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Genome-wide analysis
and expression profile
of the bZIP gene family
in Neopyropia yezoensis
Xinyu Zhu, Tian Gao, Ka Bian, Chengzhen Meng,
Xianghai Tang* and Yunxiang Mao

Key Laboratory of Marine Genetics and Breeding (Ministry of Education), College of Marine Life
Sciences, Ocean University of China, Qingdao, China
The basic leucine zipper (bZIP) family consists of conserved transcription factors

which are widely present in eukaryotes and play important regulatory roles in

plant growth, development, and stress responses. Neopyropia yezoensis is a red

marine macroalga of significant economic importance; however, their bZIP

family members and functions have not been systematically identified and

analyzed. In the present study, the bZIP gene family in Ny. yezoensis was

characterized by investigating gene structures, conserved motifs, phylogenetic

relationships, chromosomal localizations, gene duplication events, cis-regulatory

elements, and expression profiles. Twenty-three Ny. yezoensis bZIP (NyybZIP)

genes were identified and sorted into 13 out of 30 groups, which were classified

based on the bZIPs of Ny. yezoensis and 15 other red algae species. Phylogenetic

analysis revealed that bZIP genes may have a complex evolutionary pattern in red

algae. Cross-species collinearity analysis indicated that the bZIP genes in Ny.

yezoensis, Neoporphyra haitanensis, and Porphyra umbilicalis are highly

evolutionarily conserved. In addition, we identified four main categories of cis-

elements, including development-related, light-responsive, phytohormone-

responsive and stress-responsive promoter sequences in NyybZIP genes.

Finally, RNA sequencing data and quantitative real-time PCR (qRT-PCR)

showed that NyybZIP genes exhibited different expression patterns depending

on the life stage. NyybZIP genes were also found to be involved in the nitrogen

stress response. We thought that bZIP genes may be involved in Ny. yezoensis

growth and development, and play a significant role in nitrogen deficiency

response. Taken together, our findings provide new insights into the roles of

the bZIP gene family and provide a basis for additional research into its

evolutionary history and biological functions.
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1 Introduction

A significant portion of eukaryotic genomes consists of

transcription factor (TF) genes, which are predominantly

categorized into a few distinct and often sizable gene families based

on the type of DNA-binding domain they encode (Riechmann and

Ratcliffe, 2000). In plants, TFs play crucial roles in numerous

biological pathways (Wu et al., 2023). Among the eukaryotic

TF gene families, the basic region-leucine zipper (bZIP) family

is the most extensive and heterogeneous group [Hurst, 1995;

Wang et al., 2011]. Named after its highly conserved domain of

approximately 60–80 amino acids, the bZIP includes two functional

regions: a basic region and a leucine zipper region (Jakoby et al.,

2002). Following systematic identification and classification in

Arabidopsis thaliana (Dröge-Laser et al., 2018), 78 bZIP family

members were classified into 13 groups (designated A–M) based

on the homology of the basic region, and additional conserved motifs

were proposed (Dröge-Laser et al., 2018). To date, a comprehensive

understanding of bZIP genes have been attained in several plant

species, including A. thaliana (Dröge-Laser et al., 2018), Manihot

esculenta (Hu et al., 2016), Cucumis sativus (Baloglu et al., 2014),

Triticum aestivum (Agarwal et al., 2019), and Neoporphyra

haitanensis (Wang et al., 2023).

The bZIP genes play an indispensable role in the regulation of

growth, development, and abiotic stress responses (Landschulz

et al., 1988). In A. thaliana, AtbZIP1 plays a role in the

coordination of starvation responses triggered by darkness and

NO3- signaling pathways (Para et al., 2014). AtbZIP29 is

expressed in proliferating tissues (Van Leene et al., 2016), and

AtbZIP59(PosF21) has been functionally implicated in auxin-

mediated callus development and plant regeneration processes

(Xu et al., 2018). In Capsicum annuum, CabZIP25 improves salt

tolerance by preserving chlorophyll stability (Gai et al., 2020). In

Nelumbo nucifera, NnbZIP36 facilitates anthocyanin accumulation

(Zhou et al., 2023), while PpbZIP44 in Pyrus pyrifolia affects the

sugar:acid ratio (Wang et al., 2023). In Aquilaria sinensis, both

AsbZIP14 and AsbZIP41 respond to ethylene and agarwood

inducers (Zhang et al., 2023). In Rosa, RcbZIP17 modulates B.

cinerea resistance using both virus-induced gene silencing (VIGS)

and overexpression (OE) approaches (Li et al., 2023). However,

bZIP genes from red algae have not been a primary focus

of investigation.

Red algae (Rhodophyta) represent a highly evolved and

significant branch within eukaryotic photosynthetic organisms and

constitute an independent lineage that numbers over 7000 species

according to AlgaeBase (http://www.algaebase.org/), placing them

among the most archaic of such groups (Lopez-Bautista, 2010). Red

algae are categorized into seven distinct classes: Cyanidiophyceae,

Bangiophyceae , Florideophyceae , Compsopogonophyceae ,

Porphyridiophyceae, Rhodellophyceae, and Stylonematophyceae,

which collectively occupy diverse ecological niches ranging from

hot springs and acidic sulfur vents, to freshwater systems, deep-sea

abysses, and intertidal areas. Morphologically, red algae exhibit

remarkable diversity, appearing as single-celled organisms,

filamentous structures, leaf-like thalli, parenchymatous blades, and

tubular forms composed of a single layer of cells (Yoon et al., 2010).
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Neopyropia yezoensis belongs to Bangiophyceae (Rhodophyta), which

is the most genetically variable group of red algae and a key species in

the commercial cultivation of edible marine macroalgae (Wang

et al., 2016).

Ny. yezoensis possesses a complex life cycle characterized by

alternating between two distinct multicellular phases: the haploid

gametophytic stage and the diploid sporophytic stage. This lifecycle

is crucial for the large-scale cultivation of Ny. yezoensis and its

subsequent establishment and growth (Blouin et al., 2011). Ny.

yezoensis inhabits the intertidal zone and exhibits remarkable stress

tolerance, highlighting its adaptability to challenging environments

(Burritt et al., 2002; Nishikawa et al., 2007; Pearson et al., 2010). For

example, the growth, quality, and yield of Ny. yezoensis responds

rapidly to the level of nitrogen in seawater (Kakinuma et al., 2008;

Kakinuma et al., 2016; Li ChengZe et al., 2019). These attributes

make Ny. yezoensis an ideal model organism for elucidating the

evolutionary trajectory of interconnected metabolic and regulatory

pathways governing growth, reproduction, and stress adaptation

(Blouin et al., 2011). The high-quality chromosomal genome of Ny.

yezoensis has enabled comprehensive characterization of its bZIP

genes (Wang et al., 2020). Furthermore, the analysis of existing

transcriptomic datasets has facilitated an in-depth investigation into

the complex molecular functions performed by these bZIP genes

(Sun et al., 2015; Sun et al., 2019; Tang et al., 2019).

In this study, we conducted a comprehensive analysis of the

bZIP gene family in Ny. yezoensis by examining the chromosomal

localization, duplication events, cis-regulatory elements, gene

architecture, conserved motifs, evolutionary affiliations, expression

patterns, protein interaction networks, and functional annotations

using gene ontology. In addition, we utilized bioinformatic

techniques to identify bZIP gene family members in 15 additional

species of red algae and performed phylogenetic analyses, thereby

establishing a foundation for the bZIP gene family classification

within red algae. Furthermore, we examined the response of

NyybZIP genes to nitrogen stress conditions and different life

cycle phases, and validated their expression patterns using

transcriptomic and qRT-PCRanalyses. Taken together, our results

establish a framework for future functional investigations into

NyybZIP genes.
2 Materials and methods

2.1 Genome-wide identification and
characterization of the bZIP gene families
in Ny. yezoensis and other red algae

Fifteen types of red algae and one representative species each

from green algae, streptophyte algae, and bryophyte were selected

for bZIP protein identification. The Cyanidioschyzon merolae,

Chondrus crispus, Gracilariopsis chorda, Galdieria sulphuraria,

Porphyridium purpureum, Ny. yezoensis, Porphyra umbilicalis,

Chlamydomonas reinhardtii, Marchantia_polymorpha reference

genome assemblies and protein sequences were obtained

from GenBank using accessions GCA_000091205.1 (Nozaki

et al., 2007), GCA_000350225.2 (Janous ̌kovec et al., 2013),
frontiersin.org
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GCA_003194525.1 (Lee et al., 2018), GCA_000341285.1

(Schönknecht et al., 2013), GCA_008690995.1 (Lee et al., 2019),

GCA_009829735.1 (Wang et al., 2020), GCA_002049455.2

(Brawley et al., 2017), GCA_000002595.3 (Merchant et al., 2007),

and GCA_037833965.1 respectively. Additional red algal and Chara

braunii protein sequences were downloaded from the EukProt

database (https://doi.org/10.6084/m9.figshare.12417881.v3)

(Richter et al., 2022). A. thaliana bZIP protein sequences were

downloaded from the Pytozome database (Goodstein et al., 2012).

No. haitanensis bZIP protein sequences were obtained from Wang

et al (Wang et al., 2023). To obtain the bZIP protein sequences from

these 15 types of red algae and three representative species of

Viridiplantae. the Hidden Markov model (HMM) profile

(Eddy, 2004) of the bZIP_1 (PF00170) and bZIP_2 (PF07716)

domain was downloaded from the Pfam database (Browse -

InterPro (ebi.ac.uk)), and potential proteins were identified using

local HMMER software (E-value <1e-5). Next, a local BLASTP

search (E-value <1e-5) was applied to identify possible bZIPs using

A. thaliana and No. haitanensis as well as the PlnTFDB database

(http://plntfdb.bio.uni-potsdam.de/v3.0/). Finally, InterProScan

(http://www.ebi.ac.uk/interpro/result/InterProScan/), SMART

(http://smart .embl-heidelberg.de/) , and CDD (https://

www.ncbi.nlm.nih.gov/cdd) databases (Marchler-Bauer et al.,

2017) were used for additional screening and verification of the

bZIP domain. Except for No. haitanensis, which used the name

from the original manuscript (Wang et al., 2023), the naming of

bZIP proteins in other red algae was based on molecular weight.

The ProtParam tool (Gasteiger et al., 2003) was used to determine

the molecular weight, instability index, and theoretical isoelectric

point (pI) of these red algae bZIPs. The subcellular localization of

Ny. yezoensis bZIPs was predicted using Cell-PLoc-2 (http://

www.csbio.sjtu.edu.cn/bioinf/Cell-PLoc-2/) (Chou and Shen,

2010), TBtools software (Chen et al., 2020) and the online website

MEME (http://meme-suite.org/) (Bailey et al., 2006) were utilized to

obtain the exon-intron structures, motifs, and visualize the

chromosomal locations of the bZIP genes using Ny. yezoensis

genome sequences and annotation files. The bZIP transcription

factor family domains logos of Ny. yezoensis were generated using

WebLogo (Crooks et al., 2004).
2.2 Phylogenetic and motif analyses of the
bZIP gene families in Ny. yezoensis and
other red algae

The conserved domains of bZIP protein sequences of red algae,

A. thaliana, and other three representative species of Viridiplantae

were imported into the MUSCLE program in the MEGA 11

software (Tamura et al., 2021). Then, the maximum likelihood

(ML) phylogenetic tree was constructed using IQ-TREE (Minh

et al., 2020) with the Ultrafast bootstrap (Hoang et al., 2018) set to

1000. ModelFinder (Kalyaanamoorthy et al., 2017) in IQ-TREE was

then used to find the best-fit substitution model, and the tree figure

was constructed using tvBOT (Xie et al., 2023). The same approach

was used to construct a phylogenetic tree using bZIP protein

sequences from 16 species of red algae and their conserved
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patterns in the bZIP gene family was determined using the online

website MEME (http://meme-suite.org/) (Bailey et al., 2006).
2.3 Collinearity analysis of the bZIP gene
families in Ny. yezoensis

Tandem and segmental duplication events of the red algal bZIP

gene family and collinearity of the bZIP genes of Ny. yezoensis were

analyzed using the One-Step MCScanX program in TBtools (Chen

et al., 2020). To determine the selection pressure, the rates of

nonsynonymous (Ka) and synonymous (Ks) substitutions (Zhang

et al., 2006) were calculated using TBtools.
2.4 Cis-regulatory element analysis of the
bZIP gene families in Ny. yezoensis

To predict the cis-acting elements present in Ny. yezoensis bZIP

genes, TBtools software was used to extract the upstream 2000 bp

promoter sequences of the Ny.yezoensis bZIP genes. Then, these

sequences were submitted to PlantCARE (Lescot et al., 2002). Based

on the annotated functions, the detected cis-acting regulatory

elements were classified into different response types. A heat map

was used to display the number of cis-acting regulatory

elements detected.
2.5 Investigation of NyybZIP gene
expression patterns at different life stages

To investigate the expression patterns of NyybZIP genes at

different life stages, RNA-sequencing (RNA-Seq) data were

obtained from a previous study (gametophytes and sporophytes;

NCBI SRA: SRR10527930–SRR10527937). Gene expression levels

were quantified as fragments per kilobase of transcript per million

fragments mapped (FPKM), and expression heat maps were created

using TBtools software based on log2 transformed FPKM values.

Next, qRT-PCR was performed using established protocols from a

previous study (Yu et al., 2020). We utilized the LightCycler® 480

Real-Time PCR System to confirm the identity and expression of

the selected genes. Ubiquitin-conjugating enzyme (UBC) genes

were used as a reference (Gao et al., 2018). The primer sequences

are listed in Supplementary Table S1. The comparative 2^(-DDCt)
method was used to determine the relative gene expression levels.
2.6 Expression profile analysis of Ny.
yezoensis bZIP genes under nitrogen stress

To investigate the expression patterns of NyybZIP genes under

nitrogen stress, a lab-cultured pure RZ Ny. yezoensis line was used

in this study. Leafy gametophytes (thalli) of the Ny. yezoensis were

maintained in 2 L aerated bottles with the Provasoli’s enrichment

solution (PES) medium under the following conditions: 10°C

with 60 mmol photons·m−2 s−1 and a 12 h:12 h light:dark (L:D)
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photoperiod, until the thallus length reached 5-8 cm. Then we set

up the nitrogen-deficiency experiment consisted of two treatment

groups: zero-nitrogen (N0) and control (C). The NaNO3 content in

the Provasoli’s enrichment solution (PES) medium was as follows: 0

mM NaNO3 (N0) and 500 mM NaNO3 (C). All other cultivation

conditions remained consistent across the treatment groups, and

three biological replicates were used for each treatment group. After

an eight-day cultivation period, the samples were collected in liquid

nitrogen then sent to the company for RNA-seq data. And used

DESeq2 (Love et al., 2014) to perform RNAs differential expression

analysis, we identify DEGs (Fold Change > = 2 and FDR < 0.05). In

addition, total RNA was extracted using the RNeasy Plant Mini Kit

(OMEGA) according to the manufacturer’s instructions. Next,

approximately 1 mg of the obtained total RNA was utilized for the

synthesis of first-strand cDNA using the HiScript® III RT SuperMix

for qPCR (+gDNA wiper) Kit (Vazyme Biotech Co., Ltd., Nanjing,

China). qRT–PCR was then performed using the primers listed in

Supplementary Table S1.
3 Results

3.1 Identification of bZIPs in Ny. yezoensis
and other red algae

To identify the bZIP genes in Ny. yezoensis, HMM, BLASTP,

and PlnTFDB databases (http://plntfdb.bio.uni-potsdam.de/v3.0/)

were used to identify and authenticate bZIP protein sequences in

Ny. yezoensis. Next, Pfam, SMART, and CDD were used to

determine the integrity of the bZIP domain. The amino acid

positions of the conserved structural domains of bZIP were

visualized by multiple sequence alignment of the protein

sequences in Ny yezoensis bZIP family members (Figure 1).

Evidence indicated that the bZIP domain consisted of a basic

DNA-binding region and an adjacent leucine zipper structure. As

shown in Figure 1, the basic DNA-binding region had an invariable

N-X7-R/N motif and the adjacent leucine zipper structure created

an amphipathic helix with heptapeptide repeat of Leucine (L) or
Frontiers in Plant Science 04
related hydrophobic amino acid. Methionine, alanine, valine, etc.

can replace highly conserved leucine residues in some cases. Such

results of Ny. yezoensis bZIPs were consistent with those of previous

studies in other plants (Jakoby et al., 2002; Dröge-Laser et al., 2018;

Zhao et al., 2021). In total, 23 non-redundant genes were

determined to be Ny. yezoensis bZIP genes and were named

according to their molecular weight (Table 1). The following

ranges were observed: gene size: 885–13383 bps; the number of

introns: 0–2; number of amino acids residues: 108– 1159; isoelectric

point (pI): 4.79–11.25; molecular weight (MW): 12.21–101.62 kDa;

and instability index: 40.05–74.45. To investigate the functions and

diversification of bZIP protein sequences in Ny yezoensis, we used

the MEME software to predict their conserved motifs. Among

them, motif1 was identified as the bZIP domain, which is present

in all 23 NyybZIPs, whereas the other motifs lack specific

annotation information (Figure 2A). Of the 23 NyybZIP genes

identified, nine were intron-less, seven possess one intron, and

seven possess two introns (Table 1; Figure 2A). Based on their

chromosomal locations, 22 NyybZIP genes exhibited uneven

distribution across the three nori chromosomes, and only one

NyybZIP gene was mapped to WMLA01000026.1 (Figure 2B).

Specifically, CM020618.1, CM020619.1 , and CM020620.1

contained twelve, four, and six NyybZIP genes, respectively.

Protein information of the bZIP genes in the other 14 red algae

species is detailed in Supplementary Table S2.
3.2 Phylogenetic and motif analyses of Ny.
yezoensis and other red algae bZIP
gene families

To explore the evolutionary and classification relationships of

the red algae bZIP families, we constructed a Maximum Likelihood

(ML) phylogenetic tree using the bZIP domains of 16 types of red

algae and 4 representative species of Viridiplantae bZIP protein

sequences (Supplementary Figure S1). We found that bZIP protein

sequences of bryophyte, green algae, and streptophyte algae could

cluster with A. thaliana, and only a small portion of the red algae
FIGURE 1

Visualization of multiple sequence alignment of the Ny yezoensis basic leucine zipper transcription factor family domains. The total height of the
letter piles at each position indicates the conservation of the sequence at that position (measured in bits). The height of a single letter in the letter
piles represents the relative frequency of the corresponding amino acid at that position. The symbol * means the conserved site.
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bZIP protein sequences could be classified into the A. thaliana bZIP

groups; the majority of the red algae bZIP sequences formed distinct

group, which we designated as Group R1 and R2. Among the

NyybZIP protein sequences, only NyybZIP-18.34 and NyybZIP-

20.27 were present in group M and classified with A. thaliana,

whereas the other 21 sequences were distributed within Group R1

and R2. Therefore, we constructed a new phylogenetic tree using the

complete sequences of bZIP proteins from 16 different species of red

algae, which were classified based on the evolutionary relationships

displayed in the constructed phylogenetic tree as well as the motif

structures present (Figure 3). The bZIP proteins were divided into

30 groups (1–30), and phylogenetic analysis showed that NyybZIP-

81.24 and NyybZIP-83.31 were in group 1 with motif 11; NyybZIP-

60.54 was in group 2; NyybZIP-71.71, NyybZIP-47.69, and

NyybZIP-74.64 were in group 3; NyybZIP-37.21 was in group 4;

NyybZIP-41.87, NyybZIP-101.62, and NyybZIP-51.33 were in

group 5; NyybZIP-18.34, NyybZIP-37.77, and NyybZIP-25.16

were in group 6; NyybZIP-45.45 and NyybZIP-61.67 were in

group 7; NyybZIP-12.21 was in group 13; NyybZIP-20.27 was in

group 17; NyybZIP-13.57 was in group 18; NyybZIP-33.74 was

in group 23; NyybZIP-54.29 was in group 24; and NyybZIP-87.31

and NyybZIP-27.61 were in group 25.

In addition, phylogenetic analysis showed that motif 1 was the

basic DNA-binding region of bZIP domain, motif 3 and motif 4

were the common Leucine zipper structure of bZIP domain found

in red algae, and other motifs such as motifs 10, 15, and 16 were

frequently observed in red algae bZIP protein sequences. Notably,

due to their unique structural characteristics, motifs 11, 12, 13, 14,

and 17 were employed as discriminative elements in the

phylogenetic classification of red algae bZIP protein sequences

(Figure 4). Many motifs exist in specific groups, which might be

related to specific biological functions. Throughout the first

evolutionary tree (Supplementary Figure S1), NyybZIPs did not

cluster with the AtbZIP members, the similarity of bZIP proteins

between Ny. yezoensis and A. thaliana showed low amino acid

conservation which may be due to their relatively distant

evolutionary relationship. In the second evolutionary tree

(Figure 3), the bZIP genes of Ny. yezoensis showed good

similarity with that of the other 15 red algae. And NyybZIPs

clustered together with PoubZIPs and NhhbZIPs, which is

consistent with the evolutionary relationships of red algae species.
3.3 Collinearity analysis of the Ny.
yezoensis bZIP gene families

The One-Step MCScanX module within TBtools was used to

identify and analyze tandem and segmental duplication events. And

no tandem and segmental duplication events were detected in the

bZIP gene family members of all these red algae species. Gene

collinearity analysis was carried out between Ny. yezoensis and the

other red algae with gene files and annotation files, the results

showed that only the bZIP genes of No. haitanensis and P.

umbilicalis have collinearity with the ones of Ny. yezoensis

(Figures 5A, B). Twenty and eight NyybZIP genes were

orthologous to the bZIP genes in No. haitanensis and P.
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umbilicalis, respectively. The ratio between the non-synonymous

(Ka) and synonymous (Ks) has been widely used as an index for

measuring the strength and direction of selection pressure. Ka/Ks >

1 means positive selection, Ka/Ks < 1 means purifying selection, and

Ka/Ks = 1 means neutral selection. We found that all identified

collinear gene pairs exhibited Ka/Ks ratio values well below one

(Supplementary Table S3), confirming strong purifying selection

during the evolution of the bZIP gene family in the Bangiaceae

family. This observation aligns with our findings from the unrooted

phylogenetic tree (Figure 3), suggesting that these genes may play

important roles in the evolution of the red algae bZIP gene family.
3.4 Cis-regulatory element analysis of the
Ny. yezoensis bZIP gene families

Cis-regulatory elements play critical roles in the transcriptional

regulation of gene expression and control various biological

processes (Yamaguchi-Shinozaki and Shinozaki, 2005). To further

explore the regulatory mechanisms of the bZIP genes in Ny.

yezoensis growth, development, and stress responses, we analyzed

cis-elements within the promoter sequences (2 kb) of 23 Ny.

yezoensis bZIP genes by the PlantCARE database. Our analysis

identified four main categories of cis-elements: development-

related, light-responsive, phytohormone-responsive, and stress-

responsive (Figure 6). Among these categories, phytohormone-

responsive elements were the most abundant (41.77%), and

included ABRE (involved in abscisic acid responsiveness),

AuxRR-core and the TGA-element (involved in auxin

responsiveness), CGTCA- and TGACG-motifs (involved in

MeJA-responsiveness), and the GARE-motif and P-box (involved

in gibberellin-responsiveness). Light-responsive elements were the

second most abundant (36.38%), followed by the stress-responsive

elements (17.18%). Stress-responsive elements included ARE

(essential for anaerobic induction), the GC-motif (involved in

anoxic-specific inducibility), LTR (involved in low-temperature
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responsiveness), MBS (involved in drought-inducibility), and TC-

rich repeats (involved in defense and stress responsiveness).

Development-related elements (4.66%) were the least abundant

and included circadian (involved in circadian control), CAT-box

(related to meristem expression), MSA-like (involved in cell cycle

regulation), and O2-site (cis-acting regulatory element involved in

zein metabolism regulation). Overall, analysis of cis-acting elements

showed that NyybZIP genes have diverse functions in the

transcriptional regulation of gene expression and control various

biological processes.
3.5 NyybZIP gene expression patterns at
different life stages

Ny. yezoensis exhibits a sophisticated life cycle characterized by

recurrent alternation between two distinct multicellular phases:

gametophytic haploid blades (GAM) and sporophytic diploid

filaments (SPO). Figure 7A illustrates the expression patterns of

the 23 NyybZIP genes across these two life cycle stages. NyybZIP

genes were expressed in both the sporophyte and gametophyte

stages and demonstrated different expression levels. NyybZIP-41.87,

NyybZIP-47.69, NyybZIP-37.21, NyybZIP-37.85, NyybZIP-33.74,

NyybZIP-18.34, NyybZIP-60.54, and NyybZIP-61.67 exhibited

higher expression levels in gametophytes than in sporophytes. In

contrast, other NyybZIP genes exhibited lower expression levels in

gametophytes than in sporophytes. These findings indicate distinct

expression of bZIP genes in Ny. yezoensis across different stages of

growth and development, suggesting specific regulatory roles where

genes highly expressed in one stage may undergo significant

changes in expression levels during another phase. These

observations suggest that various bZIP genes play critical roles in

the growth and development of Ny. yezoensis throughout its life

cycle stages.

Next, we designed primers for seven NyybZIPs and performed

quantitative real-time polymerase chain reaction (qRT–PCR)
FIGURE 2

(A) Motifs and gene structures of the NyybZIP genes. (B) Chromosome distribution of the Ny. yezoensis bZIP genes. UTR, untranslated region; CDS,
coding sequence.
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analysis (Figure 7B). Nyy-27.81, Nyy-71.71, Nyy-25.16, and Nyy-

20.27 were highly expressed in SPO and exhibited lower levels in

GAM. Conversely, Nyy-37.21, Nyy-18.34, and Nyy-60.54 exhibited

low expression in SPO but were highly expressed in GAM. The

qRT-PCR results validate the authenticity and reliability of the
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NyybZIP RNA-seq data in the two life cycle stages and provide a

foundation for further investigation into the regulatory mechanisms

underlying the differential expression patterns of bZIP genes in Ny.

yezoensis at different life stages.
3.6 NyybZIP gene expression profile
analysis under nitrogen stress

To explore the impact of nitrogen stress on Ny. yezoensis, we

investigated the differential expression patterns of NyybZIP family

members in response to abiotic stress. Based on the RNA-seq data

from nitrogen stress treatments, we identified a subset of NyybZIP

genes that exhibited differential expression levels. A heat map was

constructed to visualize these findings (Figure 8A). Most of the

NyybZIP genes exhibited higher expression levels under low

nitrogen stress, with NyybZIP-54.29, NyybZIP-83.31, NyybZIP-

101.62, NyybZIP-61.67, NyybZIP-41.87, NyybZIP-18.34, NyybZIP-

33.74, NyybZIP-60.54, NyybZIP-71.71, and NyybZIP-20.27

demonstrating higher expression levels in the N0 group compared

to those of the C group. However, NyybZIP-47.69 and NyybZIP-

25.16 had lower expression levels in the N0 group compared to

those in the C group. These results suggest that NyybZIP genes can

exhibit responsive expression under nitrogen stress, which is

consistent with observations in previous studies on A. thaliana

(Sun et al., 2012; Alvarez et al., 2014).

Next, we designed primers for five representative NyybZIPs and

conducted qRT-PCR analysis (Figure 8B). Our results revealed that

Nyy-33.74, Nyy-60.54, Nyy-20.27, and Nyy-71.71 were highly

expressed in the N0 group and exhibited lower expression levels

in the C group. However, Nyy-25.16 exhibited low expression in the

N0 group but was highly expressed in the C group. The qRT-PCR

results validated the RNA-seq data, suggesting that under low

nitrogen stress conditions, NyybZIP genes can respond to stress

by altering expression levels. These results provide a foundation for

further investigations into the potential roles of these genes under

nitrogen stress and their associated functions.
4 Discussion

4.1 Identification and characterization of
the Ny. yezoensis bZIP gene families

Ny. yezoensis, a key species in the commercial cultivation of edible

marine macroalgae, has a sophisticated life cycle (Blouin et al., 2011).

Like other plants, Ny. yezoensis is subjected to abiotic stresses,

including nitrogen. The bZIP genes play an important role in the

regulation of growth, development, and abiotic stress responses

(Landschulz et al., 1988). The number of bZIP family members

varies among different plant species, including 78 members in A.

thaliana (Dröge-Laser et al., 2018), 19 in No. haitanensis

(Wang et al., 2023), and 92 in rice (Corrêa et al., 2008). Despite

extensive research on bZIP families in numerous plant species,

relatively few studies have characterized bZIP families in red algae.

From previous research in No. haitanensis (Wang et al., 2023), we
FIGURE 3

Phylogenetic relationship and conserved motifs of the bZIP proteins
from 16 species of red algae. Different motifs are represented by
different colored boxes. Conserved motifs were scanned
with MEME.
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found that the bZIP protein sequences of some red algae did not fit

well into the classification established for A. thaliana (Dröge-Laser

et al., 2018), a considerable fraction of them cannot be classified

effectively. Moreover, the red algae species selected in the article are

limited. So, in the present study, we selected the annotation results,

gene sequence and protein sequence uploaded by Ny. yezoensis in

NCBI as the data support, and gathered protein information from

NCBI and EukProt (Brawley et al., 2017) from 14 representative

species covering all seven classes of Rhodophyta. We identified 23

bZIP family members in Ny. yezoensis and found that the number of

bZIP family members in these red algae ranged from 4 to 45. This

count is notably lower when compared to A. thaliana and other
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plants, which is consistent with previous research (Bhattacharya et al.,

2018). We observed no direct correlation between the size of red algal

genomes and the number of bZIP family members.

In our analysis of bZIP family genes in Ny. yezoensis, we

investigated the chromosome locations, number of introns,

protein lengths, molecular weights, pI values, instability indices,

and subcellular localizations. Our findings revealed that the number

of introns ranged from 0 to 2, and the gene structure was relatively

simple, which is consistent with observations in Malus domestica

(Zhao et al., 2016). The presence of absence of introns has been

linked to the upregulation of genes in response to diverse stressors

(Jeffares et al., 2008), suggesting that the intron number plays a
FIGURE 4

Discriminative motifs in the phylogenetic classification of Ny. yezoensis bZIP protein sequences.
FIGURE 5

(A) Synteny analysis of the bZIP genes between Ny. yezoensis and No. haitanensis. (B) Synteny analysis of the bZIP genes between Ny. yezoensis and P.
umbilicalis. The gray lines in the background indicate collinear blocks within the three red algal genomes. The red lines highlight syntenic bZIP gene pairs.
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significant role in the diversification within multigene families

(Wang et al., 2015). Genes with fewer introns are often associated

with rapid activation in response to various stress conditions

(Jeffares et al., 2008). The instability index estimates protein

stability as a predictive measure, where values less than 40

generally indicate stable proteins (Gasteiger et al., 2005).

Interestingly, our results showed that the instability indices of all

Ny. yezoensis bZIPs were greater than 40, indicating that they were
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unstable proteins. This instability is regarded as a universal

characteristic of stress-responsive proteins (Gao et al., 2022).

However, the subcellular localization of proteins is closely related

to their function, and proteins can only perform their proper

functions at specific subcellular sites (Wang et al., 2014). Taken

together, our results provide a reference for further investigation

into the functional aspects of the bZIP protein family in

Ny. yezoensis.
FIGURE 6

Analysis of 2 kb upstream cis-acting elements found in red algae bZIP genes. The different colors and numbers of the grid indicate the numbers of
different promoter elements.
FIGURE 7

(A) NyybZIP gene expression patterns at different life stages. (B) Expression analysis of seven representative genes from the Ny. yezoensis bZIP family
at different life stages. GAM, gametophytic haploid blades; SPO, sporophytic diploid filaments; **indicates a significant difference of p<0.01.
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4.2 Phylogenetic classification of red
algae bZIPs

We also investigated red algae bZIPs to classify and analyze the

origin of their gene families. In T. aestivum, Glycine max and other

plants, classification standards often use A. thaliana bZIP proteins

based on the homology of their basic region, and additional conserved

motifs have been proposed (Dröge-Laser et al., 2018). However,

research on bZIP proteins in No. haitanensis (Wang et al., 2023)

and our study found that most sequences of red algae bZIPs did not

align with the classification system based on A. thaliana. This

situation may be due to the early separation of the red algae with

Viridiplantae. Thus, we classified bZIP protein sequences from 16

species of red algae into 30 groups using phylogenetic and motif

analyses and provides a basis for the classification of Ny. yezoensis.

However, owing to the lack of functional studies related to bZIP

proteins in red algae, we can only conduct theoretical classification

based on the currently available red algae protein sequence data.

Nonetheless, this study can serve as a reference for future research on

bZIP proteins in red algae and contribute to the investigation of their

functions and roles.
4.3 Gene replication and collinearity
analyses of the Ny. yezoensis bZIPs

Research indicates that genomic and gene duplication events

play significant roles in plant evolution (Flagel and Wendel, 2009).

Tandem and segmental duplications have also been frequently

observed in the bZIP family genes within both M. domestica
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(Wang et al., 2021) and P. pyrifolia (Ma et al., 2021), and have

contributed to the expansion and diversification of gene families.

However, in Ny. yezoensis and other red algae, tandem duplications

and segmental duplications were not detected, which is consistent

with studies conducted on the red algae species No. haitanensis

(Wang et al., 2023). Furthermore, we analyzed the collinearity

between the bZIP genes of Ny. yezoensis and other red algae. The

results proved that the bZIP genes of Ny. yezoensis had collinear

gene pairs with No. haitanensis and P. umbilicalis. These three

species had relatively close evolutionary relationships. And the

calculated values of the Ka/Ks ratio for such gene pairs were less

than 1, indicating that the bZIP gene family in these species likely

underwent strong purifying selection pressure during evolution.
4.4 Expression and potential functions of
the Ny. yezoensis bZIP gene families

Cis-regulatory elements play critical roles in the transcriptional

regulation of gene expression and control various biological processes

(Yamaguchi-Shinozaki and Shinozaki, 2005), making them essential

tools for exploring the functions of bZIP proteins across numerous

species (Hsieh et al., 2010; Wang et al., 2017). For example, under

ABA and abiotic stress treatments, A. thaliana and Solanum

lycopersicum plants exhibit overexpression of SlAREB, which

regulates genes associated with stress responses, and overexpression

of ABP9 in cotton results in increased sensitivity to exogenous ABA

at seed germination, root growth, stomatal aperture, and stomatal

density. All plant genes using the ABRE system require bZIP proteins

for expression (Liao et al., 2008). In our study, ABRE was identified in
FIGURE 8

(A) The significant differential expression patterns of select NyybZIP genes under nitrogen stress. (B) Expression analysis of five representative genes
from the Ny. yezoensis bZIP family under nitrogen stress. N0, zero nitrogen group; C, control group. ** and * indicate significant differences of
p<0.01 and p<0.05, respectively.
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all of the NyybZIP gene promoter sequences, suggesting that ABRE-

mediated regulation may contribute to the involvement of NyybZIP

genes in response to nitrogen stress. Previous articles in A. thaliana

found that different bZIP genes affected the growth and development

of different tissues (Murmu et al., 2010; Maier et al., 2011; Iglesias-

Fernández et al., 2013). And in this study, we discovered that all

NyybZIP genes displayed distinct expression levels at different life

stages. So, we thought that these genes are involved in Ny. yezoensis

growth and development.

Research has shown that nitrogen deficiency had a great impact

on plant yield and quality. At the same time, nitrogen played an

equally important role in Ny. yezoensis. When the cultivation area

was short of nitrogen, severe thallus discoloration (“iroochi”) would

occur, resulting in lower quality ofNy. yezoensis (Oyama et al., 2008).

Based on A. thaliana research, bZIP protein sequences have been

shown to play significant roles in nitrate stress, such as nitrate uptake,

and nitrate responses (Sun et al., 2012). In A. thaliana roots, bZIP

transcription factor mRNAs accumulated strongly after nitrate

treatment, and regulated the expression of nitrate transporter genes

NRT2.1 and NRT2.2 (Alvarez et al., 2014). Therefore, bZIP

transcription factor played an important role in nitrogen

absorption and transport Additional plant studies have

demonstrated that multiple bZIP transcription factors are

associated with nitrogen stress responses. For example, in G. max,

the overexpression of GmbZIP44, GmbZIP62, and GmbZIP78 can

notably increase nitrogen stress tolerance and they were negative

regulators of ABA signaling and function in stress (Liao et al., 2008).

In T. aestivum, lower the expression of TabZIP60 by RNA

interference can increase NADH-dependent glutamate synthase

(NADH-GOGAT) activity, N uptake and so on, while

overexpression of TabZIP60 had the opposite effects

(Yang et al., 2019). However, the role of bZIP sequences in Ny.

yezoensis needs to be further explored. In the present study, under

nitrogen deficiency conditions, there were differences in gene

expression levels, which was consistent with previous studies in A.

thaliana and other plants. So, we thought that NyybZIP genes may

play a significant role in nitrogen deficiency response ofNy. yezoensis.

However, additional studies are required to elucidate the roles of

specific genes.
5 Conclusions

In the present study, we identified 23 bZIP genes in Ny.

yezoensis and performed a comprehensive analysis of NyybZIP

genes based on gene structures, conserved motifs, phylogenetic

relationships and so on. Then, they were identified and sorted into

13 out of 30 groups, which were classified based on the bZIPs of Ny.

yezoensis and 15 other red algae species. Phylogenetic analysis

revealed that bZIP genes may have a complex evolutionary

pattern in red algae. In addition, cross-species collinearity analysis

indicated that the bZIP genes in Ny. yezoensis, No. haitanensis and
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P. umbilicalis are highly evolutionarily conserved. Finally, we

identified four main categories of cis-elements, including

development-related, light-responsive, phytohormone-responsive

and stress-responsive promoter sequences in NyybZIP genes and

also explored the expression profiles of NyybZIP genes at different

life stages and under nitrogen stress using RNA-seq data and

performed qRT–PCR analysis of these genes. This study aids in

developing a more thorough understanding of NyybZIP genes and

creates a foundation for future functional characterization efforts. In

addition, our study provides new insights into the classification of

bZIP gene families in red algae and contributes to our

understanding of the adaptability of Ny. yezoensis to nitrogen

stress and the significant differences in gametophytic and

sporophytic stages.
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