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The genotype evaluation process requires analysis of GxE interactions to

ascertain the responsiveness of a genotype to various environments, including

the development of early maturing rice. However, the concept of interaction is

relatively specific to grain yield. In contrast, grain yield is highly polygenic, so

assessment should be carried out with multivariate approaches. Therefore,

multivariate assessment in evaluating GxE interactions should be developed,

especially for early maturing rice genotypes. The study aimed to develop a

comprehensive multivariate approach to improve the comprehensiveness and

responsiveness of GxE interaction analysis. The study was conducted in Bone and

Soppeng districts, South Sulawesi, Indonesia, in two seasons. The study used a

randomized complete block design, where replications were nested across two

seasons and locations. Two check varieties and five early maturing varieties were

replicated three times in each environment. Based on this study, a new approach

to GxE interaction analysis based on multiple regression index analysis, BLUP

analysis, factor analysis, and path analysis was considered adequate, especially

for evaluating early maturing rice. This approach combined days to harvest,

biological yield, and grain yield in multiple linear regression with weighting based

on the combination of all analyses. The effectiveness of the GxE interaction

assessment was reflected by high coefficient of determination (R2) and gradient

(b) values above 0.8 and 0.9, respectively. Inpari 13 (R2 = 0.9; b=1.05), Cakrabuana

(R2 = 0.98; b=0.99), and Padjajaran (R2 = 0.95; b=1.07) also have good grain yield
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with days to harvesting consideration, namely 7.83 ton ha-1, 98.12 days; 7.37 ton

ha-1, 95.52 days; and 7.29 ton ha-1, 97.23 days, respectively. Therefore, this index

approach can be recommended in GxE interaction analysis to evaluate early

maturing rice genotypes. Furthermore, Inpari 13, Cakrabuana, and Padjajaran are

recommended as adaptive early maturing varieties.
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1 Introduction

Rice is a major food crop that has always been prioritized for

development. This crop has the advantage of grain content rich in

carbohydrates and several other components, such as vitamins,

antioxidants, and minerals (Fukagawa and Ziska, 2019; Sen et al.,

2020). These ingredients work synergistically to support the

availability of energy and health for humans, so this crop is often

consumed as the primary source of carbohydrates for most of the

world’s population, including Indonesia. Indonesia belongs to the

world’s top five rice production countries, after China, India, and

Bangladesh (Yuan et al., 2022; Bin Rahman and Zhang, 2023).

According to Statistic Indonesia (2023a), Indonesia’s rice

production reached 53.63 million tonnes, a decrease of 2.05%

compared to the previous year. This production is considered

worrying compared to other countries when looking at the ratio

to the population (Rozaki, 2020; Fitrawaty et al., 2023). This is

crucial, considering Indonesia’s population growth rate is relatively

high at 1.13% Statistic Indonesia (2023b). Therefore, innovations

related to the sustainability of rice production must be further

developed to maintain food security in Indonesia.

Other factors, such as the issue of climate change, also influence

the stability and sustainability of rice production. Climate change is

an environmental change due to increased greenhouse gas

concentrations (Cassia et al., 2018; Karbi and Chemke, 2023;

Simmer et al., 2023). The increase causes the trapping of reflected

heat waves like the greenhouse system so that the earth’s

temperature increases and has an impact on changing the rhythm

of seasons and rainfall patterns in various parts of the world (Cassia

et al., 2018; Marx et al., 2021; Karbi and Chemke, 2023). This can

induce various plant abiotic stresses, such as drought, salinity,

acidity, and other stresses (Sánchez-Bermúdez et al., 2022;

Eckardt et al., 2023). However, water-related stress is the main

problem due to climate change (Ahmed et al., 2020; Chen et al.,

2023; Sato et al., 2024; Yadav et al., 2024). Water, as the main

component of climate change, will increase the duration of dry and

rainy season patterns, including their intensity, so that seasonal

patterns are not more evident per year (Fahad et al., 2017; Ahmed

et al., 2020; Haile et al., 2021; Chen et al., 2023; Janni et al., 2023;

Yadav et al., 2024). In addition, these effects will also induce the
02
intensity of the El Niño and La Niña effects to be more intense in

several locations in the hemisphere (Yang et al., 2018; Geng et al.,

2023; Wang et al., 2023), including Indonesia (Nur’utami and

Hidayat, 2016; Arjasakusuma et al., 2018; Sulaiman et al., 2023).

El Nino-Southern Oscillation (ENSO) is a climatic phenomenon

that causes predominant rainfall variability in the tropics. The

phenomenon causes severe droughts in many regions, causing

many socio-economic losses (Rodysill et al., 2019; Adamson,

2022). On the other side, La Nina events cause an increase in

convection and regional precipitation that drives heavy rainfall

events. This causes major flooding in the region (Rodysill et al.,

2019). Both phenomena effects cause a decrease in rice grain yield

per hectare, leading to crop failure (Ansari et al., 2021; Barrios-

Perez et al., 2021; Cherian et al., 2021; Haile et al., 2021). This is also

the case in Indonesia, where the impact of El Nino and La Nina can

reduce Indonesia’s rice production by around 2.9% to 4% (Murniati

and Mutolib, 2020; Khairullah et al., 2021). In addition, according

to (Sun et al., 2020), these two phenomena have an impact on

reducing rice production, slowing down planting, and harvest

failure, so they account for 40% of the variability in rice grain

yield per hectare in Indonesia. Therefore, preventive measures need

to be taken to adapt to the impacts of climate change. One

innovation that can be offered is the development of early-

maturing rice varieties.

The development of early maturing crop varieties is one of the

adaptation strategies that aim to avoid the impact of climate stress

(Rohaeni and Ishaq, 2016; Ren et al., 2023). This is in contrast to

other adaptation strategies, such as avoidance and tolerance, which

directly deal with climate stress (Seleiman et al., 2021; Eckardt et al.,

2023; Yun et al., 2023; Anshori et al., 2024). In addition, this

approach can optimize planting intensity under normal

conditions so that rainfed land can be planted two to three times

per year (Sudana, 2016; Subekti and Umar, 2022; Musa et al., 2023;

Widiastuti et al., 2023; Sutardi et al., 2023). The development of

early maturing varieties has also been conducted in rice and

reported by Iftekharuddaula et al. (2016); Fang et al. (2019);

Sjahril et al. (2020); Saminadane et al. (2023); Shanmugam et al.

(2023). In general, the development of early maturing rice varieties

in Indonesia has also been carried out, where there are several early

maturing rice varieties that the Ministry of Agriculture has released
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(Purba and Giametri, 2017; Rismawati et al., 2022; Musa et al.,

2023). These varieties have been adapted in several regions.

However, specific reports related to interaction analysis, as one of

the bases for evaluation, have yet to be published among these early

maturing varieties. This includes comparisons of potential with

high-yielding varieties in general. Nevertheless, Musa et al. (2023)

and Anshori et al. (2024) have reported the potential fertilizer

response to NPK dosage and its yield adaptability among five

potential early maturing varieties. However, the concept has yet

to cover the multivariate comprehensive influence of all growth

characters on the stability and recovery responsiveness of the early

maturing rice. In general, grain yield per hectare is not a dependent

character. In other words, its variability is influenced by other

agronomic components (Fellahi et al., 2018; van Eeuwijk et al.,

2019; Anshori et al., 2021; Burgess et al., 2023; Hassani et al., 2023).

This indicates that rice stability and responsiveness testing require

integrated evaluation support criteria (Hashim et al., 2021; Salah

et al., 2022; Santos et al., 2022; Hassani et al., 2023). The concept

was also reported by (Alsabah et al., 2019; Akbar et al., 2021;

Hashim et al., 2021; Salah et al., 2022). Therefore, several

supporting characters must be integrated and synergistically

included in the evaluation and interaction analysis.

Interaction analysis is an approach to measure a genotype’s

response level to environmental changes. This concept is crucial for

further evaluating a line or the recommendation process of a variety

to be adapted to a region (Saltz et al., 2018; Smith et al., 2021; Gupta

et al., 2022). These advantages make this analysis often applied in

breeding activities, known as GxE interaction analysis (Yang, 2014;

Brown et al., 2020; Gupta et al., 2022). Several concepts of GxE

interaction analysis have been reported by several rice studies

(Oladosu et al., 2017; Poli et al., 2018; Hashim et al., 2021; Roy

et al., 2022; Panda et al., 2023; Ghazy et al., 2024). However, the

specific assessment of GxE interactions in early-maturing rice has

yet to be widely reported. In addition, analyses of GxE interactions

are generally independent between growth characters and even only

focused on grain yield per hectare (Yang, 2014; Brown et al., 2020;

Hilmarsson et al., 2021; Roy et al., 2022). However, some studies

have linked their potential using multivariate analyses (Sitaresmi

et al., 2019; Pour-aboughadareh and Sanjani, 2021; Sumuni et al.,

2024). Alam et al. (2021); Hashim et al. (2021); Hasan et al. (2022);

Roy et al. (2022); Aswidinnoor et al. (2023); Singh et al. (2023), and

Panda et al. (2023) used the principal component analysis pattern in

analyzing the potential of a rice genotype to several environments.

In addition, Sae-Lim et al. (2014); Mengesha et al. (2019), and Smith

et al. (2021) also developed the concept of interaction analysis on a

genotype through factor analysis. However, both multivariate
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analysis concepts still emphasize one main characteristic: grain

yield per hectare. Meanwhile (Olivoto et al., 2019a, b), Sharifi

et al. (2020); Pour-aboughadareh and Sanjani (2021); Panda et al.

(2023), and Ahmed et al. (2024) also utilized the potential of various

traits through the concept of the weighted average of absolute scores

(WAASB), commercial check variety which utilized multivariate

analysis and indices. However, these concepts only focus on

stability, so the idea is considered less comprehensive in

describing the potential for responsiveness between genotypes.

Based on this, the development of a new approach that is more

comprehensive in assessing the responsiveness of a GxE interaction

needs to be done, especially for early maturing rice varieties. This

study aims to develop and evaluate the effectiveness of multivariate

approaches in analyzing GxE interactions that are more

comprehensive and responsive. In addition, this study also aims

to assess and determine the interaction potential of early maturing

rice varieties that are responsive and have the potential to

be developed.
2 Materials and methods

Two districts were chosen for this study: Soppeng Regency, at

coordinates of 4°20’44.698 “S, 119°54’54.032 “E, and Bone District,

West Sulawesi, Indonesia, at coordinates of 4°36’30.975 “S, 120°

17’41.636 “E.” Based on South Sulawesi’s potential for rice

production—particularly in the island’s eastern region—both sites

were selected. The evaluation activities used two growth seasons:

January–April 2022 (1st season) and June–September 2022 (2nd

season). Table 1 shows the rainfall trends for each season.
2.1 Experimental design

This study used a randomized complete block design, with

replications nested in two seasons and two locations (4

environments). Two commercial check varieties (Ciherang and

Inpari 32) and five early maturing varieties (Cakrabuana,

Padjajaran, Inpari 13; Inpari 19, and M70D) were grown three

times in each environment. The combination of varieties,

replications, and environment resulted in 84 experimental units.

Based on research by (Barokah et al., 2021; Subekti and Umar, 2022;

Musa et al., 2023 and Anshori et al., 2024), five early maturing rice

varieties were chosen. In the meantime, the two varieties (Ciherang

and Inpari 32) in South Sulawesi potential demand and seed
TABLE 1 The rainfall trends for the 2022 year in both locations.

Locations
Soil
type

Rainfall pattern in 2022 year (mm)

Jan Feb March April May June July Aug Sep Oct Nov Dec

Bone
Dusty
Clay

79 269 227 113 370 455 241 231 297 296 80 241

Soppeng Clay 123 159 56 157 168 199 106 131 116 307 101 230
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requirements are taken into consideration when selecting check

varieties (Sitaresmi et al., 2023; Qadir et al., 2024).
2.2 Research procedure

The research methodology started with plowing and tilling the

land to create a muddy environment. After that, the field was

organized with a plot system measuring 3.5 m x 3.5 m and 1 m

between plots. Simultaneously, the seeds to be planted were pre-

soaked for 24 hours. Then, the seeds are mixed into the nursery bed.

Seedlings were reared until 15 days old, and then transferred to the

field with a spacing of 20 cm x 20 cm, resulting in 416 plants per

plot (Anshori et al., 2024).

Seedlings planted are maintained with various activities such as

replanting, weeding, watering, fertilizing, and insect control.

Weeding is done manually and chemically at 30 days after

planting. Dead seedlings are replaced seven days later by

replanting according to the variety. Weeds were removed

mechanically, followed by herbicide application using a sprayer.

Irrigation began six days after the first fertilization or 20 days after

planting by adding water to the experimental field about 5 cm above

the soil surface. After the second fertilization, irrigation was

temporarily stopped to keep the soil moist and clay-like.

Watering was resumed five days later, with the water level raised

to about 10 cm above the soil surface during the primordial phase to

prevent the formation of additional tillers. Fourteen days after

transplanting, a fertilizer mixture of 200 kg ha-1 N: 100 kg ha-1

P2O5: 100 kg ha-1 K2O was applied, followed by a second round of

urea fertilization 35 days later. Pest and disease control used

pesticides adjusted to the type and phenological stage of the rice

plant pest or disease. Harvesting is done when two-thirds of the rice

panicles have reached physiological maturity (yellowing straw), and

the grain at the base of the panicle has hardened. Data were

collected throughout the harvesting process before the plant

portions were placed into the sample bags.
2.3 Observation parameters and
data analysis

This study focused on several agronomic characteristics of rice.

These characters include plant height (PH), number of total tillers

(NTT), number of productive tillers (NPT), days to harvesting

(DH), flag leaf length (FLL), panicle length (PL), biological yield

(BY), thousand-grain weight (TGW), and grain yield per hectare

(GY). Biological yield means the average grain weight per hill from

five sample plants, while grain yield is observed by converting plot

weight to weight per hectare. These observational characters were

systematically analyzed to evaluate the potential for GxE

interactions, especially in early-maturing rice varieties.

Meanwhile, the average of all growth traits to all locations and

seasons was shown in Supplementary Table 1.

Data analysis began with a nested analysis of variance involving

potential season and location interactions as nests in the replicates.

The result of the analysis becomes the basis of whether further
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characters, especially season x location x variety interactions, then

GxE interaction analysis is conducted. The GxE interaction analysis

starts with the best linear unbiased prediction (BLUP) analysis

(Olivoto et al., 2019a, 2022; Schmidt et al., 2019; Khanna et al.,

2022). Characters that did not meet the potential heritability of

BLUP were not included in the multivariate analysis. Selected

characters in BLUP were analyzed using factor analysis (Rocha

et al., 2018; Olivoto et al., 2019a, 2022) and path analysis (Sabouri

et al., 2008; Anshori et al., 2021; Fikri et al., 2023) as part of the

multivariate analysis. The characters specified in the multivariate

analysis were used as selection criteria in the index.

The index’s weighting is based on the combination of the three

analyses: BLUP heritability, score on factor analysis, and direct

effect of path analysis. The potential of each variety in the index is

based on the standardized BLUP value. The standardized values are

inputted into the index formulation of the previously developed

multiple regression equation (Olivoto et al., 2019b; van Eeuwijk

et al., 2019; Anshori et al., 2021, 2022).

Index = (0:315 � 0:974 � 0:48)DH_ z + (0:464 � 0:792 � 0:54) BY _ z

+ (0:404 � 0:720)GY _ z

Or

Index = 0:147 DH_ z + 0:199 BY _ z + 0:291 GY_ z

Then, the index values were averaged and sorted per

environment before regression analysis, like Finlay-Wilkinson’s

stability testing, was conducted (Pour-Aboughadareh et al., 2022;

Anshori et al., 2024). The interaction analysis results based on the

index values were tested for sensitivity through the determination

value (R2) and compared with the independent GY potential. This

was to see the potential effectiveness between the two approaches.
3 Results

Variance analysis showed that the varietal diversity source

significantly affected all growth characters (Table 2). In contrast,

season and location-independent sources of diversity only

significantly affected some characters, such as PH, NPT, BY,

TGW, and grain yield per hectare (GY) influenced by season, and

NTT, NPT, and BY influenced by location. Meanwhile, the

interaction source of diversity only has a specific effect on several

characters. By character, BY is a character significantly affected by

all sources of diversity. This is followed by the number of productive

tiller characters, which is also influenced by all sources of diversity,

except for the season x location x genotype interaction. In contrast,

the characters are influenced by a few sources of diversity, such as

FLL and PL. Both characters are only influenced by the source of

varietal diversity.

The results of the BLUP analysis show that three characters

have the same average BLUP value in each variety, namely NTT,

NPT, and TGW (Table 3). This is followed by a heritability value

that shows 0. Conversely, other characters have a variance of BLUP

values between each variety, followed by heritability values above 0.
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PH (44.19%) and PL (23.5%) are characters with moderate

heritability. Meanwhile, characters classified as high heritability

are DH (97.35%), BY (79.24%), and GY (71.96%). Varieties with

the highest BLUP GY values were Inpari 32 (8.54 tonnes/ha) and

Ciherang (8.44 tonnes/ha) as a commercial check variety and Inpari

13 (7.83 tonnes/ha) as an early maturing rice variety.

The factor analysis results showed that two dimensions could

describe the representative diversity of the diverse characters based

on the BLUP value (Table 4). In general, the commonality of all

characters has reached 0.8, except for FLL, which only reached

0.769. Based on GY characters, factor 1 is the factor that collects the

highest loading factor score for GY characters. In factor 1, the

characters PH (0.052) and FLL (0.104) are the characters that have

low loading scores. The DH, PL, and BY characters in factor 1 had

good factor loading scores of 0.315, 0.271, and 0.464, respectively.

Meanwhile, the results of the path analysis are shown in Table 5,

which has a determination value of 0.84. DH and BY are two

characters with a direct effect of 0.48 and 0.54, respectively. In

contrast, PL had a low direct effect of 0.02 and was ineffective as a

selection criterion.
Frontiers in Plant Science 05
The selection index combines standardized BLUP values with

the weighting values developed in this study (Table 6). Based on the

index value, the Bone_season 1 (E1) environment (1.71) is the

environment with the highest average index, followed by

Soppeng_season 1 (E3) with a value of 0.76. Inpari 32 (3.94 and

3.01, respectively) and Ciherang (2.93 and 1.96) were the best

varieties in the E1 and E3 environments. In addition, Inpari 13

was also rated as the best variety, especially against other early-

maturing varieties (1.52 and 1.40, respectively). On the contrary, the

lowest average index value belongs to Environment_Soppeng

season 2 with a value of (-2.01). Inpari 32, Ciherang, and Inpari

13 had index values of 0.6 -0.44 and -2.18, respectively. In contrast,

the M70D variety has the lowest value in almost all environments,

especially in the Soppeng season 2 environment.

Based on the regression analysis results (Figures 1A, B), the

coefficient of determination (R2) in the multivariate index-based

GxE analysis has a high value above 0.8, except for the Ciherang

variety. In contrast, the coefficient of determination in GY-based

GxE analysis is relatively below 0.8, except for Inpari 13 (0.927),

Cakrabuana (0.9615), and Padjajaran (0.8332). Ciherang variety in
TABLE 3 BLUP analysis of GXE interaction on rice growth characters.

Genotype PH (cm) NTT NPT
DH

(days)
FLL (cm) PL (cm) By (g) TGW (g)

GY
(ton/ha)

Cakrabuana 104.83 28.4 24.1 95.52 34.47 25.26 67.53 27.45 7.37

Ciherang 104.44 28.4 24.1 108.26 34.67 25.23 85.82 27.45 8.44

Inpari 13 107.19 28.4 24.1 98.12 35.24 25.38 76.26 27.45 7.83

Inpari 19 107.26 28.4 24.1 91.55 35.31 25.54 67.19 27.45 6.91

Inpari 32 101.87 28.4 24.1 116.29 34.47 24.87 82.49 27.45 8.54

M70D 105.98 28.4 24.1 88.95 35.12 25.01 66.11 27.45 6.83

Padjajaran 104.36 28.4 24.1 97.23 35.33 25.46 68.91 27.45 7.29

Heritability (%) 44.19 0.00 0.00 97.35 18.7 23.5 79.24 0.00 71.96
PH, plant height; NTT, number of total tillers; NPT, number of productive tillers; DH, days to harvesting; FLL, flag leaf length; PL, panicle length; BY, biological yield; TGW, thousand-grain
weight of 1000 grains; GY, grain yield per hectare.
TABLE 2 Analysis of variance (ANOVA) of the interaction of season, environment, and genotype.

Source of variation
Pr>F

PH NTT NPT DH FLL PL BY TGW GY

Season <.0001** 0.3123 0.0002** 0.2339 0.2996 0.0612 <.0001** 0.0005** 0.0002**

Location (loc) 0.4478 0.0310* <.0001** 0.0014** 0.8223 0.1419 <.0001** 0.7633 0.3093

Season x loc 0.0051** <.0001** <.0001** 0.0786 0.1439 0.549 0.004** 0.707 0.7817

Replication/season x loc 0.9823 0.9174 0.0048** 0.8351 0.9979 0.9091 0.0455* 0.9778 0.6401

Variety (var) <.0001** <.0001** 0.0064** <.0001** <.0001** <.0001** <.0001** <.0001** <.0001**

Season x var 0.0013** 0.2038 <.0001** 0.0007** 0.9198 0.6311 <.0001** 0.9286 0.3872

Loc x var 0.3458 0.0260* 0.0094** 0.1236 0.5738 0.1492 0.0081** <.0001** 0.0651

Season x loc x var 0.2095 0.109 0.5167 0.9265 0.959 0.451 0.0074** 0.4872 0.299
fro
DF, degrees of freedom; CV, coefficient of variance; p-value, the probability under the assumption of no effect or no difference (null hypothesis), 0.05>p value > 0.01 is significant at 5% level (*),
0.01>p value is significant 1% level (**), PH, plant height; NTT, number of total tillers; NPT, number of productive tillers; DH, days to harvesting; FLL, flag leaf length; PL, panicle length; BY,
biological yield; TGW, thousand-grain weight; GY, Grain yield per hectare.
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index-based GxE analysis has the lowest determination value, 0.529,

with a regression gradient (b) of 0.786. The gradient is also relatively

in the same group as the regression gradient of Inpari 32 (0.868).

Regression gradients that have response values ranging from 1 ± 0.1

are Inpari 13 (1.06), Cakrabuana (1.99) and Padjajaran (1.07). In

contrast, based on GxE GY, Inpari 32 and Inpari 19 have gradients

ranging from 1 ± 0.1. However, both have low determination values

of 0.4337 and 0.6733, respectively. Meanwhile, Inpari 13,

Cakrabuana, and Padjajaran have regression gradients below 0.9.
4 Discussions

The ANOVA results showed that the sources of diversity in this

study had specific and diverse patterns of influence among characters.

However, one source of variation (variety) significantly affected all

growth characters. Significant varietal diversity is due to differences in

the types of varieties used, where there are five early maturing rice

varieties and two medium maturing varieties as commercial varieties

in general. The difference in type will correlate with phenology and

agronomic characters (Paiman et al., 2022; Sheng et al., 2022; Afa

et al., 2023; Seck et al., 2023), so the difference in growth response will

be significant for all characters. As for the effect of interactions, the

diversity of interactions is specific depending on the character and

interaction pattern. However, in the character of biological yield, all

sources of diversity showed a significant effect on the character. In

general, biological yield is one of the key characteristics that can

represent the potential for GY (Bhati et al., 2015; Li et al., 2019). This

is also in line with Li et al. (2019) and Burgess et al. (2023), where
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biological yield is the accumulation of a potential GY component, so

this character is often used as the main supporting criteria for the

crop yield (Bhati et al., 2015; Li et al., 2019; Zhao et al., 2020; Dhakal

et al., 2021). Based on this, this character can be a consideration in in-

depth analysis, especially for more comprehensive interactions.

However, in this study, GY was only influenced by independent

variance sources of variety and season. Therefore, BLUP and

multivariate analysis can be used in this study.

The results of estimating the mean value of BLUP-based

characters explain that several characters (NTT, NPT, and TGW)

do not have diversity between each genotype. In general, the

estimation of the BLUP value is influenced by the potential

genetic variation (Molenaar et al., 2018; Schmidt et al., 2019;

Khanna et al., 2022). Suppose a character has a low genetic

variance. In that case, it will impact the narrow variance and does

not have a random effect on the BLUP value. So, the heritability of

the three characters is 0 in the BLUP analysis (Molenaar et al., 2018;

Sood et al., 2020). However, when comparing these results with the

ANOVA, there needs to be more alignment because the varietal

diversity source significantly affects all three characters. This

indicates good heritability potential in the three characters

(Fadhilah et al., 2022; Anshori et al., 2024). The difference is due

to the BLUP concept, which is that the combination of season and

location is combined into an environment. This will impact the

pattern of diversity effects (Johnstone and Manly, 2014), so the

heritability of the BLUP pattern will be lower than that of

the ANOVA pattern in this study. In addition, according to Jia

(2017), the difference in heritability between regular and BLUP has

a different approach, where the BLUP heritability value that links

cross-validation tends to be lower than the regular heritability value.

Based on these two things, the potential in the ANOVA results will

be different from the BLUP potential. However, the BLUP potential

value is believed to be more effective in assessing the potential of a

genotype than the general approach. This is because the BLUP

approach can correct the potential value of the genotype to the

influence of its environment so that the potential assessment is

more accurate, especially for multi-environment experiments

(MET) (Molenaar et al., 2018; Schmidt et al., 2019; Sood et al.,

2020; Chen et al., 2024). Therefore, NTT, NPT, and TGW

characters were not included in subsequent analyses.

The combination of several multivariate analyses is a systematic

approach to determining selection or evaluation criteria (Kose et al.,

2018; Hashim et al., 2021; Laraswati et al., 2021; Barth et al., 2022;

Fadhilah et al., 2022; Habib et al., 2024). These criteria can increase

the effectiveness of the selection process. In this study, the

combination of multivariate analyses focused on factor analysis

and cross-sectional analysis. Both analyses were chosen, given their

potential to reduce the diversity of ineffective characters in

evaluation judgments (Nayak et al., 2018; Anshori et al., 2022;

Farid et al., 2022; Fikri et al., 2023). Generally, factor analysis can

reduce diversity in characters with low covariance in a dimension.

This makes the character unimportant in influencing the variety of

dimensions so that the character can be eliminated in the evaluation

process (Nayak et al., 2018; Rocha et al., 2018; Tavakol and Wetzel,

2020; Jia et al., 2022). This concept is also suggested when analyzing

the interaction and stability of a genotype. Rocha et al. (2018) and
TABLE 5 Path analysis of selected characters on grain yield per hectare.

Character
Direct
effect

Indirect effect
Residual

DH PL BY

DH 0.48 -0.01 0.48 0.03

PL 0.02 -0.24 -0.21 0.03

BY 0.54 0.42 -0.01 0.03
DH, days to harvesting; PL, panicle length; BY, biological yield.
TABLE 4 The Factor Analysis of BLUP values.

Variable Factor 1 Factor 2 Communality

PH 0.052 -0.361 0.802

DH 0.315 -0.026 0.966

FLL 0.104 -0.406 0.769

PL 0.271 -0.561 0.815

BY 0.464 -0.238 0.953

GY 0.404 -0.143 0.987

Variance (Var) 2.9039 2.3872 5.2911

% Var 0.484 0.398 0.882
PH, plant height; DH, days to harvesting; FLL, flag leaf length; PL, panicle length; BY,
biological yield; grain yield per hectare.
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Olivoto et al. (2022) Utilized BLUP values and factor analysis to

assess genotype potential. However, the concept still needs to be

approached with path analysis that focuses on the direct effect of a

character on the total diversity of a main character (Anshori et al.,

2022; Fikri et al., 2023). This is due to the importance of a

unidirectional evaluation of the main characters that can describe

and answer the objectives of an assessment (Fikri et al., 2023; Musa
Frontiers in Plant Science 07
et al., 2023). Therefore, combining factor and path analysis as part

of multivariate analysis is considered effective in estimating

selection criteria in evaluating GxE interactions.

GxE interaction analyses of DH, BY, and GY can be done

independently. The concept of independent assessment of selection

or evaluation criteria in rice was also reported by Hilmarsson et al.

(2021) and Musa et al. (2023). However, the three characters are
TABLE 6 Selection index based on BLUP value of selected characters in each environment.

Environment Genotype
BLUP Value z standardization

Index
DH BY GY DH_z BY_z GY_z

1 Cakrabuana 97.34 95.43 8.37 -1.29 4.73 1.52 1.19

1 Ciherang 104.98 101.32 9.74 3.46 6.00 4.22 2.93

1 Inpari 13 99.34 95.71 8.60 -0.05 4.79 1.98 1.52

1 Inpari 19 92.69 92.44 8.22 -4.18 4.08 1.23 0.56

1 Inpari 32 118.27 99.08 9.55 11.71 5.51 3.86 3.94

1 M70D 90.70 92.58 8.91 -5.41 4.11 2.58 0.77

1 Padjajaran 101.00 86.73 8.21 0.98 2.85 1.20 1.06

E1 (Bone_Season 1) Mean 100.62 94.75 8.80 0.75 4.58 2.37 1.71

2 Cakrabuana 97.01 56.49 7.07 -1.50 -3.66 -1.05 -1.25

2 Ciherang 116.64 84.46 9.90 10.70 2.37 4.54 3.37

2 Inpari 13 98.67 60.29 8.11 -0.46 -2.84 1.01 -0.34

2 Inpari 19 93.35 46.20 5.14 -3.77 -5.87 -4.86 -3.14

2 Inpari 32 112.65 70.78 10.77 8.22 -0.58 6.25 2.91

2 M70D 90.68 46.42 5.14 -5.43 -5.82 -4.86 -3.37

2 Padjajaran 97.34 59.13 6.55 -1.29 -3.09 -2.07 -1.41

E2 (Bone_Season 2) Mean 100.90 60.54 7.53 0.92 -2.78 -0.15 -0.46

3 Cakrabuana 90.23 85.86 7.49 -5.71 2.67 -0.22 -0.37

3 Ciherang 100.13 100.75 8.86 0.44 5.87 2.49 1.96

3 Inpari 13 95.02 106.09 8.30 -2.73 7.02 1.37 1.40

3 Inpari 19 87.35 93.40 7.73 -7.50 4.29 0.25 -0.18

3 Inpari 32 118.35 95.20 8.37 11.76 4.68 1.51 3.10

3 M70D 83.52 87.70 7.21 -9.88 3.06 -0.76 -1.06

3 Padjajaran 93.74 93.95 7.84 -3.53 4.41 0.47 0.49

E3 (Soppeng_Season 1) Mean 95.48 94.70 7.97 -2.45 4.57 0.73 0.76

4 Cakrabuana 97.34 35.89 6.31 -1.29 -8.09 -2.54 -2.54

4 Ciherang 111.99 56.69 6.09 7.81 -3.61 -2.98 -0.44

4 Inpari 13 99.33 38.04 6.47 -0.05 -7.63 -2.24 -2.18

4 Inpari 19 92.34 35.84 5.81 -4.40 -8.10 -3.54 -3.29

4 Inpari 32 116.65 65.80 6.47 10.71 -1.65 -2.23 0.60

4 M70D 90.34 39.39 5.42 -5.64 -7.34 -4.29 -3.54

4 Padjajaran 96.67 35.61 6.16 -1.71 -8.15 -2.85 -2.70

E4 (Soppeng_Season 2) Mean 100.67 43.90 6.10 0.78 -6.37 -2.95 -2.01
E, environment; DH, days to harvesting; BY, biological yield; GY, grain yield per hectare; _z, standardized value.
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related, so the assessment should combine them. One of them is

through the index value approach. The utilization of index values in

the combination of evaluation and selection criteria has also been

reported by (Fadhilah et al., 2022; Sarwendah et al., 2022; Fikri et al.,

2023). In general, the index value becomes the midpoint in

combining the advantages and disadvantages of a genotype

against various selection or evaluation criteria (Olivoto et al.,

2019b; van Eeuwijk et al., 2019; Fikri et al., 2023). The

combination involves dimensional adjustment so that the three

criteria can be combined in a linear equation with balanced values

(Sabouri et al., 2008; Anshori et al., 2021, 2022; Batista et al., 2021;

Fikri et al., 2023). This assesses the interaction of the three

comprehensive and objective (Sabouri et al., 2008; Anshori et al.,

2021; Batista et al., 2021). The utilization of index values based on

BLUP analysis was also reported by Olivoto et al. (2019b); Pour-

aboughadareh and Sanjani (2021), and Panda et al. (2023).

However, the combination of the three also considers the priority

level of a criterion, so weighting in the index is necessary (Sabouri

et al., 2008; van Eeuwijk et al., 2019; Pavithra and Vengadessan,

2020; Anshori et al., 2021; Batista et al., 2021; Rahimi and Debnath,
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2023). Consideration of the weighting value can use the heritability

approach (Fadhilah et al., 2022; Rahimi and Debnath, 2023; Farid

et al., 2024), factor score in factor analysis (Anshori et al., 2022;

Farid et al., 2022; Fikri et al., 2023), or direct effect on cross-section

(Sabouri et al., 2008; Alsabah et al., 2019; Pavithra and

Vengadessan, 2020; Anshori et al., 2021, 2022; Sarwendah et al.,

2022; Fikri et al., 2023). The three concepts are considered effective

in assessing selected and evaluated genotypes, so combining the

three can be a new approach to forming index values for GxE

analysis. This is also supported by reports on the effectiveness of

combining various genetic and multivariate analyses in forming

selection indices (Farid et al., 2022; Fadhilah et al., 2022).

The GxE interaction analysis in this study was combined with

the orthogonal-polynomial concept based on regression analysis of

several varieties. This concept is very familiar in stability analysis by

Finlay-Wilkinson, which focused on simple linear regression

(Finlay and Wilkinson, 1963). In addition, the development of

regression-based GxE interaction analysis was also reported by

Brown et al. (2020); Hilmarsson et al. (2021) and Roy et al.,

2022). However, the approach in this study focuses on the index
FIGURE 1

GxE interaction analysis is based on a multivariate index of selection criteria (A), and GxE interaction analysis is based on grain yield per hectare (B).
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value of the combination of the three selection criteria, so the

regression analysis focuses on the concept of multiple regression.

This makes the interaction assessment simpler, more structured,

and more comprehensive, making the results easy to understand

and interpret in the evaluation process.

Based on the interaction index analysis approach, all rice

varieties have high determination values reaching > 0.8, except

for the Ciherang variety (0.529). In general, the determination value

above 0.8 indicates a high level of effectiveness in a model. This is

inversely proportional to GY-based GxE analysis, which has a

determination value below 0.8. This suggests that the index

approach effectively assesses multivariate rice growth interaction

responses, especially for early maturing varieties. In addition, in this

analysis, Inpari 13, Cakrabuana, and Padjajaran varieties have a

stable response to environmental changes. This is characterized by b

values close to or equal to 1, like the Finlay-Wilkinson concept

(Finlay and Wilkinson, 1963; Piepho and Blancon, 2023; Anshori

et al., 2024). In contrast, interactions based solely on GY had b

values below 0.9 for all three varieties. These results indicate that the

index approach can comprehensively assess rice growth characters’

responsiveness, so the three varieties are considered suitable for

planting in various seasons at both test sites. This developed

concept is different from the Finlay-Wilkinson interaction

analysis and MGIDI, which can only assess partially whether only

focusing on the potential responsiveness (Finlay-Wilkinson) or the

comprehensive potential assessment (MGIDI) (Sitaresmi et al.,

2019; Olivoto et al., 2022; Pour-Aboughadareh et al., 2022;

Debsharma et al., 2023). This makes this approach the meeting

point of the two interaction analyses, so the picture of

responsiveness related to potential GxE interactions can be

assessed comprehensively and systematically. Therefore, the

orthogonal-polynomial multiple regression approach based on

multivariate analysis and BLUP index values can be

recommended for analyzing GxE interactions. In addition, Inpari

13, Cakrabuana, and Padjajaran rice varieties are recommended as

adaptive varieties, especially in both locations (Bone and Soppeng).
5 Conclusions

In conclusion, the new approach through BLUP-based multiple

regression index, factor analysis, and path analysis is considered

adequate in analyzing GxE interactions, especially in evaluating

early maturing rice. In addition, the approach is also considered to

combine the concepts of Finlay-Wilconson and MGIDI stability

analysis in the analysis of GxE interactions. Based on this approach,

the index formed is 0.147*days to harvesting standardized +

0.199*biological yield standardized +

0.291*grain yield per hectare (GY) standardized. The index

approach showed a high determination above 0.8 with a gradient

(b) value above 0.9 in the GxE interaction analysis, especially for early

maturing rice varieties. This compares favorably with GY-based GxE

interaction analysis. Therefore, this index approach can be

recommended in GxE interaction analysis, especially in evaluating

early maturing rice genotypes. In addition, based on the index-based

GxE interaction analysis, the early maturing rice varieties Inpari 13,
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Cakrabuana, and Padjajaran are recommended to be used as adaptive

varieties, especially in both locations (Bone and Soppeng).
5.1 Resource identification initiative

The project uses STAR 2.0.1 from IRRI, META-R from

CIMMYT, and the Microsoft Excel 2016 version. Seeds of rice

varieties were obtained from rice seed markets in Indonesia.
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