLT) were detected using MetWare platform based

on the AB Sciex QTRAP 6500 LC-MS/MS platform (UPLC,

ExionLC™ AD, and MS, QTRAP® 6500, https://sciex.com.cn/).

The detail detection and analysis procedure refers to the published

method (Zhang et al., 2020).
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2.3 RNA extraction and
Illumina sequencing

The extraction and purification of total RNA, cDNA libraries,

and high-throughput sequencing were performed and analyzed by

Novogene Bioinformation Technology Co., Ltd., Beijing, China.

The reference genome was the Citrus sinensis genome (https://

www.citrusgenomedb.org/organism/Citrus/sinensis) and the RNA-

seq data was mapped using HISAT2 software (Kim et al., 2015). The

detail detection and analysis procedure refers to the published

method (Wang et al., 2021). Hormones and the DEGs in the

transcriptome data were chosen for integrative analysis. Pearson

correlation coefficients and p-values for hormones and DEGs data

integration were calculated using the Spearman method.
2.4 Quantitative real-time PCR (qRT-
PCR) validation

The total RNA of citrus pericarp was extracted by the Quick

RNA isolation kit (Huayueyang, Beijing, China). The cDNA was

synthesized using a Hifair® III 1st strand cDNA synthesis kit

(Yeasen, Shanghai, China). Ten DEGs were selected for

verification with specific primers by LightCycle 96 Real-Time

PCR System (Roche, Switzerland) (Supplementary Table S11).

Hieff® qPCR SYBR Green Master Mix (Yeasen, Shanghai, China)

was used for qRT-PCR. The amplification system and program refer

to the product description. The expression level was analyzed by the

2−DDct method with a reference gene, b-actin.
2.5 Statistical analysis

SPSS 22.0 was utilized for statistical analysis, and the levels of

significance were determined using the least significant difference.

(p-value < 0.05).
3 Results

3.1 Phenotypic analysis of fruit appearance

The fruits used in the present study were harvested at different

development stages of two citrus varieties, Mandarin ‘Shatangju’,

and ‘Chunhongtangju’ and the coloration was detected by a

colorimeter (Figures 1, 2). For the four chromaticity parameters,

the L-index indicates the darkness and brightness of the fruit

pericarp, and the larger the L-index, the brighter the sample

surface. The a-index indicates the red-green difference, with

positive values indicating red and negative values indicating

green. The b-index represents the yellow-blue difference, and the

larger the b-index, the darker the yellow color of the fruit. CI

represents the color saturation of the fruit color; the larger the CI

value, the brighter the color. In the first developmental stage of the

two citrus varieties, CK1 and LM1, all parameters (L, a b, and CI)

were consistent without significant differences (Figure 2).
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Interestingly, the four chromaticity parameters remain at the level

in the second stage of Mandarin ‘Chunhongtangju’, but the values

of the four chromaticity parameters have far exceeded those of

the first stage in Mandarin ‘Shatangju’ (Figure 2). At the

third development stage, the chromaticity parameters of

Mandarin ‘Chunhongtangju’ were still lower than those

of Mandarin ‘Shatangju’ (Figure 2). In the third stage, the fruits

of Mandarin ‘Shatangju’ were ripe for harvest. When the fruits of

Mandarin ‘Chunhongtangju’ were ripe at the LM4 stage, the L- and

b-index exceeded the index level of CK3 but the a-index and CI

were lower (Figures 1, 2).
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3.2 Quantitative analysis of hormones in
all samples

Nine classes of hormones including auxin, cytokinins (CK),

abscisic acid (ABA), jasmonates (JA), salicylic acid (SA),

gibberellins (GA), ethylene (ETH), strigolactones (SL), and

melatonin (MLT) were identified and measured by UPLC. A

total of fifty-five hormones belonging to eight classes were

identified in the CK and LM groups (Supplementary Table S1).

The results indicated that auxin (L-tryptophan, TRP; indole), SA

(L-phenylalanine, Phe), and ABA (abscisic acid, ABA; ABA-
FIGURE 2

Difference between the four-color parameters at different development stages of Mandarin ‘Chunhongtangju’ (LM) and ‘Shatangju’ (CK). (A) L-value
of colar patameters. (B) a-value of colar patameters. (C) b-value of colar patameters. (D) CI is the color index. Values indicate the p-value of the
Student test: p-value < 0.05. Different lowcase letters above columns indicate statistical differences at P < 0.05.
FIGURE 1

Fruit phenotypes at the different development stages of two citrus varieties, Mandarin ‘Chunhongtangju’ (LM) and ‘Shatangju’ (CK).
frontiersin.org

https://doi.org/10.3389/fpls.2024.1461316
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Huang et al. 10.3389/fpls.2024.1461316
glucosyl ester, ABA-GE) were the most abundant hormones in two

cultivars samples (Supplementary Table S1). In the Mandarin

‘Shatangju’ cultivars, several hormones, including ABA, Auxin,

CK, GA, JA, SA, and SL, were found to be actively involved in

the development and ripening process of fruits from CK1 to CK3

(Figure 3A). In Mandarin ‘Chunhongtangju’, the major hormones

were similar to the Mandarin ‘Shatangju’, except for GA which did

not show a significant difference from LM1 to LM4 (Figures 3A, 4;

Supplementary Table S2). During the development and ripening

process, there were significant differences in most classes of

hormones. The top two up-enriched hormones in Mandarin

‘Chunhongtangju’ pericarps included gibberellin A24 (Log2FC

=1.73), cis (+)-12-oxophytodienoic acid (Log2FC =2.41) in LM1

vs. CK1; L-phenylalanine (Log2FC =1.35) and cis (+)-12-
Frontiers in Plant Science 05
oxophytodienoic acid (Log2FC =1.79) in LM2 vs. CK2;

Gibberellin A53 (Log2FC =1.76) and 5-Deoxystrigol (Log2FC

=2.94) in LM3 vs. CK3); Jasmonic acid (Log2FC =1.77) and 5-

Deoxystrigol (Log2FC =2.35) in LM4 vs. CK3 (Figures 3B, 4;

Supplementary Table S2). The content of N-(3-Indolylacetyl)-L-

valine (auxin) in Mandarin ‘Chunhongtangju’ from LM1 to LM4

was consistently higher than those in Mandarin ‘Shatangju’ from

CK1 to CK3 (Supplementary Table S2). The deficiency of hormones

in Mandarin ‘Chunhongtangju’ fruits was mainly manifested in

meta-Topolin (CK) in the LM1 stage; 3-Indoleacetonitrile (auxin)

in LM2 stage; Indole-3-acetyl-L-valine methyl ester (auxin),

Gibberellin A7 (GA), and trans-Cinnamic acid (SA) in LM3

stage; Gibberellin A7 (GA) in LM4 stage. These hormones were

not detected in the late-maturing pericarps.
FIGURE 4

The HCA of hormones detected in all pericarp samples.
FIGURE 3

Quantitative statistics of hormones detected in all pericarp samples and comparison groups. (A) The total enriched count of each class.
(B) down_enriched, and up_enriched count of hormones in different comparison groups.
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3.3 Differential expression of genes in the
three comparisons

To compare the differential gene expression between the

pericarps of two different varieties at various development stages,

transcriptomic analyses were conducted across seven stages of fruit

development. RNA-Seq produced 73.75-99.14 (97.16-97.84%),

84.27-95.77(97.33-97.62%), 57.77-91.88(96.47-97.51%), and 73.67-

78.19(98.02-98.29%), 68.25-82.43(97.99-98.16%), 59.86-88.70

(97.32-97.61%), 71.37-99.54(96.29-97.73%) million clean reads

from CK1 to CK3 and LM1 to LM4 samples cDNA libraries after

stringent quality checks and data clean-up, respectively

(Supplementary Table S3). In total, 67.99-91.76, 77.28-87.83,

53.26-84.73, and 67.87-72.02, 62.86-75.91, 55.31-81.86, 65.63-

92.16 million reads were mapped to the Citrus sinensis genomic

database (http://citrus.hzau.edu.cn), with match ratios in the ranges

of 92.15-92.56%, 91.66-91.72%, 92.21-92.51%, and 92.11-92.38%,
Frontiers in Plant Science 06
92.06-92.11%, 92.30-92.43%, 91.96-92.59% in CK1 to CK3 and LM1

to LM4 samples, respectively (Supplementary Table S3). A total of

21,926, 22,041, 21,487, and 2,1854, 21,843, 21,823, and 21,639 genes

were identified and detected in CK1/2/3 and LM1/2/3/4 samples,

respectively (Supplementary Table S4). A high correlation

coefficient (R2>0.99) of gene expression between biological

replicates indicated the effectiveness of the data (Figure 5A). The

principal component analysis (PCA) and HCA show the large

separation of trends among different treatment groups and little

intragroup variation (Figures 5B, C). Therefore, these results

suggested that all transcriptomic data in the present study

demonstrate good repeatability and reliability.

With the filter criteria of |log2FoldChange| ≥1 and false

discovery rate (FDR) < 0.05, In total, 5,221 differentially

expressed genes (DEGs) were identified through three stages

in Mandarin ‘Shatangju ’ and four stages in Mandarin

‘Chunhongtangju’ (Supplementary Table S5). And there were
FIGURE 5

The overall gene expression of all samples and statistics of DEGs in different comparison groups. (A) Correlation heatmap of all samples (R2>0.8).
(B) The hierarchical cluster analysis (HCA). (C) Principal component analysis (PCA) score plots. (D) Statistics of down/up-regulated genes. (E) Venn
diagrams of DEGs in the five comparison groups at different development stages. (F) Venn diagrams of DEGs in the four comparison groups at the
same development stages.
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1220, 718, 1766, 1824, 1551, 956, 201, 2632, and 1834 differentially

expressed genes (DEGs) detected in the nine comparisons, CK1 vs.

CK2, CK1 vs. LM1, CK2 vs. CK3, CK2 vs. LM2, CK3 vs. LM3, CK3

vs. LM4, LM1 vs. LM2, LM2 vs. LM3, and LM3 vs. LM4,

respectively, of which 854, 205, 1046, 597, 467, 241, 107, 1486,

and 905 DEGs were up-regulated, and 366, 513, 720, 1227, 1084,

715, 94, 1146, and 929 DEGs were down-regulated in the nine

comparison groups, respectively (Supplementary Table S5;

Figure 5D). Venn diagram analysis shows that 10 DEGs were

common to the five comparison groups during different

development stages (Figure 5E). During the fruit development

and ripening, some differentially expressed genes coexisted in the

two varieties, including 18 DEGs for stage 1 to stage, 2, 463 DEGs

for stage 2 to stage 3, and 213 DEGs between stage 2 to stage 3 of

Mandarin ‘Shatangju’ and 3 to 4 of Mandarin ‘Chunhongtangju’

(Figure 5E). They have their DEGs when the fruits develop to the

same stage. No matter what stage of development, 103 DEGs

coexisted in the two varieties (Figure 5F). The 103 DEGs are

mainly involved in oxidative phosphorylation, steroid

biosynthesis, ABC transporters, phenylpropanoid biosynthesis,

protein processing in the endoplasmic reticulum, amino sugar

and nucleotide sugar metabolism and MAPK signaling

pathway–plant.

In total, 5221 differentially expressed genes (DEGs) were

identified during the four development stages (Supplementary

Table S6). Further, k-means clustering analysis exhibited 10

distinct clusters (T1–T10) corresponding to four different

developmental stages of two citrus cultivars: CK_2 (T4 and T10),

CK3 (T1), LM1 (T5 and T7), LM2 (T3), LM3 (T2, T8-T9), and LM4
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(T6) (Figure 6; Supplementary Table S6). It suggests that the high-

expression patterns of identified genes were diverse throughout fruit

development and ripening of two citrus cultivars (Figure 6;

Supplementary Table S6). The CK1 did not show high-expression

genes. While inspecting the potential roles of DEGs, the high-

expression genes in CK2 (shown by T4 and T10), and LM2 (shown

by T3) were mainly involved in ABC transporters, MAPK signaling

pathway, plant hormone signal transduction, and plant-pathogen

interaction and also some high-expression genes in LM2 were

involved in glutathione, starch and sucrose metabolism, and

ubiquitin-mediated proteolysis; high-expression genes in LM1

(shown by T5 and T7) were mainly involved in plant hormone

signal transduction, ABC transporters MAPK signaling pathway,

photosynthesis, carotenoid, and phenylpropanoid biosynthesis; the

highest expression genes from CK/LM2 to CK/LM3 were mainly

involved in phenylpropanoid biosynthesis, plant hormone signal

transduction, and plant-pathogen interaction but some high-

expression genes in LM3 also were involved in some biosynthesis

and metabolism processes that were similar to the LM2, such as

MAPK signaling pathway, and starch and sucrose metabolism.

These mean that the fruits at the LM3 stage were developing like

LM2. When the fruits of Mandarin ‘Chunhongtangju’ were

developed from LM3 to LM4, the high-expression genes were

mainly involved in plant-pathogen interaction, plant hormone

signal transduction, MAPK signaling pathway, and ABC

transporters that were similar to the Mandarin ‘Shatangju’ fruits

from CK2 to CK3 (Figure 6; Supplementary Table S6). This is in

solid agreement with the role of hormones in the fruit development

of Mandarin ‘Chuntongtangju’.
FIGURE 6

K-means clustering analysis of all DEGs in all samples.
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The Gene Ontology (GO) analysis was conducted to investigate the

roles of genes related to fruit development and maturation in the

biological process (BP), cell component (CC), and molecular function

(MF) terms. For the changes in gene expression levels during fruit

development and ripening, the GO analysis of 1220 DEGs in CK1 vs.

CK2 comparison wasmainly enriched in biological process and cellular

component including photosynthesis-related process, generation of

precursor metabolites and energy, pigment metabolic process,

chloroplast thylakoid membrane, plastid thylakoid membrane, and

photosynthetic membrane (Supplementary Figure S1A). 1766 DEGs in

CK2 vs.CK3 comparison were mainly enriched in secondarymetabolic

processes (belong to BP) such as phenylpropanoid biosynthetic

process, flavonoid biosynthetic process, and suberin biosynthetic

process, and some apoplast-related cellular components, and

molecular functions such as glucosyltransferase activity, cytoskeletal

motor activity, tetrapyrrole binding, and heme binding were also

actively (Supplementary Figure S1B). 201 DEGs in LM1 vs. LM2

were mainly enriched in molecular functions such as carboxylic ester

hydrolase activity, galactolipase activity, and phospholipase activity

(Supplementary Figure S1C). 2632 DEGs in the LM2 vs. LM3 were

mainly enriched in the biological process. The response processes to

ethylene, hypoxia, phosphorelay, molecular transducer, and

transmembrane signaling receptor activity were activated

(Supplementary Figure S1D). 1834 DEGs detected in the LM3 vs.

LM4 were mainly enriched in biological processes and molecular

functions such as the xyloglucan-glucan metabolic process, plant-

type cell wall organization biogenesis, glucosyltransferase, xyloglucan-

xyloglucosyl transferase, and hexosyltransferase activity

(Supplementary Figure S1E). When the fruits reach the first

development stage of development, the differences in transcription

levels between the two varieties are mainly manifested in secondary

metabolism (e.g. phenylpropanoid biosynthetic process, phenol/

benzene-containing compound metabolic process, and aminoglycan

metabolic process) and hormone metabolism (e.g. salicylic acid

metabolic process); in the second and third development stages, the

differences in transcription levels between the two varieties are mainly

manifested in photosynthesis and energy synthesis (e.g. photosynthesis,

chloroplast thylakoid membrane, plastid thylakoid membrane); as the

late-ripening fruits reach the fourth development stage, the differences

in transcriptional levels compared to Mandarin ‘Shatangju’ fruits at the

third stage were mainly in terms of cellular-related biological process

(e.g. cellular response to hypoxia/oxygen levels) (Supplementary

Figure S2).

KEGG analysis (p-value < 0.05) revealed that all DEGs of two

CK comparison groups were mainly enriched in 12 metabolic

processes that involved multiple aspects, such as energy

metabolism, cofactors and vitamins metabolism, carbohydrate

metabolism, secondary metabolites metabolism, and lipid

metabolism; all DEGs of three LM comparisons groups were

mainly enriched in 8 metabolic processes that involved in energy

metabolism, signal transduction, and other secondary metabolites

biosynthesis (Supplementary Figure S3). The top three KEGG

pathways (adjust p-value <0.05) were photosynthesis, biosynthesis

of secondary metabolites, and photosynthesis-antenna proteins in

CK1 vs. CK2; phenylpropanoid biosynthesis, plant-pathogen

interaction, biosynthesis of secondary metabolites in CK2 vs.
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CK3; photosynthesis-antenna proteins in LM1 vs. LM2; plant-

pathogen interaction, MAPK signaling pathway-plant, and plant

hormone signal transduction in LM2 vs. LM3; plant hormone signal

transduction, plant-pathogen interaction, and MAPK signaling

pathway-plant LM3 vs. LM4 (Supplementary Table S7). During

the development of fruits, the differences in transcription levels

between the two varieties are mainly manifested in signal

transduction, lipid metabolism, biosynthesis of other secondary

metabolites, energy metabolism, environmental adaptation, and

other aspects. These aspects were specifically manifested in cutin,

suberin, wax, and phenylpropanoid biosynthesis, photosynthesis,

plant-pathogen interaction, carbon fixation, and plant hormone

signal transduction. Among these up-regulated DEGs of CK1 vs.

LM1, CK2 vs. LM2, CK3 vs. LM3, and CK3 vs. LM4, 35 protein

kinase domain genes, 27 protein tyrosine and serine/threonine

kinase genes, 24 cytochrome P450 genes, 14 chlorophyll A-B

binding protein genes, 14 peroxidase gene, 13 leucine-rich repeat

genes, 13 transferase family genes, 13 WRKY DNA -binding

domain genes, 10 UDP-glucoronosyl and -glucosyl transferase

genes were found; and the down-regulated DEGs mainly included

12 protein kinase domain genes, 6 auxin-responsive protein genes, 6

leucine-rich repeat gene, 6 transferase family genes, 5 OG-Fe(II)

oxygenase superfamily genes (Supplementary Table S7;

Supplementary Figure S4). The qRT-PCR results of ten candidate

genes showed that five genes (Cs_ont_5g030100, Cs_ont_2g022940,

Cs_ont_9g010690, Cs_ont_2g022890, and novel.698) were down-

regulated in late-maturing varieties, while four genes

(Cs_ont_7g002060, Cs_ont_1g017990, Cs_ont_3g029910, and

Cs_ont_2g033670) were up-regulated. The overall validation

results are consistent with the RNA-Seq results.
3.4 Differentially expressed transcription
factors in the transcriptome

In total, 93 and 148 differentially expressed transcription factors

(DETFs) that belong to 46 TF families such as AP2/ERF-ERF, MYB,

NAC, bHLH, C2C2-Dof, and others were identified in CK1 vs. CK2,

and CK2 vs. CK3 and 15, 228, 183 DETFs in LM1 vs. LM2, LM2 vs.

LM3, and LM3 vs. LM4 mainly belonged to AP2/ERF-ERF, MYB,

NAC, bHLH, WRKY, and others TF families (Figure 7;

Supplementary Table S8). During the four development stages of

fruits, 71 DETFs in CK1 vs. LM1, 160 DETFs in CK2 vs. LM2, 137

DETFs in CK3 vs. LM3, and 109 DETFs in CK3 vs. LM4 displayed

differential transcriptional regulation characteristics between two

citrus varieties. The AP2/ERF-ERF (e. g. Cs_ont_1g012050,

Cs_ont_5g024690, and Cs_ont_4g022340) and AUX/IAA (e. g.

Cs_ont_3g019530, Cs_ont_4g002310, and Cs_ont_4g004790)

family were the mainly DETFs comparing between two citrus

varieties. The down-regulated TF of Mandarin ‘Chunhongtangju’

included 5 AP2/ERF-ERF (Cs_ont_8g024590, Cs_ont_5g026350,

Cs_ont_5g024690, Cs_ont_1g003740, and Cs_ont_1g012050), 2

AUX/IAA (Cs_ont_4g004790, and Cs_ont_4g002310), 2 MYB

(Cs_ont_8g025330, and Cs_ont_9g027950), and so on. These TF

may have affected the development of the ‘Chunhongtangju’ fruits

and need to be further researched.
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3.5 Integrative analysis of transcriptome
and hormone

The integrative analysis of transcriptome and hormone data

investigates the association between DEGs and hormones of fruit

pericarps at the same development stage. Results showed that there

were 548,1547, 1156, and 713 genes highly positive or negative

corrected to 10, 15, 12, and 11 kinds of hormones in CK1 vs. LM1,

CK2 vs. LM2, CK3 vs. LM3, and CK3 vs. LM4, respectively (coefficient
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≥0.8, p-value≤ 0.05, Figure 8; Supplementary Table S9). The highly

corrected hormones included ABA-GE (ABA-glucosyl ester), IAA-

Val (n-(3-indolyl acetyl)-l-valine), TRP (l-tryptophan), TRA

(tryptamine), MEIAA (methyl indole-3-acetate), Indole (indole),

GA24 (gibberellin A24), GA53 (gibberellin A53), OPDA (cis(+)-12-

oxophytodienoic acid), ABA (abscisic acid), GA29 (gibberellin A29),

MEJA (methyl jasmonate), OPC-4 (3-oxo-2-(2-(Z)-pentenyl)

cyclopentane-1-butyric acid), t-CA (trans-cinnamic acid), SA

(salicylic acid), Phe (L-phenylalanine), 5DS (5-deoxystrigol), oTR
FIGURE 8

Nine quadrants of DEGs and hormones in the comparison groups. (A) Nine quadrants of CK1 vs. LM1. (B) Nine quadrants of CK2 vs. LM2. (C) Nine
quadrants of CK3 vs. LM3. (D) Nine quadrants of CK3 vs. LM4.
FIGURE 7

Differentially expressed transcription factors (DETFs) in the comparison groups.
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(ortho-tooling riboside), 12-OH-JA (12-hydroxy jasmonic acid),

MeSAG (2-methoxycarbonyl phenyl beta-d-glucopyranoside), cZ9G

(cis-zeatin-9-glucoside), JA-ILE (jasmonate-l-isoleucine), JA

(jasmonic acid), JA-Val (n-[(-)-jasmonoyl]-(L)-valine) in the four

comparison groups. There was a total of 629 DEGs in CK1 vs. LM1,

CK2 vs. LM2, CK3 vs. LM3, and CK3 vs. LM4 corrected to the above

hormones, and these genes mainly involved in carbohydrate, energy,

lipid, cofactors, and vitamins metabolism, biosynthesis of other

secondary metabolites (e.g. phenylpropanoid biosynthesis), and

signal transduction (e.g. MAPK signaling pathway-plant, plant

hormone signal transduction) such as AP2/ERF domain-containing

protein (Cs_ont_9g008010 and Cs_ont_5g011900) and auxin

response factor (Cs_ont_4g004790, Cs_ont_4g002310, and

Cs_ont_5g011250 in Supplementary Table S10, Supplementary

Figure S5. OPLS statistical method was used to screen the top ten

genes or hormones that had a greater influence on the two omics data.

The top gene included novel.1257, novel.846, Cs_ont_5g020040,

novel.1046, Cs_ont_7g021670, Cs_ont_2g025760, Cs_ont_6g015510,

novel.698, Cs_ont_6g024350, and Cs_ont_7g002060; the top

hormones were 5-deoxystrigol (5DS), salicylic acid 2-o-b-glucoside
(SAG), gibberellin A24 (GA24), indole (Indole), gibberellin A53

(GA53), gibberellin A29 (GA29), n-(3-indolylacetyl)-l-valine (IAA-

Val), ortho-topolin (oT), ortho-topolin riboside (oTR), and

jasmonoyl-l-isoleucine (JA-ILE) in Figure 9.
4 Discussion

4.1 Phenotypic differences in fruit
development of two citrus varieties

The color transformation of citrus pericarps mainly includes

four stages, degreening, yellowing, orange-turning, or red-turning,

in which chlorophyll degradation and carotenoid synthesis are

mainly involved (Rodrigo et al., 2013; Lu et al., 2017). In the

present study, the fruits were harvested at different development

stages of two citrus varieties. In the first and second developmental

stages of the late variety Mandarin ‘Chunhongtangju’, all
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chromaticity parameters (L, a b, and CI) were similar without

significant differences. The fruits remained green. In the third stage,

the fruits start to go through color-break and the fruits do not ripen

until the fourth stage in the late-maturing Mandarin

‘Chunhongtangju’. When the fruits develop toward maturity,

citrus chlorophyllase dynamics can be affected by ethylene, and

the citrus fruit starts to color-break (Shemer et al., 2008). The fruits

of Mandarin ‘Shatangju’ start to color-break in the second stage and

the fruits ripen in the third stage but ‘Chunhongtangju’ fruits have

an extra period to ripen. Therefore, the mature period of the late-

maturing Mandarin ‘Chunhongtangju’ is significantly delayed

than ‘Shatangju’.
4.2 Hormone profiles of the citrus pericarp
at different developmental stages

Plant hormones play a crucial role in the growth and

development of plants, including the formation of various tissues

such as roots (Xie et al., 2021), flowers (Chandler, 2011), and leaves

(Liu et al., 2022). For example, GA can induce cell elongation

(Gapper et al., 2013), and ethylene contributes to the development

of non-climacteric fruits (Osorio et al., 2013; Kumar et al., 2014). In

this study, ABA, Auxin, CK, JA, SA, and SL were actively carried out

for the development of fruits in Mandarin ‘Shatangju’ and

‘Chunhongtangju ’ but not including GA in Mandarin

‘Chunhongtangju’. During the ripening process, the content of

most hormones in Mandarin ‘Chunhongtangju’ pericarps at the

same period was higher than that in Mandarin ‘Shatangju’ pericarps

such as gibberellin A24, cis (+)-12-oxophytodienoic acid, L-

phenylalanine and indole. The main hormones with a lower

content in Mandarin ‘Chunhongtangju’ than those in Mandarin

‘Shatangju’ included abscisic acid, 12-hydroxy jasmonic acid, 2-

methoxycarbonylphenyl beta-D-glucopyranoside, and ABA-

glucosyl ester. ABA has a stronger effect during the maturity of

citrus fruits (Romero et al., 2012). The lack of ABA slows the fruit’s

ripening process and reduces the sugar content (Zhang et al., 2009;

Rook et al., 2010; Forlani et al., 2019). GA3 can slow the fruit’s
FIGURE 9

OPLS of DEGs and hormones in the comparison groups. (A) OPLS of DEGs. (B) OPLS of the hormone.
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ripening process, such as tomatoes (Park and Malka, 2022). In this

study, gibberellin A24 was enriched in Mandarin ‘Chunhongtangju’

and may perform similar functions to GA3.
4.3 Transcriptome profiles of the citrus
pericarp at different developmental stages

The development and maturation process of plant fruits is a

very complex process, including numerous complex biological

processes, such as fruit softening, pigment formation, aroma

formation, sugar and acid changes, and flavor formation, which

involve the ordered expression of many structural genes and the

transcriptional regulatory genes. TFs play a crucial role in regulating

various biological processes of plants (Fujisawa et al., 2011; Jin et al.,

2014; Shima et al., 2014). The MYB family is involved in plant

secondary metabolism, the formation of different organs, pigment

synthesis, and transformation, and more (Lea et al., 2007). StMYB10

regulates the metabolism of the flavonoid during strawberry

ripening (Medina-Puche et al., 2014). MaNACs can interact with

ethylene insensitive 3 (EIN3) and contribute to banana fruit

ripening (Shan et al., 2012). In the present study, 46 TF families

such as AP2/ERF-ERF, MYB, NAC, bHLH, C2C2-Dof, and WRKY

were involved in the formation of fruit pericarps during fruit

development in two varieties. During the four periods of fruit

development, the AP2/ERF-ERF and AUX/IAA families were the

top different TF families comparing between two varieties. The

down-regulated TF of Mandarin ‘Chunhongtangju’ included AP2/

ERF-ERF, AUX/IAA, and MYB. These TFs may have affected the

formation of Mandarin ‘Chunhongtangju’ fruit pericarps and need

to be further researched.
4.4 Differences in expression patterns of
genes related to pericarp development

As for the citrus pericarps, the development and ripening

process of citrus fruits mainly involves cell division, peel

enlargement, chlorophyll degradation, and carotenoid synthesis.

The degradation of chlorophyll usually occurs during the

senescence of leaves and fruit ripening. NYC1 gene (Chlorophyll

b reductase) and HCAR gene (7-hydroxymethylchlorophyll a

reductase) can regulate the degradation of chlorophyll (Sakuraba

et al., 2013; Teng et al., 2021). During the early development stages

of citrus fruit, some color factors, such as lutein and a small number

of other carotenoids have started to accumulate. During the

maturity process, b-lutein significantly increases, and isomers of

lutein and b-cryptoxanthin have been present in large quantities in

orange citrus fruits (Katz et al., 2011). PSY, PDS, and LCYb1 genes

were up-regulated during the maturity. CsMADS5 contributes to

PSY, PDS, and LCYb1 genes (Lu et al., 2021). These suggested that

the accumulation of carotenoids is regulated by one complex

transcriptional network during fruit ripening. There were 2592,

and 3587 DEGs involved in the ripening process of Mandarin

‘Shatangju’ and ‘Chunhongtangju’, respectively (Supplementary
Frontiers in Plant Science
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Table S5). In the small and green fruit stage, which is the first stage,

the DEGs of CK1 vs. LM1 mainly enriched in MAPK signaling

pathway-plant, phenylpropanoid biosynthesis, and plant hormone

signal transduction such as protein kinase (Cs_ont_8g027870), and

anthocyanidin 5-O-glucoside-6 ’ ’-O-malonyltransferase

(Cs_ont_9g023380); at the second stage, the DEGs of CK2 vs.

LM2 mainly involved in photosynthesis-antenna proteins, MAPK

signaling pathway-plant, biosynthesis of secondary metabolites, and

plant hormone signal transduction. Flavin-containing

monooxygenase gene (Cs_ont_9g010690), lipoxygenase gene

(Cs_ont_2g033670), and ribonuclease H gene (novel.698) were

the most significant different genes. When the fruits of

‘Shatangju’ matured, the fruits of ‘Chunhongtangju’ were turning

color and not yet ripe, the DEGs were also involved in

photosynthesis-antenna proteins metabolic, phenylpropanoid

biosynthesis. When the fruits of ‘Chunhongtangju’ matured, the

differential expression pattern between the two varieties was mainly

reflected in MAPK signaling pathway-plant, photosynthesis-

antenna proteins, and phenylpropanoid biosynthesis. Thus, the

difference between the two citrus varieties was embodied in

energy metabolism, biosynthesis of secondary metabolites, signal

transduction, and environmental adaptation.
5 Conclusion

In the present study, the fruit development of late-maturing citrus

varieties, Mandarin ‘Chunhongtangju’ was significantly slower and

the maturity was significantly delayed. At the same period during the

ripening process, most hormones in Mandarin ‘Chunhongtangju’

pericarps were higher than those in Mandarin ‘Shatangju’ pericarps

such as gibberellin A24, cis-(+)-12-oxophytodienoic acid, and L-

phenylalanin. The deficiency of hormones in late-maturing citrus

pericarps was mainly manifested in abscisic acid, 12-hydroxy

jasmonic acid, 2-methoxycarbonyl phenyl beta-d-glucopyranoside,

and ABA-glucosyl ester. Differences in transcription levels of the two

citrus varieties mainly show in energy metabolism, biosynthesis of

secondary metabolites, and signal transduction such as MAPK

signaling pathway-plant, and plant hormone signal transduction.

Based on the data of transcriptome and hormones, the top ten

genes and hormones that contributed to the result of gene

transcription and hormone synthesis included Cs_ont_5g020040,

Cs_ont_7g021670, and Cs_ont_2g025760, and 5-Deoxystrigol,

Salicylic acid 2-O-b-glucosid, and Gibberellin A24. This work not

only revealed the differential mechanism of fruit pericarps between

early- and late-maturing citrus varieties but may be of significance in

uncovering the unknown gene for molecular breeding.
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