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Introducion: Chrysanthemum morifolium Ramat (hereinafter referred to as

Chrysanthemum) is one of the most beloved and economically valuable

Chinese herbal crops, which contains abundant medicinal ingredients and

wide application prospects. Therefore, identifying the classification and origin

of Chrysanthemum is important for producers, consumers, and market

regulators. The existing Chrysanthemum classification methods mostly rely on

visual subjective identification, are time-consuming, and always need high

equipment costs.

Methods: A novel method is proposed to accurately identify the Chrysanthemum

classification in a swift, non-invasive, and non-contact way. The proposed

method is based on the fusion of deep visual features of both the front and

back sides. Firstly, the different Chrysanthemums images are collected and

labeled with origins and classifications. Secondly, the background area with

less available information is removed by image preprocessing. Thirdly, a two-

stream feature extraction network is designed with two inputs which are the

preprocessed front and back Chrysanthemum images. Meanwhile, the

incorporation of single-stream residual connections and cross-stream residual

connections is employed to extend the receptive field of the network and fully

fusion the features from both the front and back sides.

Results: Experimental results demonstrate that the proposed method achieves

an accuracy of 93.8%, outperforming existing methods and exhibiting

superior stability.
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Discussion: The proposed method provides an effective and dependable

solution for identifying Chrysanthemum classification and origin while offering

practical benefits for quality assurance in production, consumer markets, and

regulatory processes. Code and data are available at https://github.com/dart-

into/CCMIFB.
KEYWORDS
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1 Introduction

Chrysanthemum morifolium Ramat (hereinafter referred to as

Chrysanthemum), a traditional iconic flower in China, boasts a

wide variety of species, versatile applications, and a long-standing

cultivation history. Chrysanthemums exhibit remarkable aesthetic

appeal and hold substantial economic as well as medicinal value.

They abound in flavonoids (Sun et al., 2021), volatile oils (Zhan

et al., 2021), chlorogenic acid (Chen et al., 2021a), sesquiterpenes

(Jiang et al., 2021), triterpenes, and amino acids, delivering

advantageous health attributes like anti-inflammatory (He et al.,

2019), antimicrobial, antioxidant (Youssef et al., 2020), anti-HIV,

and anticancer effects (Yang et al., 2017). Chrysanthemums have

found wide applications in food, tea, ornamentation, and

pharmaceuticals. Particularly, Chrysanthemum tea is highly

cherished for its health benefits like heat-clearing, digestion-

enhancing, liver-nourishing, and vision-boosting effects (Yuan

et al., 2020). Nevertheless, their quality and pricing are contingent

upon their place of origin. Identifying the classification and origin

of Chrysanthemum rapidly and precisely is important for

producers, consumers, and market regulators.

Traditional methods of origin identification mainly comprise

plant phenotype analysis and physicochemical analysis. Plant

phenotype analysis heavily relies on human intervention,

involving expertly trained assessment teams to primarily discern

the characteristics of Chrysanthemums, including shape, color, and

odor. The huge group of China’s traditional Chrysanthemum

categories, coupled with the yearly cultivation of numerous new

breeds, contribute to an immensely diverse array of species.

Additionally, Chrysanthemums display a rich array of colors and

intricate floral structures. Its inflorescences are diverse in shape,

with variable proportions of tubular and ligulate flower

composition, especially characterized by an increase in the

number of ligulate flowers. Many Chrysanthemum categories

share a high degree of similarity, making manual identification

methods time-consuming, prone to errors, and challenging for

large-scale variety classification and identification tasks. In the

realm of physicochemical analysis of plants, researchers have

introduced various analytical instruments and conducted

extensive studies. Techniques such as GC-MS, electronic nose
02
(Luo et al., 2017), FT-IR (Liu et al., 2008), ICP-MS (Long et al.,

2013), LC×LC-Q-TOF/MS (Chen et al., 2021b), in conjunction with

chemometrics, have been utilized for the identification of

Chrysanthemum origins. These methods primarily ascertain the

geographical origin and category origin of Chrysanthemums by

detecting the content of effective components, providing advantages

of excellent repeatability and high sensitivity. Nevertheless, these

analytical methods face challenges such as intricate sample

preparation, prolonged analysis duration, and overreliance on

costly equipment such as infrared spectrometers and electronic

nose devices. Therefore, the urgency to develop a swift, non-

invasive, and non-contact method for Chrysanthemum

classification becomes especially pronounced.

In recent years, ample research has demonstrated that the future

progress of plant phenotype analysis relies on the utilization of

computer vision and deep learning methods. This method has

surpassed the limitations of manually gathering plant phenotype

data, which offers a robust avenue for plant phenomics research.

Analyzing and processing plant image data facilitates the automatic

measurement of plant morphological features, including leaf area,

presenting a swift, efficient, and precise method for botanical

morphological research. Some researchers have proposed a novel

DFN-PSAN (Dai et al., 2024) model that effectively integrates

multi-scale relevant features extracted from different network

layers to accurately identify crop diseases in natural agricultural

environments. Additionally, the ITF-WPI (Dai et al., 2023) model

successfully identifies 17 common pests of goji berries by

incorporating a context-aware Transformer network and a

Pyramid Squeeze Attention (PSA) mechanism, achieving

promising results. Some researchers have devised learning-

enhanced methodologies integrating the Inception-v4

convolutional neural network for grading and fraud detection of

saffron images taken with smartphones (Momeny et al., 2023).

Additionally, Researchers utilize computer vision techniques to

detect pests (Hadipour-Rokni et al., 2023), plant diseases

(Momeny et al., 2022), maturity (Azadnia et al., 2023) in citrus

fruits, and more. These endeavors illustrate the extensive prospects

of computer vision technology in botanical morphological studies.

Recent research has aimed to utilize image feature extraction

methods for identifying and detecting Chrysanthemum categories.
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Some researchers undertook preliminary variety identification by

extracting Gray Level Co-occurrence Matrix(GLCM) (Zhai et al.,

2016) textures from images of 20 ornamental Chrysanthemum

categories. Additionally, other researchers utilized hyperspectral

imaging to measure spectral reflectance values from various parts

of Chrysanthemum ray florets and analyzed their correlation with

the measured pigment content. Moreover, researchers extracted

Local Binary Pattern (LBP) (Liu et al., 2017) texture features from

unfolded images of 24 Chrysanthemum categories. However, these

methods were limited to recognizing the overall inflorescence shape

and ray floret patterns of Chrysanthemums, relying only on single-

side information and ignoring the potential of both front and back

views. Therefore, they lacked the capability for precise identification

of Chrysanthemum categories.

To address the aforementioned issues, this paper presents a

Chrysanthemum classification via the fusion of deep visual features

of both the front and back sides. This method employs a deep neural

network to extract the color, texture, and shape features of

Chrysanthemums, facilitating the classification of Chrysanthemum

species. The key steps are as follows. Firstly, the different

Chrysanthemum images are collected and labeled with origins and

classifications. Secondly, the background area with less available

information is removed by image preprocessing. Thirdly, a two-

stream feature extraction network is designed with two inputs which

are the preprocessed front and back Chrysanthemum images.

Meanwhile, the incorporation of single-stream residual connections

and cross-stream residual connections is employed to extend the

receptive field of the network and fully fusion the features from both

the front and back sides. The proposed method demonstrates a

robust solution for chrysanthemum classification by integrating deep

visual features from both front and back views. This method

addresses the pressing need for rapid, non-invasive classification

techniques in the agricultural and medicinal industries, enabling

e ffi c i e n t q u a l i t y a s s e s sm e n t a n d t r a c e a b i l i t y o f

Chrysanthemum products.

The primary contributions of this paper include:
Fron
1. Proposing subjective screening criteria for Chrysanthemum

images, excluding non-compliant ones, thereby providing a

clean and standardized dataset for classification.

2. Introducing a two-stream neural network model tailored to

the unique structure and morphology of chrysanthemums,

enabling extraction of critical features from both sides of

the flower.

3. Presenting a strategy for integrating deep features from

both sides through inter-layer and inter-path interactions,

facilitating comprehensive fusion of front and back

chrysanthemum features.
The subsequent sections of this paper are organized as follows:

Section 2 delves into relevant work on image classification and

Chrysanthemum species recognition. Section 3 elaborates on the

structure and specifics of the proposed network. Section 4 delineates

the results of performance evaluation experiments. Finally, Section

5 concludes the paper.
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2 Related work

2.1 Image classification based on
visual features

Image classification is a fundamental challenge in computer

vision, aiming to categorize images into distinct classes. Traditional

machine learning methods have been utilized for image

classification over recent decades. Yet, with the evolution of deep

learning, deep neural networks have emerged as the forefront

method for image classification. ResNet (Residual Network),

introduced by He et al. (He et al., 2016), enhances accuracy by

considerably increasing depth. Its internal residual blocks use skip

connections, alleviating the vanishing gradient issue in deep neural

networks. Lin et al. (Lin et al., 2015). introduced BCNN (Bilinear

CNN), which utilizes bilinear pooling to grasp pixel relationships

among images for classification. It captures global feature

information by computing the outer product of two CNN feature

maps, making it a highly representative model for fine-grained

weakly supervised learning. Researchers from Stanford University

and Facebook AI Research introduced RegNet (Radosavovic et al.,

2020) which is a novel convolutional neural network. It achieves

heightened accuracy and reduced parameter count through

automated network structure search. EfficientNet (Tan and Le,

2019), published by Google, improves model performance

through balanced scaling in depth, width, and resolution. With

the advent of attention mechanisms, numerous researchers have

implemented them in image classification tasks. SENet (Hu et al.,

2018) (Squeeze-and-Excitation Network), introduced by Hu et al.,

dynamically adjusts feature map weights using attention

mechanisms to enhance image classification performance. CBAM

(Woo et al., 2018) (Convolutional Block Attention Module),

introduced by Woo et al., combines channel and spatial attention

to optimize the model’s attention on various image regions, thereby

improving image classification performance. Swin-T (Liu et al.,

2021), proposed by researchers from The Chinese University of

Hong Kong and Microsoft Research Asia, achieves increased

accuracy and decreased computational complexity through multi-

level partitioned attention mechanisms. TinyViT (Wu et al., 2022),

introduced by researchers from Microsoft, is a novel compact ViT.

It transfers knowledge from large pre-trained models to smaller

ones using swift pre-training distillation methods, allowing smaller

models to leverage abundant pre-training data. ConvNeXtV2 (Woo

et al., 2023), an extension derived from the ConvNeXt (Liu et al.,

2022) architecture inspired by MAE (He et al., 2022), introduces a

new Global Response Normalization (GRN) layer to enhance

competitive feature expression among channels within the

original ConvNeXt modules, thereby better capturing

discriminative channel features. Liu Liu et al. (2023) et al.

propose EfficientViT, a family of high-speed vision transformers

that enhance memory efficiency and reduce computational

redundancy, achieving high accuracy. Wang Wang et al. (2024)

et al. re-examined the efficient design of lightweight CNNs and

highlighted their potential on mobile devices. By integrating the

efficient architecture design of lightweight ViTs, they progressively
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enhanced standard lightweight CNNs, resulting in RepViT, which

demonstrates excellent performance-latency balance.

Presently, within the realm of Chrysanthemum research, deep

learning methods are progressively emerging. Fu et al. (Long et al.,

2023). combined hyperspectral imaging technology with

chemometrics to explore and apply the discrimination of

Hangbaiju’s origins. Yuan et al (Yuan et al., 2018). employed

convolutional neural networks for Chrysanthemum flower

identification, achieving an identification rate of approximately

95%. Nonetheless, it categorized only 5 flower types and could not

accurately discern categories. Following that, they introduced a

Chrysanthemum image phenotype classification framework based

on transfer learning and bilinear convolutional neural networks

(Yuan et al., 2022). Utilizing a symmetrical VGG16 network as a

feature extractor, they eventually fed global features into the

classification layer for sorting. Liu et al. (Liu et al., 2019b). captured

14,000 images of 103 large Chrysanthemum categories using an

image acquisition device. Leveraging the concept of transfer

learning, they established a recognition model for these categories

based on VGG16, GoogLeNet, and ResNet50 deep convolutional

neural networks. However, the clustering and visualization of

extracted deep features did not manifest distinct distribution

patterns. Wang et al. (Wang et al., 2022). integrated AP clustering

analysis with deep features, proposing a multi-information model

based on deep learning for the identification and classification of

large-flowered Chrysanthemums. Building upon the traditional

VGG16 convolutional neural network, Huang et al. (Huang and

Liu, 2023). introduced an enhanced multi-scale, multi-parallel

convolutional neural network termed VGG-Inception. Utilizing

parallel network structures and global pooling layers maintains

model depth and augments network width while reducing

parameters to just 9% of the original VGG16. The utilization of

auxiliary classifiers mitigates gradient vanishing, thereby enhancing

the model’s ability to generalize.
2.2 Deep Multi-Path Networks

Deep Multi-Path Networks represent intricate neural network

structures employing multiple parallel processing pathways to

concurrently handle diverse inputs or feature channels, striving to

comprehensively capture image information and bolster processing

efficiency. This architecture permits diverse pathways to specialize in

distinct feature extraction or tasks. By amalgamating the outputs

from these pathways, it generates more precise or comprehensive

outcomes, exhibiting significant relevance across multiple domains of

image processing. Ma et al. (Ma and Oh, 2022). introduced a two-

stream network based on wavelet transform to address color

deviations and blurry details in underwater images. Pan et al. (Pan

et al., 2021). introduced a method to enhance synthesized view

quality based on a two-stream attention network (TSAN). The

global information extraction stream learns contextual information,

while the local information extraction stream extracts texture details

from rendered images. The Multi-Scale Residual Attention Block

(MSRAB) effectively detects features of varying scales and optimizes
Frontiers in Plant Science 04
them by considering spatial interdependencies. Liu et al. (Liu et al.,

2019a). proposed a driver fatigue detection method utilizing a two-

stream network model integrating various facial features. It extracts

static features from partial facial images and dynamic features from

partial facial optical flow, feeding them into a two-stream neural

network for feature fusion and classification, showcasing excellent

performance. Zhou et al. (Zhou et al., 2023). harnessed EfficientNet’s

efficient feature extraction abilities to separately extract spatial and

temporal features of consecutive video frames from spatial and

temporal flows. They then employed a multi-head attention

mechanism to capture pivotal action details, facilitating action

recognition using the amalgamated features. Wang et al. (Wang

et al., 2020). introduced a global-local two-stream architecture for

multi-scale representation, aimed at resolving classification

performance constraints due to extensive feature variations in

remote sensing images. The Correlation-Driven Joint Bone-Flow

Graph Convolutional Network (CD-JBF-GCN), devised by Tu

et al. (Tu et al., 2022), delves into the motion transmission amid

joint and bone flows, facilitating more discernible feature

representations in both streams. This network demonstrates

cutting-edge performance in semi-supervised skeleton action

recognition. Zheng et al. (Zheng et al., 2023). introduce a novel

Cross-Attention and Cross-Scale Fusion Network (CASF-Net) that

maximizes the potential of two-stream networks and fully integrates

coarse-grained and fine-grained feature representations. The

designed dual-branch encoder focuses on modeling non-local

dependencies and multi-scale contexts, markedly improving

semantic segmentation quality. Similarly, Xie et al. (Xie et al.,

2023). introduce the Context-Aware Network with Two-Stream

Pyramid (CANet) tailored for medical image segmentation.

Through multiple resolution input versions and multi-scale

convolutional units, CANet adeptly captures diverse hierarchical

multi-scale complementary features in medical images. SETNet,

presented by Ma et al. (Ma et al., 2022), stands as a two-stream

convolutional network for no-reference image quality assessment.

While the image stream attends to the entire image content, the

saliency stream explicitly guides the network in learning spatially

significant features more appealing to human perception. Leveraging

spatial and channel attention modules refines features and

amalgamates multi-level features to predict image quality scores.

Drawing inspiration from the human visual system, Chen et al. (Chen

et al., 2023). present a two-stream convolutional neural network for

blind image quality assessment tasks. Emulating the two pathways of

the human eye, the model extracts image content and global shape

features , integrat ing mult i-scale features to enhance

assessment performance.
3 Method

To achieve efficient identification of chrysanthemum species,

this paper outlines the specific workflow depicted in Figure 1, where

the different parts have been clearly labeled. It primarily

encompasses three components: 1) data preprocessing, 2) feature

extraction, and 3) feature fusion.
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3.1 Data preprocessing

Before network input, all Chrysanthemum images undergo a

series of preprocessing steps. Firstly, the Canny edge detection

method is applied to detect the edges of the Chrysanthemum

flowers, making the boundaries clearer. Secondly, a minimal

square encompassing all edges is used to crop the image,

removing any irrelevant background. By doing so, this step

focuses the analysis on the flower, eliminating distractions that

could reduce model accuracy. Thirdly, all images are resized to

224x224 pixels to ensure consistent input dimensions, avoiding

accuracy reduction caused by varying image scales. Fourthly, to

further diversify the training set and reduce overfitting, random

rotations of up to 15° are applied. This augmentation step simulates
Frontiers in Plant Science 05
real-world scenarios, where flowers may appear at different angles,

enhancing the model’s robustness. Fifthly, image normalization is

performed to standardize pixel values across the dataset, aiding in

faster model convergence and improving generalization. This

normalization reduces the risk of gradient instability during

training by scaling pixel values to a common range. Figure 1

illustrates the preprocessing pipeline, highlighting edge detection

(green box), cropping, and resizing for network input.
3.2 Feature extraction

Acknowledging the distinct features between the front and back

of various Chrysanthemum species, the method proposed in this
TABLE 1 The parameters of the network.

Block name Layer name parameters Layer name parameters

Conv1
Conv 7×7, 64 Conv 7×7, 64

Maxpool 3×3 Maxpool 3×3

Conv2
Conv 3� 3, 64

3� 3, 64

2
4

3
5� 2

Conv 3� 3, 64

3� 3, 64

2
4

3
5� 2

Bn+relu Bn+relu

Conv3
Conv 3� 3, 128

3� 3, 128

2
4

3
5� 2

Conv 3� 3, 128

3� 3, 128

2
4

3
5� 2

Bn+relu Bn+relu

Conv4
Conv 3� 3, 256

3� 3, 256

2
4

3
5� 2

Conv 3� 3, 256

3� 3, 256

2
4

3
5� 2

Bn+relu Bn+relu

Conv5

Conv 3� 3, 512

3� 3, 512

2
4

3
5� 2

Conv 3� 3, 512

3� 3, 512

2
4

3
5� 2

Bn+relu Bn+relu

Avgpool 7×7 Avgpool 7×7

FC Block

FC1: output nodes128 FC2: output nodes128

FC3: output nodes32 FC4: output nodes32

FC5: output nodes18
FIGURE 1

The architecture of the proposed method with data preprocessing module, two-stream feature extraction module, and feature fusion module.
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study employs a two-stream neural network model, utilizing an

enhanced ResNet-18 model for both streams. Inputs consist of

images capturing the front and back of Chrysanthemums, tailored

to extract crucial features specific to each side, considering the

unique structure and morphology of the flowers. A traditional

ResNet-18 structure comprises 17 convolutional layers, 1

Maxpooling layer, 1 Avgpooling layer, 1 fully connected layer,

and 1 Softmax layer. In contrast to this, our proposed

network extends the end fully connected layer to three. The

network architecture primarily consists of shallow feature

extraction, encompassing the initial 13 convolutional layers, and

deep feature fusion, comprising the final 4 convolutional layers and

2 fully connected layers. In the end, the upper and lower stream

features are concatenated and merged through a single fully

connected layer, as depicted in Table 1 outlining the network

structure parameters.

Within Table 1, “Block name” represents module names, while

“Layer name” denotes operation names—’conv’ for convolution,

‘BN’ for batch normalization, ‘relu’ for activation function, and

‘Maxpool’ for max-pooling operation. ‘Parameters’ refer to the

convolutional kernel size and output channel quantity. Starting

with 224*224*3 chrysanthemum phenotype image data, a 7*7

convolutional layer with a stride of 2 and padding of 3 produces

output data sized 112*112*64. Subsequent max-pooling, using a 3*3

kernel, a stride of 2, and padding of 1, results in data sized 56*56*64,

halving the feature’s dimensions without altering the channel count.

Following this, Conv2, with a stride of 2 and padding of 1,

maintains the data’s size and channel count. Then, Conv3,

Conv4, and Conv5 double the channel count while halving the

output data size, resulting in 7*7*512 output dimensions. A final

global average pooling layer outputs data sized 1*1*512. The first

two fully connected layers transform data to 128 dimensions and 32

dimensions, respectively. These two 32-dimensional vectors

concatenate into a 64-dimensional vector, fed into the last fully

connected layer, yielding the ultimate feature vector.
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3.3 Feature fusion

Inspired by residual networks, this paper introduces cross-

stream residual connections to simultaneously extract features

and enhance the network’s field of view, allowing better

integration of both positive and negative chrysanthemum features.

As illustrated in Figure 2A, the interaction mode of residual

connections between front and back layers is a traditional single-

stream ResNet network. Here, xl represents the output of the

previous layer, h(xl) denotes direct mapping [the left line in (a)],

while F(xl ,Wl) signifies residual [the convolutional part on the right

side in (a)], where l indicates the layer and Wl represents the l − th

convolutional layer. The formula for the output of this layer xl+1 is

as follows.

xl+1 = h(xl) + F(xl ,Wl) (1)

Figure 2B illustrates the interaction mode of residual

connections between the upper and lower paths within the two-

stream convolutional neural network proposed in this paper. Here,

xpl (p  ⊂  1, 2) signifies the output of the upper or lower path network

in the previous layer.When p equals 1, xpl represents the output of the

upper path network processing the front image in the prior layer, and

when p equals 2, xpl corresponds to the output of the lower path

network processing the back image in the previous layer. h denotes an

identity mapping, Re indicates the joint residual of the upper and

lower paths in the prior layer. This layer’s output is denoted as xpl+1
represents the convolutional layer’s transformation, and the

respective formula is delineated below:

Re = h(xpl ) + h(x3−pl ) (2)

xl+1 = Re + F(xpl ,W
p
l ) (3)

During residual connections between preceding and subsequent

layers, a cross-stream residual connection was applied, summing up
FIGURE 2

(A) The traditional residual connections. (B) The cross-stream residual connections proposed in this paper.
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the three outputs. The use of single-stream and cross-stream

residual connections expands the network’s field of view, aiding

in capturing diverse scale and abstract features within images. It

facilitates direct information exchange between layers within the

same path and between different paths, enabling deeper layers to

benefit from shallower layers, and ultimately allowing a

comprehensive fusion of features from both the front and

back sides.

Similar strategies are employed in the fully connected layers to

further amalgamate features from both the front and back sides:

ypl+1 = G(ypl +
y3−pl

3
) (4)

ypl (p  ⊂  1, 2) signifies the output of the upper or lower path

network in the preceding layer. For p equal to 1, ypl represents the

upper path network’s output, and for p equal to 2, it corresponds to the

lower path network’s output. Meanwhile, yp+1l denotes the network’s

output at this layer, withG representing the transformation in the fully

connected layer. Unlike the convolutional layers, this process involves

aweighted sumof the upper and lower path features,with a ratio of 1:3.

Thisweighting ratio’s validation in subsequent experimental segments

underscores its crucial role in the model’s performance.

This approach accounts for the potential similarity in front

features but dissimilarity in back features among different
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Chrysanthemum species, or vice versa. This enhances the

comprehensive integration of both front and back features,

leading to more accurate identification of Chrysanthemum types.
3.4 Model training

In the training section of the network model, the dataset was

divided into training, validation, and test sets at a ratio of 6:2:2.

Staged training methods were utilized to enhance efficacy.

Pretraining parameters from the ImageNet dataset were initially

transferred, serving as the initial parameters for the first 13 layers of

the two-stream neural network to expedite convergence and

enhance effectiveness. These parameters were then frozen for

preliminary training, facilitating the rapid acquisition of general

features by the model. This phase comprised 20 iterations, a

learning rate of 0.001, and a batch size of 24. Subsequently, the

parameters for shallow feature extraction were unfrozen for model

fine-tuning, involving 30 iterations, a learning rate of 0.0001, and a

batch size of 24. The Adam optimizer was used to optimize the

model, employing cross-entropy loss as the selected loss function.

After each iteration, validation was conducted on the validation set,

saving models that showed superior results to achieve the network’s

optimal solution. To mitigate experimental errors caused by
FIGURE 3

The illustration of Chrysanthemums from different origins and classifications. The pure letter abbreviations represent the origin, and the “chry” +
number abbreviations represent the classification.
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random sampling, the train-test prediction process was repeated 50

times, and the average accuracy was computed.
4 Experimental results

4.1 Database and evaluation metrics

The chrysanthemums used in this study were collected between

October 2022 and December 2022 from Bozhou Anhui, Jiaozuo

Henan, Xifeng Guizhou, Tongxiang Zhejiang, and Julu Hebei, etc.

The chrysanthemums were divided into 18 groups via the origin and

species. There are three batches in each group, and each batch weighs

about1kg.The chrysanthemumswere identifiedas the inflorescenceof

Chrysanthemum morifolium Ramat. by Prof. Yan Hui, Nanjing

University of Chinese Medicine. The images of the chrysanthemum

were taken using a CanonEOS 5DSR camera in a fixed position under

consistent natural lighting. Samples of Chrysanthemum morifolium

‘Hangbaiju’werecollected fromZhoukou,Henan;Sheyang,Yancheng,

Jiangsu; Xifeng, Guizhou; Shimen andWuyi Baimuxiang, Tongxiang,

Zhejiang; JuluHebei andSuizhou,Hubei. Samples ofChrysanthemum

morifolium ‘Gongju’ were obtained from Huangshan, Anhui, and

Shangqiu, Henan. Other categories included Chrysanthemum

morifolium ‘Boju’ from Bozhou, Anhui, Chrysanthemum

morifolium ‘Qiyueju’ from Shexian, Anhui, Chrysanthemum

morifolium ‘Dabanju’ and Chrysanthemum morifolium ‘Jinsiju’

from Huangshan, Anhui, Chrysanthemum morifolium ‘Taoju’ from

Jiujiang, Jiangxi, Chrysanthemum morifolium ‘Xiangju’ from

Xiangshui, Yancheng, Jiangsu, and Chrysanthemum morifolium

‘Huaiju’ and Chrysanthemum morifolium ‘Qibaiju’ from Jiaozuo,

Henan. The dataset comprises 18 Chrysanthemum species, with

approximately 100 images of each Chrysanthemum’s front and back

sides, resulting in a total of around 3600 images. Figure 3 illustrates

schematic images of chrysanthemums from different origins.

During image collection, four criteria were applied to select

images that met the standards: While capturing images of the front

and back of Chrysanthemums, attention was paid to angle selection.

Front images were ensured to exclude receptacles, while the focal

point of back images was positioned between the receptacle and

calyx, typically with a larger receptacle portion. It is crucial to

maintain the integrity of the Chrysanthemum’s receptacle and

petals, as the absence of the receptacle may lead to irregular

shapes, and missing petals may result in occlusion issues. The

color of the flowers should resemble the majority within their
Frontiers in Plant Science 08
respective categories, avoiding excessively dark or bright shades.

Additionally, the size of the flowers should match the majority of

flowers in their respective categories, avoiding situations where they

are too large or too small.

This study employs six metrics—Accuracy, Recall, F1 Score,

number of parameters (Param), Average Inference Time (AIT), and

Standard Deviation (STD) between categories—to assess the

performance of Chrysanthemum image classification methods.

Accuracy indicates the proportion of correctly classified samples

by the classifier, while Recall measures the classifier’s recognition

capability for each category. The F1 Score, a combination of

Precision and Recall, offers an overall evaluation of the classifier’s

performance. Param reflects the complexity of the model by

quantifying the number of trainable parameters. AIT measures

the time taken for the model to process a single sample,

providing insight into the model’s efficiency. The Standard

Deviation between categories reflects the method’s diversity and

balance across various Chrysanthemum categories. These metrics

provide multiple perspectives that facilitate a comprehensive

understanding of the classifier’s performance in Chrysanthemum

classification tasks.
4.2 Effectiveness of backbone and
optimizer selection

This study conducted a series of comparative experiments to

validate the effectiveness of employing the ResNet network as the

backbone for Chrysanthemum classification. CNN, Alex, VGG,

GoogLeNet, and DenseNet were separately chosen as the

backbone for the two-stream neural network. The detailed

experimental results are provided in Table 2.

The data fromTable 2 indicates that using ResNet as the backbone

yielded the best performance across all evaluation metrics. Our model

(ours) achieved the highest levels of accuracy, recall, and F1 score,

reaching 93.8%, 93.5%, and 93.4% respectively. These rankings place

our model at the forefront among all models, highlighting its superior

classification performance. Our model showed a class-wise standard

deviation of 5.20%, 0.7% lower than the second lowest, the two-stream

DenseNet. This indicates the highest stability of our model’s

performance among different categories. These findings further

affirm the effectiveness of our model and its significant advantage.

Thus, these experimental results showcase the superiority and

rationale of using ResNet as the backbone.

On the other hand, this paper compared the iteration processes

of training models using different networks as backbones. The

specific results are depicted in Figure 4, where the horizontal axis

represents the number of iterations, and the vertical axis represents

accuracy on the validation set. Based on the outcomes in Figure 4,

our model outperformed models using other networks as

backbones. Although the two-stream DenseNet showed a result

similar to the proposed model, its convergence speed was notably

slower, which requires approximately 30 iterations to catch up with

the proposed model. Notably, our model demonstrated rapid

convergence in the early stages of training, which achieves high

accuracy with only a few training iterations and maintains a lead.
TABLE 2 Performance comparisons of different networks as backbone.

Backbone Acc (%) Recall (%) F1 (%) STD

TwoStreamAlex 89.1 88.0 88.1 7.22

TwoStreamVGG 84.9 83.4 83.7 9.44

TwoStreamGoogLeNet 90.9 89.9 90.0 7.58

TwoStreamCNN 88.6 87.9 88.0 7.24

TwoStreamDenseNet 93.0 92.1 92.2 5.93

Ours 93.8 93.5 93.4 5.20
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These outcomes underscore the superiority of using ResNet as the

backbone concerning training efficiency.

Concurrently, Figure 5 demonstrates a stability test of different

networks used as backbones. The boxplot’s horizontal axis

represents various image classification methods, and the vertical

axis represents the accuracy metrics corresponding to each method.

The box shape illustrates the data distribution of the corresponding

results. While using DenseNet as the backbone achieves the second-

highest performance, there is still a noticeable gap compared to the

proposed method. In contrast, GoogleNet demonstrates high

stability, but its performance notably lags behind the proposed

method. Overall, employing ResNet as the backbone maintains high

stability while achieving high accuracy. The comparisons in

performance, convergence speed, and stability indicate that using

ResNet as the backbone allows for faster model training while

achieving optimal performance and stability.
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This paper designed a series of experiments to explore the

impact of different optimizers on the model training process. The

learning rate for all optimizers was uniformly set to 0.001, and when

using the SGD optimizer, the momentum parameter was set to 0.9.

The experimental results are shown in Figure 6: Figure A illustrates

the accuracy curves of each optimizer on the validation set, while

Figure B shows the trend of loss reduction during the training

process. As observed from the figures, the RMSprop optimizer

performed poorly in this task, with significant oscillations during

training and difficulty in convergence. Although both SGD and

NAdam achieved final losses close to zero, SGD exhibited a

significantly slower convergence rate compared to Adam, while

NAdam showed slight fluctuations in accuracy. The final accuracy

of both optimizers was lower than that of Adam. The experimental

results clearly demonstrate the effectiveness of the Adam optimizer

for this task.
FIGURE 5

The accuracy stability of different networks as backbone.
FIGURE 4

Convergence speeds of different networks as backbone.
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4.3 Performance comparison

In the comparison experiment, each type of Chrysanthemum

type dataset is divided into a training set, a validation set and a test

set according to the ratio of 6:2:2. To avoid experimental errors due

to random sampling, the train-test process was repeated 50 times.

The model with the lowest error on the validation set was selected as

the final model, and the average values of Acc, Recall, F1, and STD

over 50 experiments were calculated and considered as the final

results. To demonstrate the effectiveness of the proposed method,

this paper compares it against seven image classification methods,

including four convolutional neural network approaches: BCNN,

EfficientNetV2, RegNet, and ConvNeXtV2, as well as three ViT-

based methods: TinyVit, EfficientViT, and RepViT. Considering the

smallest version of ResNet was utilized as the backbone, the

corresponding smallest versions of the other models were chosen

for comparison, such as EfficientNetV2-s, ConvNeXtV2-atto, etc.

Additionally, all models utilized pre-trained parameters from

ImageNet to ensure a fair comparison in terms of resource

consumption and model complexity.

According to Table 3, the proposed method exhibits

competitive performance in accuracy, achieving 93.8%, slightly

higher than ConvNeXtV2 and TinyVit’s 93.5%, and other

classical models such as EfficientNetV2 with 91.7% and RegNet

with 92.1%. Moreover, the proposed model displays excellent

performance in terms of standard deviation between categories,
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recording only 5.20, considerably lower compared to other models

ranging from 5.61 to 8.52. Through the analysis of experimental

data, we observed that while EfficientViT has fewer parameters than

our proposed model, it significantly lags in other performance

metrics, including accuracy and AIT. On the other hand, RepViT

has a similar number of parameters to our model and comparable

accuracy, but its AIT is substantially slower than that of our

proposed model. This not only showcases exceptional overall

performance but also highlights the model’s stability and balance.

These results underscore the effectiveness and robustness of the

proposed model, validating its superiority in Chrysanthemum

image classification tasks.

When considering Param and AIT, the proposed method strikes

an excellent balance between complexity and efficiency. With 13.4M

parameters, our model is more lightweight compared to

EfficientNetV2’s 20.2M and BCNN’s 15.9M. Although our model is

slightly inferior to other methods, it still maintains competitive

accuracy. Additionally, the model’s average inference time is 0.33ms,

faster thanConvNeXtV2 (0.61ms), EfficientViT (1.21ms), andRepViT

(1.19ms), demonstrating its computational efficiency. These results

underscore the effectiveness of the proposed model, validating its

superiority in Chrysanthemum image classification tasks.

Additionally, to visually present the accuracy of different methods

on each category, we plotted a confusion matrix as shown in Figure 7.

From the figure, we can observe that our proposed algorithm achieves

accuracy above 80% in each category, with only 4 categories having
TABLE 3 Performance comparisons of different image classification methods.

Method Acc (%) Recall (%) F1 (%) STD Param (M) AIT (ms)

BCNN (2017) 88.1 88.2 87.4 8.52 15.9 0.26

RegNet (2020) 92.1 91.7 91.7 6.05 4.8 0.81

EfficientNetV2 (2021) 91.7 91.4 91.3 6.44 20.2 1.45

ConvNeXtV2 (2023) 93.5 92.9 92.9 6.32 3.4 0.61

TinyVit (2022) 93.5 93.2 93.1 5.61 11.0 0.69

EfficientViT (2023) 90.8 90.3 90.3 7.67 9.7 1.21

RepViT (2024) 92.9 92.5 92.5 6.11 12.1 1.19

Ours 93.8 93.5 93.4 5.20 13.4 0.33
FIGURE 6

(A) Validation accuracy of different optimizers. (B) Training loss of different optimizers.
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accuracy below 90%. In contrast, ConvNeXtV2 shows accuracy below

80% for AHHS-chry4 and below 90% for 6 categories, while TinyVit

also has accuracy below 80% in two categories. Similarly,

EfficientNetV2 achieves its highest accuracy only on YCSY-chry14

andYCXY-chry15, whereas ourmodel achieves the highest accuracy in

9 categories. Further analysis of the confusionmatrix reveals that other

methods encounter difficulties with chrysanthemums such as chry1,

chry3, chry4, and chry5, which have similar morphologies, leading to

confusion and misclassification. For instance, EfficientNetV2,

ConvNeXtV2, RepViT, EfficientViT and TinyVit misclassify 12.4%,

15%, 13.6%, 16.9% and 14.7% of chry4 as chry1, respectively, whereas

our proposed model misclassifies only 8.0%. Similarly, these models

often misclassify chry3 as chry5, whereas our model maintains a

relatively lower error rate. This indicates that ConvNeXtV2,

EfficientNetV2, RepViT, EfficientViT, and TinyVit perform relatively

weaker on certain categories of chrysanthemum images, while our
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proposed algorithm demonstrates better overall classification ability

and more robust performance in specific categories.

On the other hand, this paper compared the iterative processes of

different image classification models during training. The specific

results are shown in Figure 8, where the horizontal axis represents

the number of iterations, and the vertical axis represents the accuracy

on the validation set. Based on the results in Figure 8, the proposed

method demonstrates superior performance compared to other

comparative methods. Although EfficientNetV2 and TinyVit

converge quickly, their final accuracy falls below that of the

proposed model. ConvNeXtV2’s curve closely resembles the

proposed method’s curve but achieves slightly lower final accuracy.

Although RepViT’s final results are similar to the model proposed, its

convergence speed is slower, and it exhibits significant oscillations

during training, affecting the model’s stability. In contrast, while

EfficientViT shows a smoother upward curve and demonstrates a
FIGURE 7

(A) Confusion matrix of BCNN. (B) Confusion matrix of RegNet. (C) Confusion matrix of EfficientNetV2. (D) Confusion matrix of ConvNeXtV2. (E)
Confusion matrix of TinyVit. (F) Confusion matrix of EfficientViT. (G) Confusion matrix of RepViT. (H) Confusion matrix of Ours.
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certain level of stability, its initial accuracy is relatively low, and itsfinal

accuracy is inferior to other models. These findings underscore the

superior performance and training efficiency of the proposedmethod.

Additionally, this paper conducted experiments involving the

merging of major Chrysanthemum categories and the subsets of

Chrysanthemum morifolium ‘Hangbaiju’. The experimental results

are illustrated in Table 4.

As observed from Table 4, the proposed model demonstrates

higher performance when dealing with the amalgamation of major

Chrysanthemum categories. It achieved 95.8%, 93.3%, and 93.5% in

accuracy, recall, and F1 score respectively, surpassing other models’

results. Additionally, the proposed model showcases good

performance in terms of standard deviation, with a value of only

5.79. Although EfficientNetV2, TinyVit, EfficientViT, and RepViT

achieve accuracy levels close to the proposed model, their recall or

standard deviation (STD) show significant gaps compared to the

proposed method. These results indicate that the proposed method

exhibits better generalization and discrimination capabilities when

major Chrysanthemum categories are amalgamated. The

observations from Table 4 indicate that within the subcategories
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of Chrysanthemum morifolium ‘Hangbaiju’, the proposed model

performs exceptionally well, effectively distinguishing between these

similar categories. While EfficientNetV2 shows performance

metrics close to those of the proposed model, it even outperforms

it in terms of standard deviation. However, ConvNeXtV2, TinyVit,

EfficientViT, and RepViT do not match the performance of the

proposed model. However, ConvNeXtV2 and TinyVit do not match

the performance of the proposed model.

Analyzing these tables collectively, it’s clear that while

EfficientNetV2 performs well with fewer categories, its performance

diminishes with an increase in categories (as observed in Table 3).

Conversely, ConvNeXtV2, RepViT, and TinyVit show overall

accuracy rates similar to the proposed model with more categories,

yet exhibit performance drops for specific or fewer categories. The

proposed model demonstrates higher stability and reliability in

classifying these diverse categories, effectively capturing intra-class

feature differences. This superiority isn’t just evident in overall

accuracy but also in discerning and capturing nuanced differences

between categories, offering a more dependable and precise solution

for Chrysanthemum classification.
TABLE 4 Experimental results of different methods on the amalgamation of major Chrysanthemum categories and the subsets of Chrysanthemum
morifolium ‘Hangbaiju’.

Method Amalgamation of major
Chrysanthemum categories

Subcategories of Chrysanthemum
morifolium ‘Hangbaiju’

Acc Recall FI STD Acc Recall FI STD

BCNN (2017) 92.2 87.3 87.6 10.1 90.8 90.5 90.4 4.32

RegNet (2020) 94.7 91.0 91.5 8.16 94.1 93.8 93.8 2.75

EfficientNetV2 (2021) 95.5 92.3 92.7 6.67 95.3 95.0 95.0 2.49

ConvNeXtV2 (2023) 94.3 89.8 90.4 8.79 93.8 93.1 93.2 4.07

TinyVit (2022) 95.2 91.7 92.4 7.22 94.1 93.9 93.7 2.67

EfficientViT (2023) 94.3 90.0 90.7 8.88 92.4 92.1 92.0 3.73

RepViT (2024) 95.7 93.0 93.4 7.27 93.8 93.6 93.6 3.07

Ours 95.8 93.3 93.5 5.79 95.9 95.3 95.7 2.60
FIGURE 8

Convergence speeds of different methods.
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4.4 Visual analysis

This paper uses two visualization analysis methods to visualize

chrysanthemum classification from two perspectives, as shown

in Figure 9.

Class Activation Mapping (CAM) was used to generate

heatmaps for the four types of chrysanthemum images, as shown

in Figure 9A, where darker colors indicate areas of greater attention

by the model. The heatmaps clearly show that, when processing the

back view of the chrysanthemum, the model mainly focuses on the

calyx, while for the front view, it primarily focuses on the pistil. This

result strongly supports our earlier claim that the back view of the

chrysanthemum contains rich detailed features, and that the front

and back views offer complementary features. This complementarity
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further highlights the potential of fusing both views to enhance

classification performance.

The paper utilizes t-SNE to generate a scatter plot illustrating the

clustering of Chrysanthemum classifications, as shown in Figure 9B.

The x-axis and y-axis represent specific features, with each point

representing an individual Chrysanthemum sample. Different

colored points denote distinct Chrysanthemum categories,

displaying their distribution in the feature space. The visualization

reveals two primary clusters within the Chrysanthemum dataset,

accompanied by smaller clusters inside them, depicting similar

shapes and corresponding to different Chrysanthemum categories.

The first prominent cluster includes Hangbaiju like GZXF_chry10,

HBJL_chry11, HBSZ_chry13, and YCSY_chry14. The second

significant cluster includes Chrysanthemums like AHBZ_chry1,
FIGURE 9

(A) Visualization of CAM. (B) Visualization of t-SNE.
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AHHS_chry2, HNSQ_chry3, and HNJZ_chry4. This visualization

offers valuable insights into studying the differences among

Chrysanthemum categories, facilitating model optimization for

better category differentiation.

For instance, some small clusters are distinctly separated from

others, such as AHHS_chry6 and JXJJ_chry9, indicating that the

model demonstrates high accuracy in distinguishing these

categories. Conversely, certain small clusters are very close to

each other, particularly within the second-largest cluster, where

the distances between AHHZ_chry1 and HNJZ_chry4, as well as

HNSQ_chry3 and AHHS_chry5, are short. This suggests that the

model experiences some confusion when distinguishing these

categories, as reflected in the earlier confusion matrix showing

misclassifications for these species. These observations provide clear

directions for model optimization, allowing future work to focus on

making specific adjustments for these hard-to-differentiate

categories, thereby enhancing the overall performance and

generalization of the model.
4.5 Stability analysis

To ascertain the stability of our proposed method, this paper

created box plots comparing it with other methods in

Chrysanthemum classification accuracy. As depicted in Figure 10,

the horizontal axis of the box plot represents various image

classification methods, and the vertical axis denotes the evaluation
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metrics corresponding to each method, illustrating the data

distribution of the results. Based on the outcomes in A,B,C,

EfficientNetV2, TinyVit, and RepViT attained suboptimal results,

albeit with a gap in stability compared to the proposed method in

this paper. However, while RegNet and ConvNeXtV2 exhibited

higher stability, their performance across various indicators was

inferior to the proposed method outlined in this paper. Figure D

demonstrates that the proposed method excels in stability

concerning inter-class variance, while RegNet and TinyVit lag

slightly and ConvNeXtV2, RepViT, and EfficientViT diverges
FIGURE 10

(A) Boxplot of accuracy. (B) Boxplot of F1 score. (C) Boxplot of recall. (D) Boxplot of standard deviation (STD).
TABLE 5 Experimental results of ablation experiments.

Method Acc
(%)

Recall
(%)

F1
(%)

STD

Front image only 85.5 85.0 85.0 11.7

Back image only 90.5 90.1 90.0 7.61

Both front and back image 91.0 90.0 90.1 8.47

Cross path
residual connections

93.0 92.3 92.2 6.25

a=1 91.7 91.2 91.1 8.67

a=1/2 93.3 92.7 92.7 5.57

a=1/4 92.9 92.6 92.8 5.41

a=1/3(ours) 93.8 93.5 93.4 5.20
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significantly from the proposed method. In summary, the proposed

method demonstrates both high stability and accuracy, facilitating

effective classification of Chrysanthemum images.
4.6 Ablation experiments

To assess the contribution of each component in the

Chrysanthemum classification method proposed here, this paper

conducted several ablation experiments. These included: 1) using

front Chrysanthemum images only, 2) using back Chrysanthemum

images only, 3) utilizing both front and back data simultaneously, 4)

implementing cross-stream residual connections solely in

convolutional layers, and 5) adjusting the weight ratio a of the

two-stream summation in fully connected layers, with a values of 1,

1/2, 1/3, 1/4 (this paper used a=1/3 in this paper). These

experiments aimed to analyze each component’s impact on

method performance, offering a deeper insight into the method’s

role and significance in Chrysanthemum classification. Detailed

experiment results are outlined in Table 5.

Through observing the results in the table, it can be concluded

that solely using front-facing image features results in lower

accuracy, reaching only 85.5%. However, employing back-facing

image features leads to a significant performance boost, achieving

an accuracy of 90.5%. This demonstrates an improvement in

performance by using back-facing features alone but doesn’t fully

exploit the model’s potential. Meanwhile, the performance slightly

improves to 91.0% by using both front and back image features

together, indicating that mere feature concatenation doesn’t fully

accomplish feature fusion. In contrast, employing cross-stream

residual connections in the convolutional layers better achieves

feature fusion, elevating accuracy to 92.6%. Moreover, the weighted

summation operation in the fully connected layers further enhances

feature fusion, and we identified the most suitable weight ratio. The

1:3 weighted ratio exhibits the best performance, reaching the

highest accuracy of 93.8%. These findings highlight the pivotal

role of feature fusion in Chrysanthemum classification methods,

offering significant insights into method performance. Overall, the

comprehensive use of cross-stream residual connections and fully

connected weighted summation effectively fuse image features from

both sides of Chrysanthemum images. This approach accounts for

the differences between front and back features among different

Chrysanthemum types, achieving feature complementarity for

more accurate Chrysanthemum classification.
5 Conclusion

This paper proposes a Chrysanthemum classification method

based on the fusion of deep visual features of both the front and back

sides. Different Chrysanthemum images are collected and labeled

with origins and classifications. The front and back images

underwent separate preprocessing and were used as inputs for a

two-stream neural network. Leveraging single-stream residual

connections and cross-stream residual connections expands the

receptive field of the network and fully fuses the features of the
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front and back sides. Overall, the innovation of this paper lies in the

introduced two-stream neural network model and the strategy of

fusing deep features of the front and back sides of Chrysanthemums.

The experimental results demonstrate the precision and robustness of

this method. These findings provide strong support for its practical

application in real-world agricultural and medicinal scenarios.

In future work, we plan to use distortion simulation techniques

to construct a dataset that includes various visual distortions,

simulating the complex conditions encountered in real-world

scenarios. Training the model on this dataset will significantly

enhance its robustness in handling challenging environments,

such as noise or image degradation. To enhance the model’s

generalization capabilities, we plan to incorporate meta-learning.

This will enable the model to excel in chrysanthemum classification

and quickly adapt to other medicinal plants, allowing for swift

adjustments to new sample origins or species and improving its

effectiveness in diverse classification tasks. For example, this

method is particularly suitable for medicinal plants like Tangerine

Peel Pericarpium Citri Reticulatae, which exhibit significant

differences between the front and back features. By extracting

color and texture features from both sides, the model can be used

for origin tracing and quality assessment. These improvements will

help the model better adapt to real-world applications, such as

agricultural and medicinal plant classification.
Data availability statement

The datasets presented in this study can be found in online

repositories. The names of the repository/repositories and accession

number(s) can be found below: https://github.com/dart-

into/CCMIFB.
Author contributions

YC: Data curation, Formal analysis, Methodology, Writing –

original draft, Writing – review & editing. XY: Formal analysis,

Funding acquisition, Methodology, Writing – original draft,

Writing – review & editing, Supervision. HY: Data curation,

Funding acquisition, Writing – original draft, Writing – review &

editing. JL: Data curation, Writing – original draft, Writing – review

& editing. JJ: Data curation, Visualization, Writing – original draft,

Writing – review & editing, Formal analysis. ZM: Data curation,

Writing – original draft, Writing – review & editing, Formal analysis.

TW: Funding acquisition, Writing – original draft, Writing – review

& editing, Data curation, Formal analysis, Visualization.
Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. The authors

are grateful for the financial support provided by National Natural

Science Foundation of China (Grant No. 62101268), National Natural

Science Foundation of China (Grant No. 82204770), Youth Science
frontiersin.org

https://github.com/dart-into/CCMIFB
https://github.com/dart-into/CCMIFB
https://doi.org/10.3389/fpls.2024.1463113
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Chen et al. 10.3389/fpls.2024.1463113
Foundation of Jiangsu Province (Grant No. BK20210696), High Level

Key Discipline Construction Project of the National Administration of

Traditional Chinese Medicine - Resource Chemistry of Chinese

Medicinal Materials (No. zyyzdxk-2023083), Innovation Team and

Talents Cultivation Program of National Administration of

Traditional Chinese Medicine (ZYYCXTD-D-202005), China

Agriculture Research System of MOF and MARA(Grant No. CARS-

21), Jiangsu Province 333 High-level Talents Training Project, and

“Qing Lan Project” in Colleges and universities in Jiangsu.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Frontiers in Plant Science 16
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fpls.2024.1463113/

full#supplementary-material
References
Azadnia, R., Fouladi, S., and Jahanbakhshi, A. (2023). Intelligent detection and waste
control of hawthorn fruit based on ripening level using machine vision system and deep
learning techniques. Results Eng. 17, 100891. doi: 10.1016/j.rineng.2023.100891

Chen, F., Fu, H., Yu, H., and Chu, Y. (2023). Using hvs dual-pathway and contrast
sensitivity to blindly assess image quality. Sensors 23, 4974. doi: 10.3390/s23104974

Chen, S., Liu, J., Dong, G., Zhang, X., Liu, Y., Sun, W., et al. (2021a). Flavonoids and
caffeoylquinic acids in chrysanthemum morifolium ramat flowers: A potentially rich
source of bioactive compounds. Food Chem. 344, 128733. doi: 10.1016/
j.foodchem.2020.128733

Chen, Y., Zhen, X.-T., Yu, Y.-L., Shi, M.-Z., Cao, J., Zheng, H., et al. (2021b).
Chemoinformatics based comprehensive two-dimensional liquid chromatography-
quadrupole time-of-flight mass spectrometry approach to chemically distinguish
chrysanthemum species . Microchemical J . 168, 106464. doi : 10.1016/
j.microc.2021.106464

Dai, G., Fan, J., and Dewi, C. (2023). Itf-wpi: Image and text based cross-modal
feature fusion model for wolfberry pest recognition. Comput. Electron. Agric. 212,
108129. doi: 10.1016/j.compag.2023.108129

Dai, G., Tian, Z., Fan, J., Sunil, C., and Dewi, C. (2024). Dfn-psan: Multi-
level deep information feature fusion extraction network for interpretable plant
disease classification. Comput. Electron. Agric. 216, 108481. doi: 10.1016/
j.compag.2023.108481

Hadipour-Rokni, R., Asli-Ardeh, E. A., Jahanbakhshi, A., Paeen-Afrakoti, I. E., and
Sabzi, S. (2023). Intelligent detection of citrus fruit pests using machine vision system
and convolutional neural network through transfer learning technique. Comput. Biol.
Med. 155, 106611. doi: 10.1016/j.compbiomed.2023.106611

He, J., Zhu, S., Chu, B., Bai, X., Xiao, Q., Zhang, C., et al. (2019). Nondestructive
determination and visualization of quality attributes in fresh and dry chrysanthemum
morifolium using near-infrared hyperspectral imaging. Appl. Sci. 9, 1959. doi: 10.3390/
app9091959

He, K., Chen, X., Xie, S., Li, Y., Dollár, P., and Girshick, R. (2022). “Masked
autoencoders are scalable vision learners,” in IEEE Conference on Computer Vision
and Pattern Recognition (New Orleans, LA, USA: IEEE). 16000–16009.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). “Deep residual learning for image
recognition,” in IEEE Conference on Computer Vision and Pattern Recognition. (Las
Vegas, NV, USA: IEEE) 770–778.

Hu, J., Shen, L., and Sun, G. (2018). “Squeeze-and-excitation networks,” in IEEE
Conference on Computer Vision and Pattern Recognition. (Salt Lake City, UT, USA:
IEEE) 7132–7141.

Huang, S., and Liu, G. (2023). “Research on fine-grained classification of
chrysanthemum images based on multi-scale and multi-parallel convolutional neural
network,” in International Conference on Cyber Security, Artificial Intelligence, and
Digital Economy (CSAIDE 2023), vol. 12718. (Nanjing, CN: SPIE), 430–437.

Jiang, S., Wang, M., Jiang, Z., Zafar, S., Xie, Q., Yang, Y., et al. (2021). Chemistry and
pharmacological activity of sesquiterpenoids from the chrysanthemum genus.
Molecules 26, 3038. doi: 10.3390/molecules26103038

Lin, T.-Y., RoyChowdhury, A., and Maji, S. (2015). “Bilinear cnn models for fine-
grained visual recognition,” in IEEE International Conference on Computer Vision.
(Santiago, Chile: IEEE) 1449–1457.
Liu, Z., Gao, K., Tian, Y., Dai, S., and Song, X. (2017). Identification of
chrysanthemum cultivars based on unfolding image with lbp texture feature. Res.
Prog. ornamental horticulture China. 176-182.

Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., et al. (2021). “Swin transformer:
Hierarchical vision transformer using shifted windows,” in Proceedings of the IEEE/
CVF international conference on computer vision. 10012–10022.

Liu, Z., Mao, H., Wu, C.-Y., Feichtenhofer, C., Darrell, T., and Xie, S. (2022). “A
convnet for the 2020s,” in Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition. 11976–11986.

Liu, X., Peng, H., Zheng, N., Yang, Y., Hu, H., and Yuan, Y. (2023). “Efficientvit:
Memory efficient vision transformer with cascaded group attention,” in IEEE
Conference on Computer Vision and Pattern Recognition. (Vancouver, BC, Canada:
IEEE) 14420–14430.

Liu, W., Qian, J., Yao, Z., Jiao, X., and Pan, J. (2019a). Convolutional two-stream
network using multi-facial feature fusion for driver fatigue detection. Future Internet
11, 115. doi: 10.3390/fi11050115

Liu, Z., Wang, J., Tian, Y., and Dai, S. (2019b). Deep learning for image-based large-
flowered chrysanthemum cultivar recognition. Plant Methods 15, 1–11. doi: 10.1186/
s13007-019-0532-7

Liu, H.-x., Zhou, Q., Sun, S.-q., and Bao, H.-j. (2008). Discrimination of different
chrysanthemums with fourier transform infrared spectroscopy. J. Mol. Structure 883,
38–47. doi: 10.1016/j.molstruc.2007.12.010

Long, Z., Ai-Li, Q., Han, J., Li, Z., Qiong, J., Jia-Rong, P., et al. (2013). Discriminant
the geographical origin of hangzhou white chrysanthemum based on mineral elements.
J. Nucl. Agric. Sci. 27, 1553–1559. doi: 10.11869/hnxb.2013.10.1553

Long, W., Wang, S.-R., Suo, Y., Chen, H., Bai, X., Yang, X., et al. (2023). Fast and
non-destructive discriminating the geographical origin of hangbaiju by hyperspectral
imaging combined with chemometrics. Spectrochimica Acta Part A: Mol. Biomolecular
Spectrosc. 284, 121786. doi: 10.1016/j.saa.2022.121786

Luo, D., Chen, J., Gao, L., Liu, Y., and Wu, J. (2017). Geographical origin
identification and quality control of chinese chrysanthemum flower teas using gas
chromatography–mass spectrometry and olfactometry and electronic nose combined
with principal component analysis. Int. J. Food Sci. Technol. 52, 714–723. doi: 10.1111/
ijfs.2017.52.issue-3

Ma, H., Cui, Z., Gan, Z., Tang, G., and Liu, F. (2022). Saliency-enhanced two-stream
convolutional network for no-reference image quality assessment. J. Electronic Imaging
31, 023010–023010. doi: 10.1117/1.JEI.31.2.023010

Ma, Z., and Oh, C. (2022). “A wavelet-based dual-stream network for underwater
image enhancement,” in International Conference on Acoustics Speech and Signal
Processing ICASSP. 2769–2773 (Singapore, Singapore: IEEE).

Momeny, M., Jahanbakhshi, A., Neshat, A. A., Hadipour-Rokni, R., Zhang, Y.-D.,
and Ampatzidis, Y. (2022). Detection of citrus black spot disease and ripeness level in
orange fruit using learning-to-augment incorporated deep networks. Ecol. Inf. 71,
101829. doi: 10.1016/j.ecoinf.2022.101829

Momeny, M., Neshat, A. A., Jahanbakhshi, A., Mahmoudi, M., Ampatzidis, Y., and
Radeva, P. (2023). Grading and fraud detection of saffron via learning-to-augment
incorporated inception-v4 cnn. Food Control 147, 109554. doi: 10.1016/
j.foodcont.2022.109554
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fpls.2024.1463113/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fpls.2024.1463113/full#supplementary-material
https://doi.org/10.1016/j.rineng.2023.100891
https://doi.org/10.3390/s23104974
https://doi.org/10.1016/j.foodchem.2020.128733
https://doi.org/10.1016/j.foodchem.2020.128733
https://doi.org/10.1016/j.microc.2021.106464
https://doi.org/10.1016/j.microc.2021.106464
https://doi.org/10.1016/j.compag.2023.108129
https://doi.org/10.1016/j.compag.2023.108481
https://doi.org/10.1016/j.compag.2023.108481
https://doi.org/10.1016/j.compbiomed.2023.106611
https://doi.org/10.3390/app9091959
https://doi.org/10.3390/app9091959
https://doi.org/10.3390/molecules26103038
https://doi.org/10.3390/fi11050115
https://doi.org/10.1186/s13007-019-0532-7
https://doi.org/10.1186/s13007-019-0532-7
https://doi.org/10.1016/j.molstruc.2007.12.010
https://doi.org/10.11869/hnxb.2013.10.1553
https://doi.org/10.1016/j.saa.2022.121786
https://doi.org/10.1111/ijfs.2017.52.issue-3
https://doi.org/10.1111/ijfs.2017.52.issue-3
https://doi.org/10.1117/1.JEI.31.2.023010
https://doi.org/10.1016/j.ecoinf.2022.101829
https://doi.org/10.1016/j.foodcont.2022.109554
https://doi.org/10.1016/j.foodcont.2022.109554
https://doi.org/10.3389/fpls.2024.1463113
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Chen et al. 10.3389/fpls.2024.1463113
Pan, Z., Yu, W., Lei, J., Ling, N., and Kwong, S. (2021). Tsan: Synthesized view quality
enhancement via two-stream attention network for 3d-hevc. IEEE Trans. Circuits Syst.
Video Technol. 32, 345–358. doi: 10.1109/TCSVT.2021.3057518

Radosavovic, I., Kosaraju, R. P., Girshick, R., He, K., and Dollár, P. (2020).
“Designing network design spaces,” in IEEE Conference on Computer Vision and
Pattern Recognition. (ELECTR NETWORK: IEEE) 10428–10436.

Sun, J., Wang, Z., Chen, L., and Sun, G. (2021). Hypolipidemic effects and
preliminary mechanism of chrysanthemum flavonoids, its main components luteolin
and luteoloside in hyperlipidemia rats. Antioxidants 10, 1309. doi: 10.3390/
antiox10081309

Tan, M., and Le, Q. (2019). “Efficientnet: Rethinking model scaling for convolutional
neural networks,” in Proceedings of Machine Learning Research. 6105–6114 (Sandiego,
CA, USA: PMLR).

Tu, Z., Zhang, J., Li, H., Chen, Y., and Yuan, J. (2022). Joint-bone fusion graph
convolutional network for semi-supervised skeleton action recognition. IEEE Trans.
Multimedia. 25, 1819-1831. doi: 10.1109/TMM.2022.3168137

Wang, A., Chen, H., Lin, Z., Han, J., and Ding, G. (2024). “Repvit: Revisiting mobile
cnn from vit perspective,” in IEEE Conference on Computer Vision and Pattern
Recognition. (Seattle, WA, USA: IEEE) 15909–15920.

Wang, Q., Huang, W., Xiong, Z., and Li, X. (2020). Looking closer at the scene:
Multiscale representation learning for remote sensing image scene classification. IEEE
Trans. Neural Networks Learn. Syst. 33, 1414–1428. doi: 10.1109/TNNLS.2020.3042276

Wang, J., Tian, Y., Zhang, R., Liu, Z., Tian, Y., and Dai, S. (2022). Multi-information
model for large-flowered chrysanthemum cultivar recognition and classification. Front.
Plant Sci. 13, 806711. doi: 10.3389/fpls.2022.806711

Woo, S., Debnath, S., Hu, R., Chen, X., Liu, Z., Kweon, I. S., et al. (2023). “Convnext
v2: Co-designing and scaling convnets with masked autoencoders. In,” in IEEE
Conference on Computer Vision and Pattern Recognition. (Vancouver, BC, Canada:
IEEE) 16133–16142.

Woo, S., Park, J., Lee, J.-Y., and Kweon, I. S. (2018). “Cbam: Convolutional block
attention module,” in Lecture Notes in Computer Science. (Berlin, Germany: Springer)
3–19.

Wu, K., Zhang, J., Peng, H., Liu, M., Xiao, B., Fu, J., et al. (2022). “Tinyvit: Fast
pretraining distillation for small vision transformers,” in European Conference on
Computer Vision (Berlin, Germany: Springer), 68–85.
Frontiers in Plant Science 17
Xie, X., Zhang, W., Pan, X., Xie, L., Shao, F., Zhao, W., et al. (2023). Canet: Context
aware network with dual-stream pyramid for medical image segmentation. Biomed.
Signal Process. Control 81, 104437. doi: 10.1016/j.bspc.2022.104437

Yang, H.-M., Sun, C.-Y., Liang, J.-L., Xu, L.-Q., Zhang, Z.-B., Luo, D.-D., et al. (2017).
Supercritical-carbon dioxide fluid extract from chrysanthemum indicum enhances
anti-tumor effect and reduces toxicity of bleomycin in tumor-bearing mice. Int. J. Mol.
Sci. 18, 465. doi: 10.3390/ijms18030465

Youssef, F. S., Eid, S. Y., Alshammari, E., Ashour, M. L., Wink, M., and El-Readi, M.
Z. (2020). Chrysanthemum indicum and chrysanthemum morifolium: chemical
composition of their essential oils and their potential use as natural preservatives
with antimicrobial and antioxidant activities. Foods 9, 1460. doi: 10.3390/foods9101460

Yuan, H., Jiang, S., Liu, Y., Daniyal, M., Jian, Y., Peng, C., et al. (2020). The flower
head of chrysanthemum morifolium ramat.(juhua): A paradigm of flowers serving as
chinese dietary herbal medicine. J. Ethnopharmacology 261, 113043. doi: 10.1016/
j.jep.2020.113043

Yuan, P., Qian, S., Zhai, Z., FernánMartıńez, J., and Xu, H. (2022). Study of
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