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Genomic selection in forest
trees comes to life: unraveling
its potential in an advanced
four-generation Eucalyptus
grandis population
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Pamela V. Villalba4, Carmelo Centurión1, Dario Grattapaglia5

and Eduardo P. Cappa2,3*
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Instituto de Recursos Biológicos, Centro de Investigación en Recursos Naturales, Buenos
Aires, Argentina, 3Consejo Nacional de Investigaciones Cientı́ficas y Técnicas (CONICET), Buenos
Aires, Argentina, 4Instituto de Agrobiotecnologı́a y Biologı́a Molecular (IABiMo), INTA-CONICET,
Buenos Aires, Argentina, 5Plant Genetics Laboratory, EMBRAPA Genetic Resources and
Biotechnology, Brasilia, Brazil
Genomic Selection (GS) in tree breeding optimizes genetic gains by leveraging

genomic data to enable early selection of seedlings without phenotypic data

reducing breeding cycle and increasing selection intensity. Traditional

assessments of the potential of GS in forest trees have typically focused on

model performance using cross-validation within the same generation but

evaluating effectively realized predictive ability (RPA) across generations is

crucial. This study estimated RPAs for volume growth (VOL), wood density

(WD), and pulp yield (PY) across four generations breeding of Eucalyptus

grandis. The training set spanned three generations, including 34,461 trees

with three-year growth data, 6,014 trees with wood quality trait data, and 1,918

trees with 12,695 SNPs (single nucleotide polymorphisms) data. Employing

single-step genomic BLUP, we compared the genomic predictions of breeding

values (GEBVs) for 1,153 fourth-generation full-sib seedlings in the greenhouse

with their later-collected phenotypic estimated breeding values (EBVs) at age

three years. RPAs were estimated using three GS targets (individual trees, trees

within families, and families), two selection criteria (single- and multiple-trait),

and training populations of either all 1,918 genotyped trees or the 67 direct

ancestors of the selection candidates. RPAs were higher for wood quality traits

(0.33 to 0.59) compared to VOL (0.14 to 0.19) and improved for wood traits (0.42

to 0.75) but not for VOL when trained only with direct ancestors, highlighting the

challenges in accurately predicting growth traits. GS was more effective at

excluding bottom-ranked candidates than selecting top-ranked ones. The

between-family GS approach outperformed individual-tree selection for VOL

(0.11 to 0.16) and PY (0.72 to 0.75), but not for WD (0.43 vs. 0.42). Furthermore,

higher levels of relatedness and lower genotype by environment (G × E)

interaction between training and testing populations enhanced RPAs for VOL

(0.39). In summary, despite limited effectiveness in ranking top VOL individuals,
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GS effectively identified low-performing individuals and families. These multi-

generational findings underscore GS’s potential in tree breeding, stressing the

importance of considering relatedness and G × E interaction for

optimal performance.
KEYWORDS

genomic selection effectiveness, seedling stage, predicted genomic breeding value,
observed breeding value, Eucalyptus
1 Introduction

Genomic selection (GS) has become a transformative approach

in animal and plant breeding in the last two decades (Meuwissen

et al., 2001). GS harnesses genotype and phenotype data from a

training (or reference) population to predict genomic breeding

values of genotyped but non-phenotyped selection candidates. In

contrast to traditional breeding methods, which rely exclusively on

phenotypic and pedigree information, GS offers a unique advantage

in long-lived perennial trees. It significantly shortens the breeding

cycle by enabling early-stage assessment of genetic potential

through marker-based genotype evaluation (Lebedev et al., 2020).

Consequently, the need for protracted and costly field testing of

offspring, typically required for phenotypic evaluation, is reduced or

even eliminated. Such early assessment is especially valuable in trees

since most economically relevant traits either manifest late in

development or are challenging and costly to measure (Jurcic

et al., 2023). Ultimately, these advancements are expected to lead

to a substantial increase in genetic gain per unit of time in a tree

breeding program (Grattapaglia, 2022).

The potential of GS in forest trees is frequently assessed through

measures such as the prediction accuracy (correlation between

genomic predictions of breeding values -GEBVs- and observed

phenotypes) or predictive ability (correlation between GEBVs and

true breeding values). Typically, these model performances are

evaluated through cross-validation analyses on individuals within

the same generation, subdivided into calibration and validation sets

(see Grattapaglia, 2022 for a recent review). Cross-validation is a

valuable technique for evaluating and contrasting genomic

prediction models in terms of accuracy and bias (Putz et al.,

2017). Nevertheless, prediction accuracies obtained from cross-

validation may not accurately reflect the GS accuracy expected

across multiple generations in breeding programs. Only a few

empirical GS studies in forest trees have looked at predictions

spanning more than two generations (Bartholomé et al., 2016;

Haristoy et al., 2023).

Accurate assessments of prediction accuracy, or predictive ability,

can only be made after the completion of the GS cycle (i.e., a

posteriori; Werner et al., 2020). That is, it is crucial to match the

GEBVs predictions of young candidates to their phenotypic values

assessed in experimental field trials. This approach confirms the
02
accuracy of genomically selected breeding parents and offspring

candidates and provides insights on the correspondence between

the proportion of selection candidates selected using genomic

information versus those that would be selected based on their

measured phenotypes (Herter et al., 2019). Only through such

rigorous evaluation can tree breeders assess the effectiveness of GS

in tree breeding. While few studies have explored the realized

predictive ability (RPA) in crops (Rutkoski et al., 2015; Herter et al.,

2019), this question has received even less attention in tree breeding.

In a recent study, however, the effectively RPA was evaluated for

volume growth in an operational program of hybrid Eucalyptus

(Simiqueli et al., 2023). That study compared the predictive ability

using diverse training populations, with different levels of relatedness

to the selection candidates. GEBVs were estimated for a set of 197

selection candidates at the seedling stage, which were grown and

eventually phenotyped for volume growth at age six years. The

highest RPA were achieved when GS models were trained only

with the direct parents (n = 18) of the selection candidates, in line

with earlier findings in Pinus pinaster (Bartholomé et al., 2016) and

Pseudotsuga menziesii (Thistlethwaite et al., 2019).

The aim of this study was to assess the RPA for growth and

wood quality traits across generations in an operational breeding

program of Eucalyptus grandis (Hill ex Maiden). GEBVs of

seedling candidates for volume growth, wood density, and pulp

yield traits were matched to their estimated breeding values

(EBVs) from the observed phenotypes at selection age using

data from a four-generation E. grandis breeding population. Our

training population consisted of three generations, including

34,461 trees with recorded growth traits at around age 3, 6,014

trees with recorded wood quality traits, and 1,918 genotyped trees

with 12,695 SNPs obtained with the EUChip60K or the Axiom

Euc72K arrays. Building on a previous report (Simiqueli et al.,

2023) we also evaluated the effectiveness of using exclusively

genotype and phenotype data of the 67 direct or immediate

ancestors (including parents, grandmothers, and great-

grandmothers) as a training population. Using single-step

genomic best linear unbiased prediction (ssGBLUP) we

predicted the GEBVs of 1,153 fourth-generation full-sib

selection candidate seedlings. Subsequently, these trees were

grown and phenotyped at age three providing the phenotypic

data for estimating their EBVs.
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Our main objectives were: (1) to calculate the RPA, that is the

correlation between the GEBVs and the EBVs estimated from the

observed phenotypes using the conventional pedigree-based

selection and (2) to determine the coincidence rate between the

proportions of genomically and phenotypically selected trees and

families in the top and bottom tiers of the ranks. Two different

training sets based on genotype and phenotype data spanning the

first three generations were used: (1) including all 1,918

genotyped trees, or (2) using only the data for the 67 direct

ancestors of the selection candidates. The RPAs were evaluated

for three different selection targets: individual trees overall

selection candidates, individual trees within families, and

families. Two selection criteria were implemented: single-trait

selection, where the top-ranked trees or families were chosen

based on the GEBVs for each trait separately, and multiple-trait

selection using a selection index for the three studied traits. To

assess the efficacy of GS, we compared the genomically selected

sets with a random sample of individuals or families for

comparison (Resende et al., 2017; Herter et al., 2019). Finally,

we further investigated the impact of variable levels of the average

relationship and genotype by environment (G × E) interaction

between training and testing sets on the RPA, using two genomic

prediction models, ssGBLUP and the classical genomic best linear

unbiased prediction (GBLUP).
2 Materials and methods

2.1 Plant material, phenotypic
measurements, and trial description

This study was performed on a subset of Eucalyptus grandis

(Hill ex Maiden) (hereafter E. grandis) trees of the fourth-

generation breeding population belonging to UPM-Forestal

Oriental S.A. In total, 35,378 trees in 13 open pollinated half-sib

(HS) and full-sib (FS) family trials planted between 1992 and 2020

were measured at around age three (excepting for three second-

generation trials assessed at age 13) for diameter at breast height

(DBH, at 1.3 m from the ground, cm) and total tree height (HT, m),

and their wood volume (VOL, m3) estimated. Near-Infrared (NIR)

spectroscopy was used to estimate pulp yield (%, PY), and wood

density (kg.m-3, WD) for a subset of 6,869 trees. This E. grandis

breeding population involves four generations. The first one

comprised three open-pollinated trials. The second encompassed

three predominantly FS and one HS progeny trials. The third

generation consisted of two HS and three FS progeny trials.

Finally, the fourth generation included 54 FS families derived

from 34 parents, with 1,135 trees at the seedling stage in the

greenhouse. These trees were later planted in a FS progeny trial

and phenotyped for growth (917 trees) and the wood quality traits

mentioned (855 trees) at age three. These 54 families became 64

following pedigree correction (see below).

Each progeny trial was established using an incomplete block

design (IBD) with an alpha-lattice arrangement. The trials varied

between 5 to 32 replications, with 6 to 25 incomplete blocks. Trees

within these blocks were planted in either single-tree or 4-tree row
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plots, with spacing ranging from 3.0 × 2.0 m to 4.0 × 2.25 m.

Detailed information on the generation, test type, number of

families, and experimental design for each of the 13 progeny trials

across the four-generation E. grandis breeding program is provided

in Supplementary Table S1.

Prior to the analyses, all the phenotypic data were spatially

adjusted (e.g. Dutkowski et al., 2016) using the design effects

estimated for each trait and site through a pedigree-based

classical a priori design model. Design-adjusted phenotypic data

were obtained for each tree for each trait and site by subtracting the

estimated replicate, and incomplete block effects from the original

phenotype. Data of all traits were standardized (mean = zero and

variance = 1). The list of traits, number of trees measured for each

trait, and summary statistics for all the phenotypic traits in their

original scale (i.e., without design-adjustment or standardization)

are presented (Table 1).
2.2 Molecular markers

SNP marker data was obtained for a total of 2,971 trees. A

subset of 1,122 trees belonging to the first, second, and third

generations were genotyped with the EUChip60K Illumina chip

(Silva-Junior et al., 2015), and the remaining 1,849 trees only from

the third and fourth generations were genotyped with the Axiom

72K Eucalyptus SNP Array (ThermoFisher, Santa Clara, CA). The

number of genotyped trees categorized by generation and allotted to

the training sets and selection candidates are informed (Table 1).

Analyses were conducted using the 28,177 SNP markers shared by

the two genotyping platforms. SNP markers were filtered retaining

those with minor allele frequency (MAF) ≥ 0.05, and Call Rate (CR)

≥ 0.95 using the R-package (www.r-project.org) synbreed (Wimmer

et al., 2012). Mendelian conflicts > 0.1 were also checked using

qcf90 program (Masuda et al., 2019) of the BLUPF90 family

(Misztal et al., 2018). As a result, a total of 12,695 SNP markers

were used in the subsequent genetic analyses.
2.3 Pedigree correction

Pedigree correction was done using a custom R-script and was

based on the comparison of expected (pedigree) versus observed

(molecular) additive genetic relationships (Muñoz et al., 2014)

across the four generations. The pairwise additive relationship

coefficients in the G-matrix were examined for significant

deviations from their expected values (e.g., 0.25 for half-sib and

0.50 for full-sib). Subsequently, manual corrections were made, and

parentage was reassigned.

For trees in the fourth generation, pedigree records of a total of

77 samples were corrected based on the SNP data. These changes

primarily resulted from the identification of an unknown father (for

three trees), the recognition of 23 trees with incorrect fathers, 17

trees that were not linked to any of the initially assigned parents,

and the correction of 6 misidentified fathers. Additionally, 36 trees

had their parentage, either father and/or mother, reassigned.

Finally, the corrected pedigree showed the 1,053 trees originating
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from 35 parents (34 of the original parents plus 1 new unsampled

father). The number of genotyped trees per family ranged from 1 to

30. Notably, the underrepresented families were generally those in

which one of the parents had been corrected.
2.4 Statistical analysis

We performed a pedigree-based best linear unbiased prediction

(ABLUP) analysis and a genomic-based ssGBLUP analysis for each

trait. The ABLUP used the following individual-tree mixed model

for each trait:

y = Xb + Za + e (1)

where y is the vector of adjusted phenotypes, b is the vector of

fixed effect of genetic group formed according to the degree of

genetic improvement (breeding cycle generation, or introductions);

a is a vector of random additive genetic effects or breeding values

distributed as a∼N(0,As 2
a ) where A is the average numerator

relationship matrix derived from the pedigree (Henderson, 1984),

and s 2
a   is the additive genetic variance. X and Z are the incidence

matrices for the fixed and random effects; and e is the vector of

random residuals distributed as e∼N(0, Is 2
e ) where I is the identity

matrix and s 2
e is the residual variance.

In order to fit the ssGBLUP models, the pedigree-based

relationship A-matrix of model [1] was replaced by the combined

pedigree- and marker-based relationship H-matrix, of the same

dimension as the A-matrix. Actually, only the inverse ofH is needed

to fit the ssGBLUP models. Therefore, the inverse of the H-matrix
Frontiers in Plant Science 04
(H–1) was obtained as follows (Legarra et al., 2009; Misztal et al.,

2009; Aguilar et al., 2010; Christensen and Lund, 2010):

H−1 = A−1 +
0 0

0 l(G−1 − A−1
22 )

" #

where l scales the differences between genomic and pedigree-

based information, G–1 is the inverse of the genomic relationship

matrix (G-matrix), and A−1
22 is the inverse of the pedigree-based

relationship matrix for the genotyped individuals. In all our

analyses, the scale parameter was set to l = 0.95.

The narrow-sense individual heritability for the ABLUP and

ssGBLUP analyses, ĥ 2, was estimated for each trait as: ĥ 2 =

ŝ 2
a=(ŝ 2

a + ŝ 2
e ), where ŝ 2

a represents the estimated genetic

variance, and ŝ 2
e denotes the estimated residual variance from the

individual-tree mixed model [1] using pedigree-based (ABLUP)

and the combined pedigree- and marker-based (ssGBLUP)

relationship matrices.

The blupf90+ software of the BLUPF90 family (Misztal et al.,

2018) was utilized to estimate the variance components and their

functions (heritabilities) and to predict the breeding values for the

ABLUP and the ssGBLUP models (Equation 1).
2.5 Training populations

Our training population consisted of trees belonging to three

generations prior to the fourth generation where the selection

candidates were sampled. These three generations included 34,461

trees with recorded growth traits at around age three, 6,014 trees
TABLE 1 Summary of data available for the training set and selection candidates in the study.

Trait Populations for training set
Selection
candidates

Total

Generation 1 2 3 4 4

No. sites 3 4 5 1 13

Test type OP OP-CP OP-CP CP OP-CP

No. records VOL 17317 9071 8073 917 35378

WD 1045 2025 2944 855 6869

PY 1045 2025 2944 855 6869

Total genotyped trees 72 817 1029 1053 2971

Direct ancestors of selection candidates 11 23 33 – 67

Trait Mean (SE)
All trees

VOL 0.020 (0.000) 0.207 (0.002) 0.084 (0.001) 0.021 (0.001) 0.083 (0.001)

WD 526.3 (1.92) 495.5 (1.11) 385.6 (0.61) 428.6 (1.06) 444.7 (0.87)

PY 49.1 (0.09) 49.9 (0.04) 50.5 (0.04) 52.7 (0.04) 50.4 (0.03)

Trait Mean (SE)
Genotyped trees

VOL 0.030 (0.001) 0.220 (0.005) 0.131 (0.001) 0.021 (0.001) 0.120 (0.002)

WD 539.5 (5.52) 490.3 (1.89) 381.2 (1.02) 428.4 (1.09) 432.0 (1.15)

PY 49.6 (0.28) 50.3 (0.06) 51.4 (0.05) 52.8 (0.04) 51.4 (0.03)
Data include the number of sites, test types, and records for volume (VOL), wood density (WD), and pulp yield (PY). Information are provided on the total number of genotyped trees, direct
ancestors to the selection candidates, and mean with standard errors (SE) for each trait.
OP, Open-pollinated; CP, Control-pollinated.
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with recorded wood quality traits, and 1,918 of them genotyped.

Following recent realized predictive ability results in Eucalypts

(Simiqueli et al., 2023), we also evaluated an alternative training

model including exclusively a set of 67 ancestors of a total of 94 in

the three prior generations that had direct relationship with the

fourth-generation selection candidate trees. This subset consisted of

parents (33 out of 34), grandmothers (23 out of 31), and great-

grandmother (11 out of 29), all of them both phenotyped and

genotyped (see Table 1). For this reduced training population, all

other 1,851 trees exhibiting more distant genetic relationships with

the selection candidate were not used. The network representation

of the pedigree-based relationship matrix for the 2,971 genotyped

trees (Supplementary Figure S1) displays a central core cluster

comprising the 67 direct ancestors along with relatives such as

aunts (0.125) and great-aunts (0.0625) from the three prior

generations, all of which have genetic connections to the 1,053

fourth-generation selection candidate trees. The outer ring cluster,

which includes slightly fewer than 1,851 trees, exhibits more distant

genetic connections (< 0.001) with the selection candidates,

excluding, for example, aunts and great-aunts from the fourth-

generation selection candidate trees.
2.6 Realized predictive abilities

Realized predictive abilities (RPAs) were evaluated for 825

selection candidates (out of 1,053) with genotype and phenotype

data for the three traits studied, originating from 64 families

following pedigree correction (originally 54) of the fourth

generation. RPAs were calculated for three GS approaches that

varied in terms of the individual and family selection target. In the

first approach, RPAs were calculated for the top and bottom 90

(11% of 825) overall ranked selection candidates irrespective of

family structure. In the second approach, the RPAs were calculated

considering the 11% top and bottom-ranked trees within each one

of the top 10 families based on their average GEBVs. The family

average GEBVs was calculated based on the average GEBVs of their

offspring members. To ensure precise calculation of the genotypic

means for the families, data for 54 families (out of 64) each

containing six or more individuals were utilized (Rios et al.,

2021). Each family was represented by 9 trees, except one family

that only had 6 trees measured for PY (n = 87). Finally, a third GS

approach consisted in calculating the RPAs for the 10 (19% of 54)

top and bottom-ranked families based on their average GEBVs.

The RPAs were assessed under two selection criteria: single-trait

and multiple-trait. Under single-trait selection, trees or families were

selected for each studied trait separately. In the multiple-trait

selection, trees or families were selected based on a selection index

(Index) combining the three traits with equal weight set at 0.33:

Index = 0.33 × GEBVVOL + 0.33 × GEBVWD + 0.33 × GEBVYP, where

GEBVVOL, GEBVWD, and, GEBVYP are the GEBVs for the VOL,WD,

and PY, respectively, from the single trait ssGBLUP analysis

(Equation 1).

To further evaluate the effectiveness of GS, following previous a

approach (Resende et al., 2017; Herter et al., 2019), we calculated

the difference in average estimated breeding values (EBVs) between
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the genomically ranked top or bottom trees (or families) and a

random sample of an equal number of trees (or families).

RPAs were calculated by the Pearson correlation between the

GEBVs obtained from the ssGBLUP model and their estimated

EBVs from the pedigree-based ABLUP analysis. RPAs were

calculated for all the combinations of two training populations

(all 1,918 trees in the prior three-generations, or only the 67 direct

ancestors), three selection candidate targets (i.e., individual-trees,

individual-trees within families, and families), and two selection

criteria (single- and multiple- trait). Family averages were

determined by calculating the mean of the GEBVs or EBVs for

the families with six or more trees.

An analysis of variance (ANOVA) on the RPAs was performed

to test for differences in performance between the pedigree

(ABLUP) and each one of the GS approaches and selection

criteria for each trait. A Tukey’s multiple comparison test was

employed at a significance level a = 0.05 to test for the significance

of the difference in average breeding values of trees and families.

This comparison was carried out between the different single- and

multiple-trait selected samples and the corresponding random

samples, for each genomic selection approach and trait.

Furthermore, we assessed the correspondence rate (%) between

the number of candidate trees (or families) that would be

genomically selected at the seedling stage and the number of trees

(or families) that would be selected at age three years based on their

EBVs for different proportions selected (5%, 11%, 15%, 20%, and

25% for individual-trees; 5%, 11%, 16%, 22%, and 27% for

individual-trees within families; 9%, 19%, 28%, 37%, and 46% for

families) within the top and bottom-ranked 825 individual trees and

54 families with more than six individuals.
2.7 Assessment of the impact of training
scenarios and prediction models on the
RPA for volume growth

In light of the complexity of volume growth as a predictable

trait, we additionally examined some aspects affecting the observed

RPAs for this critically important trait. To this end we investigated

the impact of the following factors on the RPA between training and

testing sets always across generations: (1) the variable levels of

average additive relationships; (2) the variable levels of additive

genotype by environment (G × E) interactions; and (3) different

genomic prediction models, comparing ssGBLUP versus the

classical genomic GBLUP model. Moreover, we evaluated the

training population composition, including either all available

genotyped trees or only the direct ancestors. To evaluate the

influence of the average additive relationships, we calculated the

pairwise average pedigree-based relationship between specific

progeny trials used as training and testing sets (12 in total,

Table 1). For assessing the impact of G × E interactions, we

conducted an ABLUP analysis across the 12 sites with an

unstructured additive genetic covariance matrix to estimate the

genetic correlation between sites (Cappa et al., 2022). The estimates

of the average relationships and genetic correlations between sites

(G × E interactions) are summarized in Supplementary Table S2.
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Based on these variable levels of average relationships and site

correlations we built six training-to-testing scenarios across

generations. These scenarios were designed to evaluate the

effects of higher and lower average relationships and G × E

interaction, under two analytical prediction models (ssGBLUP

and GBLUP) and two training population compositions (all

individuals or direct ancestors only), on the RPAs for volume

growth. Specifically, the training populations included first-

generation trial 2 and second-generation trials 4 and 7, while

the testing population for all scenarios was the third-generation

trial 8. The volume and pedigree data comprised information for

8,092, 829, and 6,967 trees from trials 2, 4, and 7, respectively,

while trial 8 included 3,158 trees. The genotypic data comprised

71, 40, and 773 genotyped trees from trials 2, 4, and 7, respectively.

In Trial 7, 73 out of 773 genotyped trees have direct relationships

(mothers) to testing trial 8, whereas in Trial 2, 32 out of 71

genotyped trees are grandmothers of trees in trial 8. In trial 4, 8

out of 40 genotyped trees are cousins of the testing trees in trial 8.

The testing trial 8 comprised 549 genotyped trees. The closest

relationships between trials 7, 2, and 4 with the testing trees in trial

8 are as follows: trial 7 includes most of the mothers (85 out of

126), with the remaining mothers coming from another trial (10)

and the base population (31). Trial 2 comprises most of the

grandmothers (49 out of 92) of the candidate trees in trial 8,

with the rest coming from the base population. Finally, trial 4

includes 61 cousins of trees in trial 8.

We employed the ABLUP to estimate the EBVs and the

ssGBLUP and classical GBLUP models to estimate the GEBVs.

The models were evaluated for their ability to predict phenotypic

outcomes (RPAs) in the testing trial 8. The ABLUP and ssGBLUP

models were fitted using Equation 1. For the classical GBLUP

model, the pedigree-based matrix A was substituted with the

marker-based matrix G , but only using the subset of

genotyped trees.
3 Results

3.1 Heritability estimates

Pedigree-based ABLUP heritability estimates ranged from 0.25

to 0.38, while genomic-based ssGBLUP analysis yielded slightly

higher estimates ranging from 0.31 to 0.40. Wood density (WD)

showed the highest heritability at 0.38 and 0.40, closely followed by

pulp yield (PY) at 0.37 and 0.40 (Table 2), while volume growth

(VOL) showed the lowest at 0.25 and 0.31 respectively for ABLUP

and ssGBLUP.
3.2 Impact of training composition on
realized predictive abilities

Realized predictive abilities (RPAs) reached considerably

different values depending on the trait evaluated and the training

population used, but only slightly different whether the selection

target was the individual-tree or the family (Table 3). Low RPAs
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were observed for volume growth (0.11 to 0.19) irrespective of

training population, with a modest improvement of 35-45% when

families instead of individual trees were selected. RPAs for wood

density (0.33 to 0.43) and for pulp yield (0.55 to 0.75) were

substantially higher than for volume growth. For these wood

properties traits, when GS models were trained only with the 67

direct ancestors, the RPA increased by 20-31% but only a slight

increase of 4-7% was seen when selecting families instead of

individual trees. These results are consistent with the higher

heritability of wood properties traits and highlight the crucial

importance of establishing a higher degree of genetic relatedness

and minimizing genotype by environment interactions between the

training set and selection candidates to enhance prediction abilities.

Based on these results, the follow up analyses described below were

carried out based exclusively on the most efficient training

population composed by the 67 direct ancestors of the

selection candidates.
3.3 Efficiency of genomic selection across
individual and family ranks

To evaluate the efficiency of genomic selection (GS) for the

different traits, selection targets and selection criteria, the average

GEBVs were calculated for the trees or families selected by the

different GS approaches tested. In the first assessment the

comparison was against an equivalent number of trees or families

selected at random (Table 4). When the entire selection candidate

population was considered, the average GEBVs was 0.22 for VOL,

0.30 for WD and 0.46 for PY. In the individual-tree GS approach

and focusing on the top 11% (n = 90) genomically ranked trees,

significantly higher average GEBVs were observed for all three traits

compared to the random sample of candidates. Specifically, the

average GEBVs was 0.70 for VOL, 0.82 for WD and 0.79 for PY

compared to 0.44, 0.30 and 0.20 for the corresponding random
TABLE 2 Additive variance (s 2
a ), residual variance (s 2

e ) and heritability
(h2) estimates (and approximate standard errors) obtained with the
ABLUP and ssGBLUP models.

Model
Volume
(VOL)

Wood
Density
(WD)

Pulp
Yield (PY)

ABLUP

s 2
a 0.21 (0.01) 0.33 (0.03) 0.34 (0.03)

s 2
e 0.62 (0.01) 0.54 (0.02) 0.57 (0.03)

h2 0.25 (0.02) 0.38 (0.03) 0.37 (0.03)

ssGBLUP

s 2
a 0.25 (0.01) 0.35 (0.03) 0.37 (0.03)

s 2
e 0.56 (0.01) 0.52 (0.02) 0.55 (0.02)

h2 0.31 (0.02) 0.40 (0.03) 0.40 (0.03)
The values are derived from all available phenotypic information for each studied trait:
Volume, Wood Density, and Pulp Yield. Abbreviation used for the models are described in
the text.
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samples. The average GEBV were slightly lower when GS was

practiced based on a selection index (0.52 for VOL, 0.62 for WD,

and 0.71 for PY). A similar result was observed for the second

selection approach when the average GEBVs of the 11% top and

bottom-ranked trees within each one of the top 10 families were

considered. For the third GS approach, the family average GEBVs

for the 19% (n = 10) top-ranked families, were also higher than the

average GEBVs for an equivalent set of random families, but the

differences were slightly smaller than those observed for individual-

tree selection. Overall, these results show that the implementation

of GS with any of the three selection approaches would result in

considerably higher efficiency compared to a random sampling of

an equivalent number of individual trees or families.

A second way to assess the efficiency of GS was carried out by

comparing the average EBVs of the different samples of the top and

bottom 11% (n = 90) and 19% (n = 10) genomically ranked trees

and families, respectively, to an equivalent number of trees or

families selected at random. In this case, however, a test for

significant difference was applied on the average EBVs (Figure 1;

Supplementary Table S3). For VOL, no significant difference was

seen in the average EBVs between the top and bottom-ranked trees
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and families in any of the three GS approaches. The only significant

difference in average EBV was detected when comparing the

bottom-ranked individual trees (0.67) with the random ones

(0.76) either overall or within-family. For WD, a large and

significant difference in the average EBV was seen between the

top and bottom-ranked individual trees both in the overall (0.67 vs.

-0.30) and within-family (0.43 vs. -0.17) individual-tree selection

approaches. When compared to the random sample, only the top-

ranked trees selected by the overall individual-tree selection

approach had a significantly higher average EBV (0.67 vs. 0.34),

but the genomically bottom-ranked trees had a significantly lower

average EBV by all three GS approaches (-0.30, -0.17 and -0.14 vs.

0.34, 0.29 and 0.61, respectively). For PY, a large and significant

difference in the average EBV was seen between the top and

bottom-ranked individual trees (or families) in all three genomic

selection approaches. Similar to WD, when compared to the

random sample only the top-ranked trees for PY selected by the

overall individual-tree selection approach had a significantly higher

average EBV, but the bottom genomically ranked trees had a

significantly lower average EBV by all three GS approaches

(Figure 1; Supplementary Table S3). These findings substantiate
TABLE 4 Average and ranges of genomic estimated breeding values (GEBVs) for different genomic selection targets and variable selection criteria for
the three evaluated traits.

Genomic selection target Genomic Selection approach VOL WD PY

All selection candidates 0.22 (-0.67 – 1.17) 0.30 (-0.39 – 0.95) 0.46 (0.17 – 0.83)

Individual-tree GS

11% top-ranked (n = 90) 0.70 (0.63 – 0.83) 0.82 (0.72 – 0.95) 0.79 (0.63 – 1.17)

11% bottom-ranked (n = 90) 0.26 (0.17 – 0.30) -0.20 (-0.39 – -0.02) -0.40 (-0.67 – -0.28)

Multiple-trait index selected 0.52 (0.26 – 0.83) 0.62 (0.34 – 0.88) 0.71 (0.07 – 1.17)

Equal size random sample 0.44 (0.20 – 0.75) 0.30 (-0.37 – 0.84) 0.20 (-0.56 – 1.13)

Individual-tree within-family GS

11% top-ranked (n = 90) 0.67 (0.55 – 0.83) 0.77 (0.53 – 0.95) 0.71 (0.46 – 1.17)

11% bottom-ranked (n = 90) 0.26 (0.17 – 0.32) -0.12 (-0.39 – 0.12) -0.36 (-0.67 – -0.20)

Multiple-trait index selected 0.53 (0.31 – 0.83) 0.58 (0.34 – 0.88) 0.63 (0.07 – 1.17)

Equal size random sample 0.45 (0.20 – 0.72) 0.36 (-0.33 – 0.94) -0.06 (-0.56 – 0.50)

Between-family GS

19% top-ranked (n = 10) 0.66 (0.58 – 0.75) 0.75 (0.59 – 0.86) 0.67 (0.57 – 1.06)

19% bottom-ranked (n =10) 0.29 (0.23 – 0.34) -0.08 (-0.28 – 0.10) -0.34 (-0.53 – -0.21)

Multiple-trait index selected 0.51 (0.31 – 0.75) 0.55 (0.34 – 0.81) 0.60 (0.13 – 1.06)

Equal size random sample 0.43 (0.28 – 0.68) 0.45 (0.18 – 0.81) 0.34 (-0.31 – 1.06)
See text for details.
TABLE 3 Realized predictive abilities (RPAs) estimated by a Pearson correlation between genomic estimated breeding values (GEBVs) from ssGBLUP
and estimated breeding values (EBVs) from the pedigree-based ABLUP phenotypic model for the two alternative training populations: (1) 1,918 trees
from the three prior generations to the selection candidates, and (2) the 67 direct ancestors to the selection candidates.

Trait
Training population with all 1,918 trees of prior generations Training population with 67 direct ancestors

Individual-tree Between-family Individual-tree Between-family

Volume 0.14 0.19 0.11 0.16

Wood Density 0.33 0.35 0.43 0.42

Pulp Yield 0.55 0.59 0.72 0.75
Results are presented for individual-tree and between-family genomic selection.
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the previous results that different efficiencies are expected

depending on the trait, but that GS may prove more effective in

identifying candidate trees or families with inferior performance

rather than those with superior performance.

A third way to illustrate the results of our experiment was

by plotting the estimated GEBVs (x-axis) and corresponding EBVs

(y-axis) for all 825 selection candidate trees and indicating the

selected trees in the different target samples by different colour
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codes (Figure 2). The graphs illustrate the previously mentioned

results showing that the highest RPA when overall individual-tree

selection was applied was at 0.72 for PY, followed by 0.43 for WD,

and 0.11 for VOL (Table 3). When family selection was applied,

RPAs for PY and VOL improved slightly to 0.75 and 0.16, while it

remained nearly constant for WD at 0.42. The colour codes also

indicate the 11 - 19% top (in blue) and bottom (in pink)

genomically ranked individuals and families. In red the individual
FIGURE 1

Box-plots showing the distribution of the estimated breeding values (EBVs) for each trait, across genomic selection targets and selection criteria.
Within each trait, common letters above box-plots indicate nonsignificant differences (a = 0.05) according to a Tukey test. Average EBVs are
indicated below the box-plots. The percentages 11% and 19% correspond to the top- and bottom-ranked trees and families, respectively. Traits are:
VOL, Volume; WD, Wood Density; PY, Pulp Yield. See text for details on the genomic selection targets and selection criteria.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1462285
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Duarte et al. 10.3389/fpls.2024.1462285
trees or families that were selected based both on single-trait and

multiple-trait index, and in green those that were selected only by

multiple-trait index selection. These plots corroborate visually that

genomic selection was essentially inefficient for VOL when

compared with the results seen for for WD and PY. A large

number of top-ranked trees and families for VOL by EBVs were

missed by GS, while GS was efficient in identifying several trees and

families in the top ranks of WD and PY. Furthermore, the plots

show that GS was more efficient in identifying the bottom EBV

ranked (in pink) than the top EBV ranked (in blue and red)
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individuals and families. As expected, this was particularly true

for WD and PY but less so for VOL.

A fourth way to evaluate the efficiency of GS was carried out by

investigating the correspondence rate between the number of trees

and families that would be genomically selected at the seedling stage

and the number of trees or families that would be selected at age

three years based on their EBVs for progressively increasing selected

proportions (i.e., progressively decreasing selection intensities). As

expected, irrespective of the GS approach adopted, as the

proportions of selected trees or families increased (i.e., decreasing
FIGURE 2

Scatter plots of the relationship between genomic estimated breeding values (GEBVs) (x-axis) and estimated breeding values (EBVs) from phenotypic
records (y-axis) for individual-tree (left panels) and between-family (right panels) genomic selection approaches. Trees selected by both selection
criteria (single- and multiple-trait) were identified in red. The percentages 11% and 19% correspond to the top- and bottom-ranked trees and
families, respectively. Pearson´s correlation (r) for the plots are provided. The dashed black line acts as a reference line with intercept 0 and slope 1.
See text for details.
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selection intensity) the correspondence rate improved (Figure 3;

Supplementary Tables S4, S5). When examining the top-ranked

trees, at the highest selection intensities (5% and 11% proportions

selected) GS could only identify 2.5% and 5.6% of the top EBV

ranked trees for VOL, but would satisfactorily identify 27.5% and

35.6% of the top EBV ranked trees for WD and 35% and 41.1% of
Frontiers in Plant Science 10
the top EBV ranked trees for PY. When applying a higher selected

proportion of 25%, correspondence rate improved: 31% of the top

EBV ranked trees for VOL, 33.8% for WD and 49% for PY would be

genomically selected. The results show that the correspondence rate

would vary in efficiency when applying individual-tree GS within

families when compared to individual-tree depending on the
FIGURE 3

Correspondence rates (y-axis) between the number of trees and families that would be genomically (GEBV) and phenotypically (EBV) selected in the
top or excluded from the bottom-ranked 11% individual trees (n = 90) and 19% families (n = 10) for increasing selected proportions (x-axis) within
three different genomic selection targets (individual-tree; within-family individual tree and between-family).
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selected proportion and trait. This can be seen by the smaller

correspondence rates for individual-tree GS within families (dark

grey bars) when compared to the individual-tree GS rates (light grey

bars) for WD and PY but not for VOL. Family selection (black bars)

was generally more efficient than individual-tree selection at all

proportions selected. For PY and WD, for example, GS identified

60% of the top EBV ranked families even at the highest selection

intensity (9% selected proportion), indicating a strong performance

of GS to identify top performing families for these late expressing

traits. When examining the bottom-ranked trees or families, GS

showed a generally higher efficiency in identifying the bottom-

ranked trees for all three traits, confirming prior results indicating

that GS was considerably more efficient for removing low

performing trees and families in this particular experiment

(Figure 3; Supplementary Tables S4, S5). Nevertheless, focusing,

for example, on the results observed for PY, at the highest selection

intensity of 5%, GS would identify 35% of the top EBV ranked trees

and allow removing 35% of the bottom-ranked trees. At the 11%

proportion selected, GS would identify 41.1% of the top-ranked

trees and discard 52.2% of the lowest performers.
3.4 Improving realized predictive ability for
volume growth

The realized predictive abilities (RPAs) for volume growth

varied across the six training-to-testing-across generations

scenarios studied based on variable levels of average relationships

and site correlations (Table 5). As expected, scenarios 1 and 2 based

on the lowest levels of genetic relationship between training and

testing sets exhibited the lowest RPAs (0.03 and -0.12, respectively).

In contrast, scenarios 3, 4, 5, and 6, based the highest training-to-

testing relationship and the lowest training-to-testing G × E

interactions, resulted in the highest RPAs for volume growth

(0.29, 0.39, 0.24, and 0.31, respectively). These estimates

correspond to substantial improvements of a minimum of 27%

up to 250% in comparison with the RPAs (0.11 to 0.19) obtained

when relationship and G × E were not taken into account. The

highest RPA (0.39) in scenario 4, despite moderate heritability

(0.26), underscores the significant role of a larger and more diverse

training populations, enhanced by the ssGBLUP approach, and the

inclusion of directly genotyped ancestor trees, in improving the

alignment between EBVs and GEBVs. This highlights the critical

influence of training dataset characteristics on the RPA across

generations, particularly for complex growth traits. In terms of

genomic models utilized, the ssGBLUP model exhibited superior

RPAs when compared to GBLUP. Specifically, the RPAs were 0.29

versus 0.24 (a 20% increase) in scenarios 3 and 5, and 0.39 versus

0.31 (a 24% increase) in scenarios 4 and 6, respectively.
4 Discussion

The evaluation of genomic selection (GS) effectiveness in forest

trees has primarily relied on cross-validation analyses to assess the

performance of GBLUP or ssGBLUPmodels. This approach involves
Frontiers in Plant Science 11
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dividing the same population in the same generation into training

and validation or testing sets for the evaluation of genomic prediction

models. Although it provides some hints on what to expect from GS

in a particular setting, this approach is far removed from the reality of

operational multiple generation tree breeding. Our study therefore

expands the critical assessment of the realized predictive ability

(RPA) (Simiqueli et al., 2023) across multiple generations, using

operational trial data of volume growth, wood density, and pulp yield

collected in an active four-generation breeding program of E. grandis.

Predictions were generated using distinct compositions of training

populations sampled in three breeding generations preceding a set of

825 selection candidates, aiming at different GS targets, using

different models and selection criteria. We show that the variable

levels of the average relationships and genotype by environment (G ×

E) interaction between training and testing populations across

generations, have a profound impact on the effectiveness of GS for

volume growth. These insights are vital for forest breeding programs,

offering a more realistic perspective on the utility and reliability of GS

in multigenerational contexts.
4.1 Realized predictive abilities improve
when training with the direct ancestors of
the selection candidates

RPAs for both wood quality traits exhibited substantial

improvement, increasing by 31% and 20% at the individual and

family levels respectively (Table 3), when models were trained

exclusively with the direct ancestors (parents, grandmothers, and

great-grandmothers) (n = 67) rather than utilizing the broader set of

all available genotyped trees spanning the first three generations

(n = 1,918). These findings are in line with the outcome reported by

Simiqueli et al. (2023) in Eucalyptus, who suggest that a possible

explanation for these higher accuracies is that a focused genotyping

effort targeting a training set closely related to the selection

candidates might be sufficient for implementing genomic

selection in forest trees. These results are also consistent with

earlier results in other trees species. In Pinus pinaster, Bartholomé

et al. (2016) demonstrated that a prediction model calibrated

exclusively the 108 grandparents and parents (generations G0 and

G1) of G2 candidate trees reached prediction accuracies ranging

from 0.70 to 0.85 depending on the trait, equivalent to accuracies

calculated by including G2 trees for a larger G0/G1/G2 calibration

set with 567 trees. In Pseudotsuga menziesii, Thistlethwaite et al.

(2019) also showed that higher prediction accuracies for juvenile

height can be achieved by including only the 132 parents in the

training population, rather than all 1,321 genotyped G1 trees. As

proposed by Simiqueli et al. (2023), the outcomes presented in our

study, along with those reported in related research, can be

attributed to the longer extensions of shared haplotypes arising

from direct relatedness. Early simulation studies had indicated that

family relationships between selection candidates and individuals in

the reference population lead to longer accumulated length of

shared haplotypes which are more important than individual

length of shared haplotypes in driving higher reliabilities of

genomic prediction (Wientjes et al., 2013).
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Utilizing both simulated data and empirical datasets, several

studies on forest trees (reviewed in Grattapaglia et al., 2018; Isik,

2022) have consistently demonstrated that a high level of genetic

relatedness between the calibration and validation populations,

along with enlarging the size of the training set, enhanced the

predictive ability. Results from (Bartholomé et al., 2016;

Thistlethwaite et al., 2019; Simiqueli et al., 2023), and our own

results, suggest that higher accuracy of GEBVs are driven mainly by

the level of genetic relatedness between the training population and

the selection candidates than by the relative size of the training

population. In a recent revision of 26 published GS studies in forest

trees, Isik (2022) highlighted the significant impact of relatedness

(full-sibs versus half-sibs family structure) on the prediction

accuracy, while the size of the training population (and marker

number) was found to be non-significant. The author suggested that

tree breeders should strategically design their training populations

with a strong emphasis on genetic relatedness to those trees in the

targeted selection population.

As expected, in our experiment the highest level of relatedness

between the training and testing populations was found when

exclusively the 67 direct ancestors (parents, grandmothers, great-

grandmothers) were included in training. From the pedigree

perspective, the genetic contribution of a parent to an offspring is

one half (0.5), each grandparental contribution is one quarter

(0.25), and each great-grandparental contribution is one eighth

(0.125). The remaining 1,851 trees that could be included in the

training population would make significantly smaller genetic

contributions (0.0078125, 0.015625, 0.0625, and 0.125) to the

selection candidates, many of which are in the outer ring cluster

shown in Supplementary Figure S1. Including this large number of

more distantly related individuals in training would considerably

dilute the final genetic relationship to the selection candidates. The

theoretical average relatedness between the 67 direct ancestor trees

and the 825 selection candidates is one order of magnitude higher

(0.022, ranging from 0.000 to 0.027) than the relatedness of all 1,918

trees (0.0038, ranging from 0.001 to 0.005) (Supplementary Figure

S2). Our results indicate that this has a relevant positive impact on

RPA despite the 29 times smaller (67 vs. 1,918) training population

size. These findings once again underscore the much higher relative

importance of guaranteeing close relationships between training

and testing sets than using large training populations to achieve

high predictive abilities. However, further investigations in forest

trees are warranted to better understand and quantify the relative

and simultaneous impact of relationship and size of the training

population on genomic prediction accuracy.

We obtained considerably higher RPAs for WD and PY (3.9

and 6.5 times higher, respectively) compared to VOL. Further

improvement was seen when a GS model was trained only with

the direct ancestors (Table 3; Figure 2). Contrary to wood quality

traits, however, RPA for volume growth was ~20% higher when the

entire training population was used instead of only the direct

ancestors. This might be due to the particular trait architecture of

volume growth that makes the predictive ability more dependent on

the genome-wide linkage disequilibrium (LD) than family

relationships. In fact, previous studies have indicated that small

reference populations result in a higher effect of family relationships
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on reliability of genomic predictions compared to LD, and larger

reference populations result in a higher effect of LD (Clark et al.,

2012; Wientjes et al., 2013). Volume growth in forest trees is known

for its complex genetic architecture and lower heritability involving

numerous genes and physiological processes (Cappa et al., 2013),

presenting a greater challenge for prediction compared to the

typically more heritable wood quality traits (Table 2) often

associated with specific biosynthetic pathways. This result aligns

with previous findings in Eucalyptus (Resende et al., 2017; Tan et al.,

2018; Paludeto et al., 2021) and other forest trees species (Chen

et al., 2018; Beaulieu et al., 2020; Lenz et al., 2020; Calleja-Rodriguez

et al., 2021), where higher predictive abilities were reported for

wood properties compared to growth traits.
4.2 Genomic selection was more effective
in removing inferior individuals and
rank families

Besides calculating the overall RPA across generation,

ultimately the effectiveness of GS was evaluated by estimating the

correspondence rates between the numbers of individuals or

families that would be genomically and phenotypically selected at

the top of the distribution for retention or at the bottom for

exclusion. In our experimental conditions, GS was slightly more

effective in identifying candidate trees or families for exclusion due

to their worst performance compared to those with superior

performance. This was particularly evident at the lower

proportions selected (higher selection intensities) and was more

pronounced for VOL than forWD and PY (Figure 3). At the highest

selection intensities, the correspondence rates for WD and PY were

in the 35 to 50% range, but for VOL they did not exceed 10 to 15%.

While GS is usually seen as a way to identify top-ranked individuals,

it can be useful to optimize resource allocation by excluding the

bottom-performing families or trees within families during the early

stages in the greenhouse, ultimately enhancing the efficiency of

breeding programs.

At the top of the rank distribution and for the smallest

proportions selected usually adopted in operational breeding, the

correspondence rates for WD and PY were satisfactory, identifying

between 35 and 41% of the top-ranked individuals. This result once

again corroborates the value of GS for early selection of individual

trees for these late expressing traits in eucalypts. For VOL, however,

results were not as good. Only 5.6% of the top 11% highest volume

growth trees were correctly predicted using GEBVs, and slightly

higher proportions of 32% were only reached at much more relaxed

selection intensities (Figure 3). Notwithstanding the intrinsic

complexity of volume growth as a target trait for selection, the

disparity in RPAs seen for VOL when compared to WD and PY,

highlights the need for further refinement of the training

populations and exploration of predictive models for this trait.

The variation in the matching proportions of individuals and

families selected by GEBV and EBV can be attributed to a key

difference in prediction models (ABLUP vs. ssGBLUP). As noted by

Aguilar et al. (2010) (see Appendix B, Equation [B2]), the breeding
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value for a given tree under the genomic-based ssGBLUP model (or

any genomic models fitted using G-matrix) incorporates genomic

information from all genotyped individuals in the reference and

validation populations, including those with low or high genetic

merit when predicting GEBVs. This contrasts with the pedigree-

based ABLUPmodel used for observed EBVs, in which the breeding

value for a given tree relies solely on the average performance of

their parents selected in the previous generation. This key

distinction can lead to ssGBLUP predicting GEBVs that are either

higher or lower than observed EBVs, depending on the distribution

of genetic merit within the reference and validation populations.

This, in turn, could partly explain the observed variation in the

efficiency of selecting and ranking superior trees or families when

comparing GS using the ssGBLUP approach with phenotypic

selection using an ABLUP model. Furthermore, this same

distinction could also contribute to the improvement seen in RPA

when predicting GEBVs based on a model trained exclusively with

the direct ancestors of the selection candidates when compared to a

model trained with all individuals in the prior generations (Table 3).

In our experimental setting GS was more effective for selecting

full-sib families than individual trees either across all selection

candidates or within families (Figures 2, 3; Supplementary Tables

S4, S5). Already at the smallest proportions selected, 60% of the top-

ranked families for PY could be genomically selected (Figure 3).

Comparable results of better GS performance for family selection

were observed in other Eucalyptus (Resende et al., 2017; Simiqueli

et al., 2023) and Pinus breeding populations (Rios et al., 2021). Rios

et al. (2021), working with both real and simulated Pinus taeda L.

populations, demonstrated an approximately 40% improvement in

accuracy of genomic prediction at the family level compared to the

individual level for various traits (lignin, tree stiffness, rust, and

stem diameter), highlighting the importance of strategies that

integrate both family and individual selection. Simiqueli et al.

(2023) showed that genomic data accurately predicted and ranked

families by the average genomic breeding value across generations

in eucalypts, and that the top-ranked full-sib families contained the

majority of the top-ranked individual trees. Our results therefore

further support the two-stage genomic selection approach proposed

earlier (Grattapaglia, 2022), that capitalizes on the benefits of family

selection. This involves the initial selection of families based on

average GEBVs, followed by subsequent individual genomic

selection within the top-performing families, considerably

increasing between and within-family selection intensity while

optimizing genotyping costs.
4.3 High relatedness and low G × E
between training and testing populations
are key drivers of the realized predictive
ability for volume growth

Our study additionally explored the impact of average

relationships and G × E interactions between training and testing

populations on the RPAs for volume growth (Table 5).

Incorporating these factors into our analysis allowed us to better
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understand the nuances and challenges associated with predicting

volume growth accurately. We investigated six scenarios based on

training populations composed of three trials from the second

generation, each with different average relationships (ranging

from 3.4E-05 to 2.0E-04) and G × E interactions (ranging from

0.50 to 0.84) (Supplementary Table S2) in relation to a testing in the

third generation. Scenarios with the highest genetic relationships

and lowest G × E interactions (i.e., highest additive genetic

correlation) between training and testing populations, using the

largest training sets including the direct ancestor trees, under a

ssGBLUP model, showed considerably improved predictions for

VOL, reaching an RPA of 0.39 (Table 5) approximately 3x higher

than the RPAs observed when these training population

optimizations were not taken into account (Table 3). Conversely,

scenarios with lower average genetic relationships between training

and testing sets (scenarios 1 and 2), resulted in lower RPAs.

These results represent additional evidences to the now

established fact that a high level of genetic relatedness between

the training and testing populations is the key driver of genomic

predictions (reviewed in Grattapaglia et al., 2018; Isik, 2022).

Moreover, early studies in forest trees (e.g., Resende et al., 2012;

Beaulieu et al., 2014), had shown that G × E interaction significantly

influence the transferability of prediction models. Specifically, these

studies revealed higher accuracies within the same site or breeding

zone, particularly for complex growth traits such as diameter at

breast height and total height. In Pinus taeda, Resende et al. (2012)

found that prediction models developed for one site in Florida could

be accurately applied to another site within the same breeding zone

with only a marginal loss in predictability (≤ 0.08). However, when

these models were applied to sites in different breeding zones, such

as the Upper Coastal Plain versus Piedmont, there was a significant

decline in accuracy. This emphasizes that G × E severely impacts

model transferability across breeding zones. In white spruce,

Beaulieu et al. (2014) revealed that the prediction accuracy into

untested environments was relatively low for growth traits (with

correlations of ≥ 0.24) but was moderately high for wood traits

(with correlations of ≥ 0.61), emphasizing the need to phenotype

trees in all test environments and model G × E interactions for

growth traits.

G × E interaction is a common challenge in tree breeding

programs, varying by species, environmental conditions, and the

type of planting material used (families or clones) (Grattapaglia,

2014). Correctly ranking individual trees by their GEBVs is crucial

for successful GS implementation. Our results indicate that

accurately ranking individual trees by their GEBVs could be

influenced by environmental factors, and complex gene-

environment interactions (Cappa et al., unpublished). Multi-

environment GS models improved the predictive ability for

across-environment predictions, meaning they could effectively

predict the performance of genotypes evaluated in certain

environments but not others, which is particularly important for

most forest breeding programs. Future research is warranted to

explore incorporating environmental data to account for these G ×

E interactions (Ratcliffe et al., 2019), and investigating gene-

environment interactions. By refining training populations and
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leveraging advanced genomic models like ssGBLUP, tree breeding

programs can improve the selection of trees with superior growth

traits, ultimately optimizing breeding efficiency and outcomes.
5 Conclusions

The primary challenge of experimental research toward the

application of GS in forest trees has been the extended time required

to complete intergenerational studies by measuring the ultimate

phenotypes at harvest age and match them to the predicted genomic

values estimated at the seedling stage based on training data from

ancestral generations. Few studies to date have therefore been able

to experimentally validate genomically selected candidates across

tree breeding generations. This crucial step precedes the necessary

validation of the GS approach toward its integration into

operational tree breeding practice. We expect, however, that more

studies will be published in the next years providing increasing

evidences in support of this breeding approach that is on its way to

transform tree breeding (Grattapaglia, 2022). In this work we

contributed experimental data to this topic by comparing the

genomic predictions of breeding values (GEBVs) of 825 young

seedling candidates for volume growth (VOL), wood density (WD),

and pulp yield (PY) to their corresponding estimated breeding

values (EBVs) across four-generations in a Eucalyptus grandis

population. The training population, spanning three generations,

assessed the impact of including all genotyped trees (1,918) or

exclusively the direct ancestors (67), targeting selection of

individuals or families. As expected, given the higher heritabilities

of family means when compared to individual tree level, GS was

more effective to rank and select families than individual trees. This

outcome provides supporting data to a two-stage GS approach to

increase selection intensity by screening more families and

optimizing the genotyping investment for individual selection

within the top-ranked families.

In our experimental settings the performance of GS across

generations was quite different depending on the trait under

consideration. High RPAs in the range of 0.5 to 0.7 were

estimated for WD and PY and satisfactory proportions of top-

ranked individual trees and families ranked by EBVs were correctly

identified by genomic data. Given the late expression of these traits

and the high measurement cost involved, particularly of PY, this

result corroborates the potential of adopting GS for these traits at

the seedling stage in this Eucalyptus breeding population.

Interestingly, GS was shown to be slightly more effective as a

culling tool of the worst performing individuals, than as a way to

identify the winners, a feature that might prove useful in breeding

operations to optimize the effort devoted to field testing families or

individuals in clonal trials, following the genomic selection step. GS

however was not as effective as phenotypic selection for predicting

volume growth, providing RPA values below 0.2 in a standard

setting with no improvement when only ancestors were used for

training. However, when the relationship and population size were

maximized and G × E interaction minimized between training and

testing generations the RPAs improved to an acceptable value of
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0.39. Our result for volume growth contrasts with those of the few

other intergenerational studies in forest trees, where realized

predictive abilities above 0.7-0.8 were reported. Differences in the

effective population size, experimental precision, trait heritability,

levels of relatedness, G × E and G × Year interaction between

training and testing populations all come into play to define the

final outcome of GS, highlighting the importance of experimental

studies spanning multiple generations for assessing the expected GS

performance in the specific breeding program and environmental

context where GS is to be applied.

Finally, another important result of this work was to show that a

smaller training population including only direct ancestors of the

selection candidates improved genomic predictions, likely by

enhancing its level of genetic relationship to the selection

candidates. This was the case for wood quality traits but not for

volume growth. While this result might indicate that potentially

smaller and highly related training populations to the selection

candidates could be used in GS, more studies seem necessary to

recommend this approach. In any case, the decisive role of

relationship in enhancing the performance of GS was further

demonstrated in our work when different scenarios varying the

level of relationship between training and testing sets were

examined. Our study also touched on the impact of G × E

interaction as an important determinant of the performance of

GS. G × E is a fact of life that will be omnipresent in any tree

breeding practice, irrespective of the use of GS or any new genomic

technology. High relatedness and low G × E between training and

testing populations are indispensable requirements for the

successful implementation of GS in forest tree breeding. A

corollary derived from these two driving forces is thus that GS

implementation will be breeding-population specific, requiring that

each organization be creative to develop and validate predictive

models for its reference genetic base, environmental settings, target

traits, and overall breeding objectives (Grattapaglia, 2022).
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Ahmadi and J. Bartholomé (New York, NY: Springer US), 493–520. doi: 10.1007/978-
1-0716-2205-6_18

Jurcic, E. J., Villalba, P. V., Dutour, J., Centurión, C., Munilla, S., and Cappa, E. P.
(2023). Breeding value predictive accuracy for scarcely recorded traits in a Eucalyptus
grandis breeding population using genomic selection and data on predictor traits. Tree
Genet. Genomes 19, 35. doi: 10.1007/s11295-023-01611-z

Lebedev, V. G., Lebedeva, T. N., Chernodubov, A. I., and Shestibratov, K. A. (2020).
Genomic selection for forest tree improvement: methods, achievements and
perspectives. Forests 11:1190. doi: 10.3390/f11111190

Legarra, A., Aguilar, I., and Misztal, I. (2009). A relationship matrix including full
pedigree and genomic information. J. Dairy Sci. 92, 4656–4663. doi: 10.3168/jds.2009-
2061
Frontiers in Plant Science 16
Lenz, P. R. N., Nadeau, S., Azaiez, A., Gérardi, S., Deslauriers, M., Perron, M., et al.
(2020). Genomic prediction for hastening and improving efficiency of forward selection
in conifer polycross mating designs: an example from white spruce. Heredity (Edinb).
124, 562–578. doi: 10.1038/s41437-019-0290-3

Masuda, Y., Legarra, A., Aguilar, I., and Misztal, I. (2019). 331 Efficient quality
control methods for genomic and pedigree data used in routine genomic evaluation. J.
Anim. Sci. 97, 50–51. doi: 10.1093/jas/skz258.101

Meuwissen, T. H. E., Hayes, B. J., and Goddard, M. E. (2001). Prediction of total
genetic value using genome-wide dense marker maps. Genetics 157, 1819–
1829.11290733 doi: 10.1093/genetics/157.4.1819

Misztal, I., Legarra, A., and Aguilar, I. (2009). Computing procedures for genetic
evaluation including phenotypic, full pedigree, and genomic information. J. Dairy Sci.
92, 4648–4655. doi: 10.3168/jds.2009-2064

Misztal, I., Tsuruta, S., Lourenco, D., Aguilar, I., Legarra, A., and Vitezica, Z.
(2018). “Ma,” in nual for BLUPF90 family of programs, vol. 1. (U niv. Georg. Athens,
USA), 25.

Muñoz, P. R., Resende, M. F. R., Huber, D. A., Quesada, T., Resende, M. D. V., Neale,
D. B., et al. (2014). Genomic relationship matrix for correcting pedigree errors in
breeding populations: Impact on genetic parameters and genomic selection accuracy.
Crop Sci. 54, 1115–1123. doi: 10.2135/cropsci2012.12.0673

Paludeto, J. G. Z., Grattapaglia, D., Estopa, R. A., and Tambarussi, E. V. (2021).
Genomic relationship–based genetic parameters and prospects of genomic selection for
growth and wood quality traits in Eucalyptus benthamii. Tree Genet. Genomes 17, 38.
doi: 10.1007/s11295-021-01516-9

Putz, A. M., Tiezzi, F., Maltecca, C., Gray, K. A., and Knauer, M. T. (2017). A
comparison of accuracy validation methods for genomic and pedigree-based
predictions of swine litter size traits using Large White and simulated data. J. Anim.
Breed. Genet. 135:5–13. doi: 10.1111/jbg.12302

Ratcliffe, B., Thistlethwaite, F., El-Dien, O. G., Cappa, E. P., Porth, I., Klápsťě, J., et al.
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