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Fusarium species are the dominant cause of maize ear rot, but they also inflict

serious damage to the roots and stalks. Theoretically, the organ where the host

interacts with the pathogen most frequently should exhibit the highest degree of

symptom-genotype correlation. Because that symptom-genotype correlation is

an indicator reflecting the degree of coevolution between pathogen and its

hosts. We wonder which organ is the main battlefield for the antagonism

between maize and Fusarium. For this purpose, 43 isolates of Fusarium were

isolated from infected maize ears. Fusarium verticillioides and F. graminearum

are the two dominant pathogens, accounting for 44% and 30%, respectively.

Furthermore, 14 elite maize inbreds were exposed to 43 Fusarium isolates and

the symptoms of ear rot, stalk rot and root rot were investigated. In general,

symptoms caused by F. graminearum were significantly more severe than those

caused by other Fusarium species. Surprisingly, the genotype of F. verticillioides

showed a strong correlation with stalk and root rot, but not with ear rot.

Accordingly, our study may provide the first evidence that the stalk and root of

maize, rather than the ear, is the main battlefield for the coevolution between

maize and F. verticillioides.
KEYWORDS

pathogen-host interaction, coevolution, maize, fusarium, ear rot
1 Introduction

Maize (Zea mays L.) is a crucial global source of food, feed, and energy. In recent

decades, the demand for increased maize yields has been a primary driver behind the

ongoing development of commercial varieties. However, as maize yield gains have

gradually slowed, the rise of destructive diseases has become the leading factor
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propelling the renewal of commercial varieties (Ristaino et al.,

2021). Therefore, understanding the interaction between

pathogens and maize is important for maize production.

Maize ear rot is a destructive disease, mainly caused by

Fusarium species, poses a significant threat to maize production

and quality (Duan et al., 2016). Fusarium species overwinter in soil,

seeds, and plant debris (Xia et al., 2022). They spread to maize

grains through the roots, insects, and the air (Xia et al., 2022;

Omotayo and Babalola, 2023). They also cause root and stalk rot,

affecting overall plant health and yield (Marıá I et al., 2017). In

addition, Fusarium species can produce harmful mycotoxins such

as deoxynivalenol (DONs), fumonisins (FBs) or Zearalenone

(ZENs), which pose a risk to animal and human health if

consumed in excessive amounts (Marıá I et al., 2017). In China,

significant yield losses and mycotoxin contamination problems

have been associated with Fusarium species (Duan et al., 2016;

Qin et al., 2020).

The pathogen-host-driven natural selection contributes to shape

the genetic and phenotypic diversities and results in coevolution of

both organisms (Sironi et al., 2015). Pathogens have a negative effect

on host fitness, favoring selection for enhanced defense mechanisms

in the affected hosts. Conversely, host defenses are detrimental to the

pathogen, leading to selection for novel attack mechanisms. When

the interaction persists over time, the ongoing cycles of antagonism

can generate highly specific host-pathogen interaction patterns,

which are intrinsically determined by specific genotype interaction

and are manifested as lineage-specific invasion (Schneider et al., 2015;

Delaux and Schornack, 2021). Symptom-genotype correlation, the

manifestation of specific genotype interaction, is a simple and feasible

indicator reflecting the degree of coevolution between pathogen and

its hosts. Theoretically, the organ in which the host interacts with the

pathogen most frequently should exhibit the highest degree of

symptom-genotype correlation. Given the extensive research

conducted on the interaction between Fusarium and maize ears, we

subjectively think that ears are the main battlefield for the antagonism

between maize and Fusarium species. However, our studies

unexpectedly revealed that the genotype of F. verticillioides

was more closely related to its pathogenicity to maize stalks and

roots than to maize ears. Prior to this study, there was no direct

evidence that the localized interactions between Fusarium species

and maize were the main factor driving its coevolution. Our study

may provide the first evidence that the stalk and root of maize, rather

than the ear, is the main battlefield for the coevolution between maize

and F. verticillioides.
2 Results

2.1 The isolation frequency of
F. verticillioides from maize ear rot
is the highest in China

Different isolates of Fusarium spp. were isolated from infected

maize ears from 20 cornfields in 7 provinces in China

(Supplementary Table S1). Forty-three isolates were isolated and

grouped into 4 categories, F. verticillioides (44%), F. graminearum
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(30%), F. proliferatum (21%), and F. fujikuroi (5%) (Supplementary

Table S1), which is consistent with that F. verticillioides was

previously reported as the dominant ear rot pathogen (Logrieco

et al., 2002; Folcher et al., 2009; Lanubile et al., 2017; Feng et al.,

2022). Fumonisin production was high for most F. verticillioides

and F. proliferatum isolates but low for F. graminearum isolates

when grown on maize medium, and no T2 toxin was detected from

any isolates (Figure 1; Supplementary Table S1).
2.2 The symptoms caused by
F. graminearum are significantly
more severe than that caused by
F. verticillioides and F. proliferatum

The pathogenicity of 43 isolates was tested using 14 elite maize

inbred lines. All 43 isolates could infect maize ears, stalks and roots,

and pathogen-host interactions showed a wide range of symptom

severity (Supplementary Table S2; Figure 2). The pathogenicity of F.

graminearum was remarkably higher than that of F. verticillioides

and F. proliferatum, and was comparable between F. verticillioides

and F. proliferatum (Supplementary Table S2; Figures 2D-F).

KN5585 and LH8012 exhibited strong resistance to ear rot caused

by F. graminearum (Figure 2A). LX7531, ZNC442 and LX8581

displayed good resistance to ear rot caused by F. verticillioides

(Figure 2A). CIMBL145, LH8012, and ZH14 showed effective

resistance to most Fusarium-caused stalk rot, whereas Zheng58

was susceptible to most Fusarium-caused stalk rot (Figure 2B).
2.3 Stalks and roots are the main battlefield
for the coevolution between maize and
F. verticillioides

The relationship between fungal genotype, toxigenic capacity, and

pathogenicity was further investigated. The correlation between the

genotype of F. verticillioides and the symptom of stalk and root rot, but

not ear rot, was notable (Figure 3A; Supplementary Tables S3-8). This

implies that the coevolution of F. verticillioides and maize is mainly

existed in the root and stalk, rather than the ear. The number of isolates

of F. graminearum and F. proliferatum observed in this study was

relatively low, which may explain why no significant correlation was

found between the genotypes of these two pathogens and the different

symptoms observed (Supplementary Tables S3-8). To test the effect of

racial diversity on the genotype-symptom correlation, different

numbers of F. verticillioides were progressively removed. With the

decrease of racial diversity, the genotype-symptom correlation

coefficient decreased, and the corresponding p value increased

(Figure 3B). When the number of isolates was less than 17, the

symptom-genotype correlation was no longer significant for both

root and stalk rot (Figure 3B). To test the effect of maize diversity on

the genotype-symptom correlation, different numbers of maize inbred

lines were progressively removed. With the decrease of maize diversity,

the genotype-symptom correlation coefficient decreased, and the

corresponding p value increased (Figure 3C). These results indicated

that in order to ascertain the correlation between genotype and
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symptoms with sufficient clarity, it is necessary to ensure that the

pathogens and hosts under consideration exhibit sufficient diversity.

An expansion of the pathogen-host interacting population results in a

heightened correlation between genotype and symptoms.

The toxigenic capacity is correlated well with fungal genotype in

F. verticillioides and F. proliferatum, but not in F. graminearum

(Figure 3A; Supplementary Table S3). The toxigenic capacity is not

correlated with the symptom of ear rot, stalk rot, or root rot,

indicating that the toxigenic capacity may not be a dominant

determinate of pathogenicity.
3 Discussion

F. verticillioides and F. graminearum are the most widely reported

causes of maize ear rot (Logrieco et al., 2002; Folcher et al., 2009; Gai

et al., 2017; Lanubile et al., 2017; Feng et al., 2022). They also cause

stalk, root and sheath rots (Duan et al., 2016; Lanubile et al., 2017;

Wang et al., 2021). In this study, 44% of isolates are F. verticillioides,

30% are F. graminearum (30%), and 21% are F. proliferatum (21%). It

is consistent with previous reports that F. verticillioides and F.

graminearum are the dominant maize ear rot pathogens.

The distributions and pathogenicity of F. verticillioides and F.

graminearum vary greatly in different environmental and climatic

conditions (Ezrari et al., 2021; Liu et al., 2022). Although both F.

verticillioides and F. graminearum can cause ear, stalk, and root rot

in maize, there seems to be no studies that systematically compare

the pathogenicity of the two pathogens at the population level. It

was reported that the optimum temperature for growth of F.

verticillioides is about 30°C, while cool growing conditions (20°C)

promote the growth of F. graminearum (Samapundo et al., 2005;
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Hay et al., 2021; Ding et al., 2024). In this study, the field

temperatures after inoculation were usually between 25 and 35°C,

which may be more suitable for the growth of F. verticillioides.

However, the results clearly showed that the severity of disease

caused by F. graminearum to 14 elite maize inbred lines was

significantly greater than that of F. verticillioides. This indicates

that the pathogenicity of F. graminearum to maize is generally

stronger than that of F. verticillioides.

F. verticillioides can survive in soil, seeds, and plant debris for

extended periods. It is primarily a soil- and seed-borne fungus that

moves from the root upward to the maize stalks and ears, causing

stalk and ear rot (Omotayo and Babalola, 2023). It can also survive

the winter as viable spores and is spread by airborne or insect vectors

and rainfall (Omotayo and Babalola, 2023). The widespread existence

of F. verticillioides in the soil made it necessary for maize roots to cope

with the invasion of F. verticillioides at all times. Given the important

economic attributes of maize ear, ear rot has received more attention

than root and stalk rot. Thus, we subjectively think that ears may be

the main battlefield for the antagonism between maize and Fusarium

species before this study. To the best of our knowledge, there is

currently no evidence can indicate the main organ in which the

coevolution of maize and F. verticillioides has occurred. The organ

where the pathogen frequently interacts with the host is expected to

show the highest degree of symptom-genotype correlation (Schneider

et al., 2015; Sironi et al., 2015; Delaux and Schornack, 2021). This

correlation serves as a simple and feasible indicator of coevolution, as

it is intrinsically shaped by the genotype interactions between

pathogen and its hosts (Schneider et al., 2015; Sironi et al., 2015;

Delaux and Schornack, 2021). Our findings indicate that the

genotype of F. verticillioides is strongly associated with stalk and

root rot, but not with ear rot. Consequently, this study may provide
FIGURE 1

Topological phylogenetic tree of 43 Fusarium isolates and toxigenic capacity. The genetic distance matrix of 43 Fusarium isolates is showed as
topological phylogenetic tree. The detail information was shown in Supplementary Table S4. The out layer heatmap represents the toxigenic
capacity of different isolates grown in maize medium. The data used in heatmap are modified from Supplementary Table S1 by Log10 conversion.
If the contents of FBs, T2 and DON were less than 100 mg/kg and of ZEN less than 10 mg/kg, the result was inaccurate and recorded as zero.
FBs, Fumonisin; ZEN, zearalenone; DON, deoxynivalenol.
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the first evidence that the stalk and root of maize, rather than the ear,

is the main battlefield for the antagonism and coevolution between

maize and F. verticillioides. The characteristics of the soil- and seed-

borne form of F. verticillioides may explain why the antagonism and

coevolution occurred mainly in the maize stalk and root.

Theoretically, a stronger long-term antagonism may result in a

higher symptom-genotype correlation, while an increasing size of the

pathogen-host interacting population may enhance this correlation

(Schneider et al., 2015; Sironi et al., 2015; Delaux and Schornack,

2021). However, the specific size of the pathogen-host interacting

population in which this correlation can be remarkably observed

remains unclear. In previous studies, the correlation between

genotype and symptoms was usually low or not statistically

significant at all (Gai et al., 2017; Li et al., 2019; Han et al., 2020;
Frontiers in Plant Science 04
Dong et al., 2022; Feng et al., 2022; Liu et al., 2024)(Supplementary

Table S9). This may be due to the fact that the pathogen-host

interacting populations were constructed with only one pathogen

or host. In line with this, a decrease in the diversity of F. verticillioides

or maize will decrease the genotype-symptom correlation coefficient

and increase the corresponding p-value. In order to ascertain the

correlation between genotype and symptoms with sufficient clarity, it

is necessary to ensure that the pathogens and hosts under

consideration exhibit sufficient diversity. Here, we suggested that

the size of the pathogen-host interacting population is larger than a

20 × 15 matrix will be better. Our results showed that symptom-

genotype correlation is a simple and feasible indicator of the degree of

coevolution between pathogens and hosts, when the size of the

pathogen-host interacting population is appropriate.
FIGURE 2

Severity of ear rot, stalk rot, and root rot of different pathogen-host pairwise interactions. (A-C) Severity of symptom for each pathogen-host
pairwise was shown as heatmap. (D-F) Scatter plot of symptom severity caused by F. verticillioides (F.V.), F. graminearum (F.G.) and F. proliferatum
(F.P.). F.F. is the abbreviation for F. fujikuroi. One point represents one pathogen-host interaction pairwise. The different capital letters above the
scatter indicate that the difference between groups is significant at the level of p-value less than 0.01 using ANOVA analysis.
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4 Materials and methods

4.1 Isolation of Fusarium spp.

Infected maize ears were collected from 20 locations in 7

provinces in southwest China. Asymptomatic kernels adjacent to

the infected aera were surface sterilized with 75% ethanol for 5

min and incubated on potato dextrose agar (PDA) medium at 25°

C. Pure culture of pathogen was established by single spore

isolation. Three housekeeping genes, the translation elongation

factor EF1a, the largest (RPB1) and second largest (RPB2)

subunits of RNA polymerase, were amplified by polymerase

chain reaction (PCR) for resequencing. Sequences were aligned

in the Fusarium database (https://fusarium.mycobank.org/) for

species identification. Primers are listed in Supplementary

Table S10.
4.2 Analysis of genetic distance

The sequences of three housekeeping genes (EF1a, RPB1, and
RPB2) were used for phylogenetic analysis and computing of

pairwise genetic distance. Analyses were conducted using the

Maximum Composite Likelihood model in MEGA7 (Kumar

et al., 2016). Pairwise genetic distance was further used for

correlation analysis with other phenotypes.
Frontiers in Plant Science 05
4.3 Determination of the content of
four mycotoxins

As previous reported, Fusarium species were cultured in solid

maize sand medium at 28 °C in the dark for 5 days. The contents of

fumonisins (FBs), deoxynivalenol (DON), T-2, and zearalenone

(ZEN) in the medium were determined with FD-600

(Femdetection, China) using immunofluorescence-based rapid

quantitative test strips (Feng et al., 2022).
4.4 Artificial inoculation and symptom
investigation of ear, stalk and root rots

To investigate the severity of ear and stalk rots, 14 elite inbred

maize lines were planted in 2022 in Xishuangbanna (21° 53′N, 100°
59′ E) and in 2023 in Chongzhou, China (30° 33′ N, 103° 39′ E).
Seedlings were planted with 3.5 m single rows and 0.8 m row

widths. Approximately 60 days after planting, a hole about 1 cm

deep was made in the middle of the second stalk node using a 1 mm

diameter electric drill. The hole was inoculated with 200 mL of spore
suspension (5 × 106 spores/mL) and the lesion length was measured

when the seed was mature. Fourteen days after silking for each

inbred maize line, 200 mL of spore suspension (5 × 106 spores/mL)

was inoculated into the ears using the side-needle syringe method.

The severity of ear rot was assessed as in our previous report, based
FIGURE 3

Stalks and roots are the main battlefield for the coevolution between maize and F. verticillioides. (A) Correlation between different traits of F.
verticillioides. The correlation is considered statistically significant when the p-value is less than 0.1. The detail information of each trait was shown in
Supplementary Tables S4-8. Mantel test was used to calculate the correlation and p-value between different traits. (B) The effect of pathogen
diversity on the symptom-pathogenic genotype correlation was tested by retaining different numbers of F. verticillioides isolates. (C) The effect of
maize diversity on the symptom-pathogenic genotype correlation was tested by retaining different numbers of inbred maize lines. For (B, C), The
distance matrix of different traits was used to calculate correlations using the Mantel test with 999 permutations.
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on the agricultural industry standard of the People’s Republic of

China (NY/T1248.8-2016) (Feng et al., 2022). For each pathogen-

host interaction, 20 ears or stalks from each replicate and two

replicates at each location were investigated.

To assess the severity of root rot, healthy seeds were soaked in

water overnight and incubated on wet seed germination paper at

25°C for about 2 days in the dark. Seeds with uniform growth

were selected and transferred to fresh wet seed germination paper

in a 13 × 13 cm Petri dish for 3 days of continuous growth. A

wound was created by needle at the root position at about 4 cm

from the seed, and then a hyphae-covered clump of PDA (0.3 cm

diameter) was touched to induce root rot. The seeds were covered

with wet germination paper to keep them moist and to ensure that

the roots grew straight. About 4 days after inoculation, the lesion

length was measured to reflect the severity of root rot. The best

linear unbiased prediction (BLUP) values for each trait from two

years were used to calculate symptoms distance matrix.

Representative photos illustrating the inoculation site and

symptoms of ear rot, stem rot, and root rot are presented in

Supplementary Figure S1.
4.5 Correlation analysis between
different traits

The vegdist function of the vegan package (https://CRAN.R-

project.org/package=vegan) (Dixon, 2003) was used to construct

the distance matrix of different isolates for the toxin production, the

symptoms of ear, stalk and root rot. The mantel function was then

used to calculate the correlation and p-value between different traits.

To test the effect of pathogen and host diversity on the correlation,

different numbers of pathogens or hosts were removed and the

corresponding correlation and p value was calculated. For example,

if three of the fourteen inbred maize lines were removed, 364

combinations and 364 correlation and p-values would be

generated. Therefore, the correlation and p value would be

calculated from the mean of the 364 values when the host

diversity was eleven.
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