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in D12 fatty acid desaturases
related to linoleic acid
production in Perilla frutescens
Zhenke Wu1†, Mingkai Li1†, Xiqin Liang1, Jun Wang1,
Guoli Wang1, Qi Shen2* and Tianyue An1*

1Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional
Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, China,
2Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou
University of Chinese Medicine, Guangzhou, China
Perilla oil from the medicinal crop Perilla frutescens possess a wide range of

biological activities and is generally used as an edible oil in many countries. The

molecular basis for its formation is of particular relevance to perilla and its

breeders. Here in the present study, four PfFAD2 genes were identified in

different perilla cultivars, PF40 and PF70, with distinct oil content levels,

respectively. Their function was characterized in engineered yeast strain, and

among them, PfFAD2-1PF40, PfFAD2-1PF70 had no LA biosynthesis ability, while

PfFAD2-2PF40 in cultivar with high oil content levels possessed higher catalytic

activity than PfFAD2-2PF70. Key amino acid residues responsible for the enhanced

catalytic activity of PfFAD2-2PF40 was identified as residue R221 through

sequence alignment, molecular docking, and site-directed mutation studies.

Moreover, another four amino acid residues influencing PfFAD2 catalytic

activity were discovered through random mutation analysis. This study lays a

theoretical foundation for the genetic improvement of high-oil-content perilla

cultivars and the biosynthesis of LA and its derivatives.
KEYWORDS

Perilla frutescens, catalytic activity, molecular docking, mutation, FAD2 desaturase
1 Introduction

Linoleic acid (LA) is an w-6 polyunsaturated fatty acid (FA) and is indispensable for

human health (Belury, 2023; Saini and Keum, 2018). LA is pivotal in health supplements

and food products, and exhibits notable pharmacological activities, such as antioxidant and

anti-inflammatory effects. Its applications extend to metabolic regulation, blood sugar

management, and cardiovascular disease prevention (Yang et al., 2020; Alarcon-Gil et al.,

2022; Hamilton and Klett, 2021; Marangoni et al., 2020). Furthermore, LA serves as a vital

precursor for a-linolenic acid synthesis, endowing it with considerable economic
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significance and development potential (Choudhary and Mishra,

2021). Currently, large-scale LA production is predominantly

achieved through extraction from natural oilseed crops.

Consequently, breeding these crops is essential for the sustainable

advancement of the LA synthesis industry (Sana et al., 2018; Kanbar

et al., 2023; Yang et al., 2023; Pathak et al., 2014). Perilla seeds,

harvested from the medicinal crop Perilla frutescens, are rich in

unsaturated fatty acids, including oleic acid (OA), LA, and a-
linolenic acid, rendering them a significant oilseed crop (Kim

et al., 2020). Nonetheless, the diverse perilla cultivars and the

varying LA content among them constrain the large-scale

cultivation and improvement of these varieties (Park et al., 2022;

Lee et al., 2019). Therefore, investigating the genetic basis of LA

phenotypes and identifying D12 fatty acid desaturases (FAD2) with

high catalytic efficiency for LA synthesis is crucial for

perilla breeding.

Omics technologies offer an efficient approach to studying cellular

phenotypes and gene functions comprehensively (Fagerberg et al.,

2014). Through omics sequencing and bioinformatics analysis, plant

genes can be scrutinized to pinpoint relevant functional genes and

elucidate the molecular mechanisms underlying specific biological

processes (Su et al., 2023). Consequently, high-throughput

sequencing technologies, known for their substantial data output and

accuracy, are extensively employed to analyze secondary metabolite

variations between plant varieties and to identify key enzymes. For

example, transcriptome sequencing analysis of different Ziziphus

jujuba Mill. varieties can identify key genes in the flavonoid

biosynthesis pathway and elucidate the molecular mechanisms

affecting epicatechin content across different varieties (Wang et al.,

2023). Similarly, transcriptomic and phenotypic analyses of differential

genes associated with unsaturated fatty acid content in soybeans can

provide insights into enhancing fatty acid composition in soybean

seeds (Liu et al., 2022a).

The eukaryotic model organism Saccharomyces cerevisiae,

renowned for its well-characterized genetic background and ease

of genetic manipulation, is widely utilized for enzyme functional

verification, including terpene synthases and fatty acid desaturases

(Deng et al., 2022; Runguphan and Keasling, 2014). Yeast cells

possess a natural fatty acid synthesis pathway capable of generating

pyruvate through glycolysis, which subsequently undergoes

decarboxylation, dehydrogenation, and a series of reactions to

produce malonyl-CoA. Using malonyl-CoA as a basic unit, yeast

cells can synthesize various free fatty acids (FAs), among which OA,

a monounsaturated fatty acid, serves as a crucial precursor for LA

synthesis. Consequently, employing OA-overproducing S. cerevisiae

strains for the functional characterization of fatty acid desaturases is

currently an effective strategy (Kuziora et al., 1983; Miao et al.,

2019). Furthermore, S. cerevisiae is extensively applied in the

construction of microbial cell factories for fatty acids and their

derivatives (Guo et al., 2022).

Previous research has reported the genome data of perilla and

conducted transcriptome analyses on various perilla cultivars (Wu

et al., 2021). In this study, two perilla cultivars with distinct oil

content levels, PF40 and PF70, were selected (Zou et al., 2024). Four

PfFAD2 genes were identified from their transcriptome data and

designated as PfFAD2-1PF40, PfFAD2-1PF70, PfFAD2-2PF40 and
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PfFAD2-2PF70, respectively. Then these genes were functionally

characterized using our constructed OA-overproducing S.

cerevisiae strain. The results revealed that PfFAD2-1PF40 and

PfFAD2-1PF70 lacked the capability to synthesize LA, while only

PfFAD2-2PF40 and PfFAD2-2PF70 could catalyze the conversion of

OA to LA. Furthermore, PfFAD2-2PF40, derived from the high oil-

producing perilla cultivar, exhibited superior catalytic activity.

Through sequence alignment, molecular docking, and site-

directed mutation studies, key amino acid residue responsible for

the enhanced catalytic activity of PfFAD2-2PF40 compared to

PfFAD2-2PF70 were identified. Additional amino acid residues

influencing PfFAD2 catalytic activity were discovered through

random mutation analysis. This study lays a theoretical

foundation for the genetic improvement of high-oil-content

perilla cultivars and provides optimal microbial elements for the

biosynthesis of LA and its derivatives.
2 Materials and methods

2.1 Plant materials and yeast strains

Perilla seeds were collected from their natural habitat,

specifically the plant material cultivation greenhouse of

Guangzhou University of Chinese Medicine, during their

developmental period (late August to mid-September). Seeds

from various perilla cultivars were harvested within one-month

post-flowering, with calyxes removed before storage in liquid

nitrogen for future use. The S. cerevisiae strain BY4741, used as

the chassis strain in this study, was purchased from Shanghai

Yuanye Bio-Technology Co., Ltd.
2.2 Gene cloning

RNA was extracted from perilla seeds using the FastPure Plant

Total RNA Isolation Kit (Vazyme, China). Subsequently, 1 mL of

RNA was reverse transcribed into cDNA using the HiScript III 1st

Strand cDNA Synthesis Kit (+gDNA wiper) (Vazyme, China).

Following the manufacturer’s protocol, the full-length sequence of

the target gene was cloned, ligated into a Blunt vector (TransGen

Biotech, China), and sequenced. Primers used in this part were

listed in Supplementary Table S1.
2.3 Construction of engineered yeast strain

Firstly, the GAL10p and GAL1p promoters of pESC-URA/HIS/

LEU (Miaoling Biology, China) were replaced by TEF1p and PGK1p to

get glucose induced vector pTP-URA/HIS/LEU. TGL1, TGL3 and

TGL5 were cloned from the genomic DNA of S. cerevisiae strain

BY4741. TGL1 and TGL5 were ligated into pTP-URA, and TGL3 was

ligated into pTP-HIS. Then the expression cassette of URA maker and

TGL1 and TGL5, and the expression cassette of HIS maker and TGL3,

were cloned from the constructed pTP vectors. These two expression

cassettes were integrated into the FAA1 and FAA4 sites in the yeast
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genome by using the method reported in the previous work (Jiang

et al., 2022). The schematic diagram illustrating the construction of the

yeast strain was shown in Supplementary Figure S1. Primers used in

this part were listed in Supplementary Table S1.
2.4 Construction and transformation of
yeast expression vectors

The cloned PfFAD2 gene was inserted into the yeast expression

vector pTP-LEU between the Sac I and Not I restriction sites in the

multiple cloning sites, and verified by sequencing. The transformation

plasmid was mixed with yeast competent cells in a solution containing

50% PEG3350 (Solarbio, China), 1 mol/L lithium chloride (Solarbio,

China), and salmon sperm DNA (Solarbio, China), followed by

incubation at 42°C for 1 h. The transformed yeast cells were

centrifuged at 9500 rpm for 1 min, and the supernatant was

discarded. The cell pellet was resuspended in YPD medium and

cultured at 30°C with shaking at 220 rpm for 3 h. After washed

twice with distilled water, the samples were cultured on appropriately

labeled solid media. Primers used in this part were listed in

Supplementary Table S1.
2.5 Shake flask cultivation

A single colony of positive yeast strains was cultured in 5 mL of

SD medium (6.67 g/L yeast nitrogen base without amino acids (BD

Difco, America), 20 g/L glucose (Macklin, China), supplemented

with corresponding amino acids) at 30°C and 220 rpm. Upon

reaching an OD600 of 1.5-2.5, an appropriate volume of the seed

culture was transferred to 50 mL of induction medium (6.67 g/L

yeast nitrogen source without amino acids, 20 g/L glucose,

supplemented with appropriate amino acids). The culture was

then incubated at 30°C and 220 rpm for 5 days.
2.6 Extraction and detection
of compounds

After fermentation, 600 mL of the cultured broth was collected and
combined with 30 mL of 40% tetrabutylammonium hydroxide

(Macklin, China) and 200 mL of dichloromethane (Macklin, China)

solution containing 200 mM methyl iodide (Sigma-Aldrich, America).

Themixture was vortexed at 2000 rpm for 30min and then centrifuged

at 5000 g. The lower dichloromethane layer was transferred to a glass

vial, dried, and resuspended in 200 mL of n-hexane. The prepared

sample was subsequently analyzed by gas chromatography-mass

spectrometry (GC-MS).

GC-MS analysis was conducted using an Agilent 7890 gas

chromatograph equipped with an HP-5MS column and a Saturn

2100 ion trap mass spectrometer. Samples were injected in splitless

mode with an injection volume of 1 mL. The temperature program was

as follows: initial temperature of 50°C held for 2 min, increased to 140°

C at a rate of 30°C/min, then raised to 280°C at a rate of 10°C/min, and

held for 3 min.
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2.7 Site-directed and random mutation

The selected PfFAD2-2PF70 containing yeast expression vector

served as a template to generate the PfFAD2-2PF70 mutants using

the Mut Express II Fast Mutagenesis Kit V2 (Vazyme, China). The

amplified plasmid underwent digestion with the restriction

endonuclease DpnI (Thermo Fisher Scientific, America) for one

hour, followed by transformation into competent Escherichia coli

DH5a cells ((TransGen Biotech, China)). Positive colonies were

identified and sequenced to confirm the site-directed mutation.

Primers used in this part were listed in Supplementary Table S1.

Random mutation was conducted using the PfFAD2-2PF40 gene

as a template. The fragment was amplified with the Instant Error-

prone PCR Kit. Subsequently, the amplified fragment was ligated

into the pTP-LEU vector, and positive E. coli DH5a colonies were

selected for sequencing. Primers used in this part were listed in

Supplementary Table S1.
2.8 Statistical analysis

The data analysis was done by using GraphPad Prism 8

software. The significant differences were performed by unpaired

two-tailed Student’s t-tests. P-value < 0.05 was considered as

statistically significant. The experiments were performed in

triplicate, and the data was presented as the mean ± standard

deviation (SD).
3 Results

3.1 Cloning and functional analysis of
PfFAD2 from different perilla cultivars

Our previous study has found that the oil contents in the seeds

of perilla cultivars PF40 and PF70 was different, and 343.51 mg/g

and 281.34 mg/g of total oil contents were detected in these two

cultivars, respectively (Zou et al., 2024). Meanwhile, the LA content

in PF40 was higher than that in PF70 (Zou et al., 2024). By blasting

the genome and transcriptome data of perilla using the previously

identified P. frutescens fatty acid desaturase 2.1 (GenBank accession

No. MZ747489.1) and 2.2 (GenBank accession No. MZ747499.1) as

query, a total of four FAD2 transcripts were identified from the high

oil-producing perilla cultivar PF40 and the low oil-content perilla

cultivar PF70. Their full-length gene sequences were cloned using

5’/3’-RACE PCR and designated as PfFAD2-1PF40, PfFAD2-1PF70,

PfFAD2-2PF40 and PfFAD2-2PF70. The full length of PfFAD2-1PF40

and PfFAD2-1PF70 are 927 bp, encoding a protein of 309 aa, while

PfFAD2-2PF40 and PfFAD2-2PF70 are 1149 bp long, encoding a

protein of 383 aa. Protein sequence alignment revealed that the

amino acid sequences of PfFAD2-1PF40 and PfFAD2-1PF70 are

identical, whereas PfFAD2-2PF40 and PfFAD2-2PF70 differ in two

amino acids, located at positions 243 and 221 (Figure 1A). To

preliminarily explore the function of these cloned genes, we

screened for identical or similar sequences from different species

by Protein BLAST program. Then multiple sequence alignment was
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performed on the selected sequences and cloned genes, and the

phylogenetic tree was constructed by MEGA software (Tamura

et al., 2021). The phylogenetic analysis indicated that all four genes

were predicted to encode D12 fatty acid desaturases (Figure 1B).
3.2 Functional characterization of PfFAD2

OA, which constitutes approximately 80% of free FAs in the

cytoplasm of S. cerevisiae, serves as the precursor for LA,

indicating that intracellular free FA level is the primary limiting

factor for LA synthesis (Klug and Daum, 2014). Previous research

has demonstrated that lipid droplets in S. cerevisiae generate free

FAs through the activity of steryl ester hydrolase Tgl1 and TAG

lipases Tgl3 and Tgl5 (Athenstaedt and Daum, 2005).

Additionally, free FAs within the cytoplasm of S. cerevisiae can

re-enter the b-oxidation pathway catalyzed by fatty acyl-CoA

synthetases Faa1 and Faa4, resulting in OA consumption (Leber

et al., 2015).

Here, the S. cerevisiae strain was employed as a chassis for the

functional verification of the cloned PfFAD2 genes. Due to the

relatively low OA content, the substrate for PfFAD2, in S. cerevisiae,

metabolic engineering optimization was performed on S. cerevisiae

BY4741 to ensure an adequate supply of OA as a precursor for

PfFAD2. This was achieved by overexpressing TGL1, TGL3, and
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TGL5 to promote the release of free FAs from lipid droplets and by

knocking out FAA1 and FAA4 to reduce the activation of free FAs

(Figure 2A). Consequently, according to the standard curve of OA

(Supplementary Figure S2), the resulting engineered strain PF

produced 70.55 ± 6.27 mg/L of OA, rendering it suitable as a chassis

strain for FAD2 functional verification. Subsequently, the four cloned

PfFAD2 genes were individually constructed into the yeast expression

vector pTP-LEU and transformed into the aforementioned engineered

yeast strain PF. After fermentation, the target products were detected

by using GC-MS equipment. By comparing the retention times of GC

peaks and MS spectra with standards (Supplementary Figure S3), LA

was detected in strains transformed with plasmids carrying PfFAD2-

2PF40 and PfFAD2-2PF70 genes (Figure 2B). Conversely, no LA

production was observed in strains transformed with PfFAD2-1PF40

and PfFAD2-1PF70 contained plasmids (Figure 2B). This indicates that

PfFAD2-2PF40 and PfFAD2-2PF70 can catalyze LA production, while

PfFAD2-1PF40 and PfFAD2-1PF70 lack this catalytic ability. Previous

studies have shown that the deletion of consecutive amino acids near

the active site can lead to reduced enzyme activity, whereas the deletion

of consecutive amino acids at the C-terminus can result in a complete

loss of enzyme activity (Arjomand et al., 2016; Zhu et al., 2016).

Therefore, it is hypothesized that the functional loss of PfFAD2-1PF40

and PfFAD2-1PF70 may be related to the absence of a highly relevant

functional region at its C-terminus associated with LA synthase

catalytic function (Figure 1A).
FIGURE 1

The sequence alignment and phylogenetic analysis of the cloned PfFAD2. (A) The sequence alignment of different PfFAD2 in PF40 and PF70 cultivars.
The amino acids in blue color and cyan were identical, and the positions of different amino acids were shown in in purple color. (B) The phylogenetic
analysis of PfFAD2.
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3.3 Key amino acids residues affecting the
catalytic ability of PfFAD2-2 in different
perilla cultivars

During the functional characterization of PfFAD2-2, it was

observed that PfFAD2-2PF40, derived from the high oil-producing

perilla cultivar PF40, catalyzed a higher yield of LA (32.22 ± 0.83 mg/

L) compared to PfFAD2-2PF70 (24.12 ± 1.69 mg/L) from the low oil-

producing cultivar PF70 (Figure 3). This suggests that PfFAD2-2PF40

possesses higher catalytic ability. This result was consistent with the

finding that PF40 contained more LA than PF70 (Zou et al., 2024).

Sequence alignment previously revealed two residues’ differences

between PfFAD2-2PF40 and PfFAD2-2PF70 protein sequences,

located at positions 221 and 243 (Figure 1A). To investigate

whether these two sites were responsible for the difference in

catalytic ability, the two amino acid sites in the PfFAD2-2PF70 were

mutated to match those of PfFAD2-2PF40, resulting in two variants:

PfFAD2-2L243V and PfFAD2-2C221R. These variants were then
Frontiers in Plant Science 05
transformed into the engineered yeast strain to measure LA

production. Results indicated that the strain transformed with

PfFAD2-2L243V exhibited no significant change in LA production

(Figure 3). We guessed the main reason for this was that both Leu and

Val are non-polar hydrophobic amino acids with similar side chain

groups. And also, the L243V site mutation did not significantly

change the protein’s steric hindrance and surface activity. The amino

acid properties (side chain structure, acidity, hydrophobicity) before

and after the mutation were similar (Supplementary Figure S4).

However, the strain transformed with PfFAD2-2C221R produced LA

increased to a comparable level (31.01 ± 0.13 mg/L) with those of

PfFAD2-2PF40 (Figure 3). This suggests that the amino acid variation

at position 221 is the primary factor contributing to the difference in

catalytic ability between the LA synthases from the two

perilla cultivars.

To further elucidate the mechanism by which the amino acid

variation at position 221 affects the catalytic efficiency of PfFAD2-2,

homology modeling and molecular docking were employed. Given
FIGURE 2

The functional characterization of PfFAD2 by yeast expression system. (A) The metabolic engineering of yeast for the accumulation of OA. The green
color represented the overexpressed enzymes and the red color represented the deleted enzymes. (B) The detection and contents of OA and LA in
different yeast strains. The left represented the GC profiles of LA standard and different engineered yeast strains, and the right represented the
contents of OA, LA and the efficiency of converting oleic acid to LA in the four engineered yeast strains carrying different PfFAD2 enzymes.
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the absence of crystal structure template for FAD2, Alphafold 2 was

utilized to construct the three-dimensional structure of PfFAD2-2

(Bryant et al., 2022). Following evaluation by SAVEs 6.1 (https://

saves.mbi.ucla.edu/) (Supplementary Figure S5), OA was docked

into the protein model (Figure 4A). The docking analysis and

multiple sequences alignment (Supplementary Figure S6) revealed

that the active site pocket of the PfFAD2-2 structure consists

primarily of the b-strand beginning with the conserved region

TXSXXXDEVFVP, the a-chain terminating with the conserved

region GWPXYL, and the conserved amino acid region REXXEC at

the C-terminus (Figure 4B), and the active pocket was shown in

Figure 4C. The amino acid at position 221 is situated on the first a-
chain near the active site pocket (Figure 4D). Compared to the

cysteine at position 221 in PfFAD2-2PF70 (Figure 4E), the arginine

in PfFAD2-2PF40 exhibits greater rigidity, enhancing the protein’s

structural stability (Figure 4F) (Mendes et al., 2015). Consequently,

it is hypothesized that R221 in PfFAD2-2PF40 may augment its

catalytic capability by stabilizing the protein. Additionally,

homology modeling indicated that the active site pocket of

PfFAD2-1PF40 and PfFAD2-1PF70 lack the conserved region

REXXEC (Figure 1A; Supplementary Figure S7), which likely

accounts for its lack of catalytic function.
3.4 Identification of additional amino acid
sites affecting the catalytic ability of
PfFAD2-2

Based on the above results, variations in amino acid sites were

identified as the primary factors causing differences in the catalytic

function of PfFAD2 among various perilla cultivars. To further

elucidate the catalytic mechanism of PfFAD2, random mutation

and functional verification methods were employed to identify

additional amino acid sites affecting PfFAD2 catalytic efficiency.

Initially, an error-prone PCR kit was utilized to amplify the

PfFAD2-2PF40 gene, constructing a random mutation gene
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library (Lu et al., 2023). These mutated PfFAD2-2PF40 genes

were then sequentially transformed into the engineered strain

PF, followed by fermentation and LA production detection. The

detection result revealed that among the thirty-two PfFAD2-2PF40

mutant transformants obtained, most showed no LA production

or no significant change in LA yield, with only four strains

exhibiting notable yield changes. Specifically, the mutants P41H,

L171R, R177S, and Q115H demonstrated reduced LA production

than the WT PfFAD2-2PF40 (Figure 5A), indicating that P41,

Q115, L171, and R177 are crucial residues affecting PfFAD2-

2PF40 catalytic capacity. Subsequently, the position of these four

residues were checked (Figure 5B) and the reasons for the

decreased FAD2 catalytic efficiency caused by these mutations

were hypothesized.

By analyzing the distribution of these amino acid sites in the

molecular docking model, it was found that L171 and R177 are

located in the active pocket of PfFAD2-2PF40. The L171R

mutation (Figures 6A, B) narrowed the channel entering the

active pocket due to arginine having a larger side chain than

leucine, thereby affecting the entry of OA molecules. The R177S

mutation (Figures 6C, D) was unfavorable for active pocket

stability, as serine has a smaller side chain than arginine. P41

(Figures 6E, F) and Q115 (Figures 6G, H) are both distributed on

the enzyme surface in key loop regions connecting a-chains. The
P41H mutation reduced protein stability, as histidine is less rigid

than proline. The Q115H mutation decreased protein solubility,

given that histidine is less hydrophilic than glutamic acid.

Consequently, these mutations all adversely affected the

catalytic ability of FAD2.
4 Discussion

Over recent decades, crop breeding research has transitioned

from traditional breeding methods to molecular breeding

approaches (Bai et al., 2018). Currently, the primary objectives of

oilseed crop breeding encompass enhancing seed yield, quality, and

stress tolerance. Specifically, increasing seed yield has evolved from

genomic screening and gene editing to the application of molecular

breeding techniques (Stewart-Brown et al., 2019; Anders et al., 2021;

Guo, 2021). Molecular breeding emphasizes identifying trait-

influencing genes, examining the relationships between these

genes and known genes, and investigating the molecular

mechanisms by which these genes affect traits. Advances in high-

throughput sequencing, big data mining, and synthetic biology have

provided valuable tools for molecular breeding (Liu et al., 2022b). In

this study, FAD2 genes were extracted from existing genomic and

transcriptomic data, and their functions were verified using

engineered strains. Key amino acid sites affecting PfFAD2

function were identified through sequence alignment and

molecular docking analysis. This research provides a reference for

the cultivation and precision breeding of perilla varieties with high

LA and oil yields.

To date, FAD2 enzymes involved in LA synthesis have been

identified in various organisms, including animals, plants, fungi,

and algae (Jiao and Zhang, 2013). The FAD2 enzyme was initially
FIGURE 3

The LA production in yeast strains with different PfFAD2
transformation. PfFAD2-2L243V and PfFAD2-2C221R were mutated
from PfFAD2-2PF70. The asterisks indicate significant differences (**p
< 0.01, *p < 0.05).
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discovered in the model plant Arabidopsis thaliana. It is located on

the endoplasmic reticulum and catalyzes the desaturation of OA

using a phospholipid-derived acyl group, with the assistance of

nicotinamide adenine dinucleotide (NADH), NADH-cytochrome

b5 reductase, and cytochrome b5 (Okuley et al., 1994). Differences

in FAD2 gene sequences among species and cultivars result in
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variations in the expression patterns and functions of LA synthases

(Jiao and Zhang, 2013). Therefore, it is essential to investigate the

molecular factors affecting the catalytic efficiency of LA synthases.

This study explored gene variations in FAD2 from two different

perilla cultivars. However, further research is needed to understand

the expression and function of other unsaturated fatty acid
FIGURE 4

The molecular docking and residue 221 analysis of PfFAD2-2. (A) The docking of OA to the active pocket of PfFAD2-2. (B) The constitution of the
active pocket of PfFAD2-2. The red represented the motif of TXSXXXDEVFVP, the yellow represented the motif of GWPXYL, and the blue
represented the motif of REXXEC. (C) The active pocket of PfFAD2-2. (D) The position of residue 221 in PfFAD2-2. (E, F) The conformational
difference of C221 and R221 in PfFAD2-2.
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desaturases, such as FAD3 and FAD7, in perilla seeds (Arondel

et al., 1992; Ma et al., 2015).

Amino acids form the foundation of protein structure and

function. Throughout evolution, amino acids crucial to enzyme

activity and stability have been conserved. Consequently,

mutations at key amino acid residues can effectively alter the

catalytic function of proteins (Li et al., 2024; Cai et al., 2024). For

instance, manipulating the repetitive sequences of the FAD2 gene

can enhance the conversion rate of OA to LA in mouse cells (Chen

et al., 2009). In this study, the conserved functional sequences of

FAD2 from different perilla cultivars were compared to identify
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key amino acid residues responsible for variations in LA catalytic

efficiency. Subsequently, homology modeling and molecular

docking were employed to elucidate the structural basis for

these changes in catalytic efficiency. Furthermore, to identify

additional amino acid residues critical to the catalytic function

of LA synthase, various FAD2-2 mutants were generated through

random mutation. Functional validation and molecular docking

analysis identified four important amino acid sites affecting LA

production. This research provides crucial theoretical support for

the genetic breeding of high oil-yielding perilla and the

biosynthesis of LA.
FIGURE 5

The effect of mutations in PfFAD2-2PF40 in LA production. (A) The LA production of different mutants of PfFAD2-2. All the mutants were mutated
from PfFAD2-2PF40. The asterisks indicate significant differences (**p < 0.01, *p < 0.05). (B) The position of P41, Q115, L171, and R177 residues in
PfFAD2-2.
FIGURE 6

Mechanistic analysis of the catalytic activity of different PfFAD2-2 mutants. (A–H) Comparison of the conformational difference of L171, R177, P41
and Q115 mutants with WT.
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