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Introduction: The Cinnamomum Camphora var. Borneol (CCB) tree is a valuable

timber species with significant medicinal importance, widely cultivated in

mountainous areas but susceptible to pests and diseases, making manual

surveillance costly.

Methods: This paper proposes a method for detecting CCB pests and diseases

using Unmanned aerial vehicle (UAV) as an advanced data collection carrier,

capable of gathering large-scale data. To tackle the high cost and challenging

data processing issues associated with traditional hyper-spectral/multi-spectral

sensors, this method only relies on UAV visible light RGB bands. The process first

involves calculating and normalizing 24 visible light vegetation indices from the

UAV RGB images of the monitoring area, along with the original RGB bands. To

account for the collinearity relationship between indices, the random forest

variable importance and correlation coefficient iterative analysis algorithm are

employed to select indices, retaining the most important or lowest collinearity

multiple vegetation indices. Subsequently, the Beluga Whale Optimization (BWO)

algorithm is utilized to generate a new vegetation index, which is then combined

with the multi-threshold segmentation method to propose a BWO-weighted

ensemble strategy for obtaining the final pests and diseases detection results.

Results and discussion: The experimental results suggest that the new BWO-

based vegetation index has a higher feature expression ability than single indices,

and the new BWO-based ensemble strategy can yield more accurate detection

results. This approach provides an effective means for low-cost pests and

diseases detection of CCB trees.
KEYWORDS

pests and diseases monitoring, Beluga Whale Optimization algorithm, BWO-based
vegetation index, BWO-based ensemble strategy, unmanned aerial vehicle
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1 Introduction

The Cinnamomum Camphora var. Borneol (CCB) is an

esteemed medicinal timber species gaining popularity, which

stands out in the botanical realm due to its profuse presence of

borneol, a naturally occurring camphor with a distinct fragrance

and therapeutic properties. It is extensively utilized in Traditional

Chinese Medicine and is hailed as a quintessential example of

aromatic medicinal herbs. The CCB tree demands stringent growth

conditions and is very particular, thriving only under specific

climatic and soil circumstances. It frequently faces threats from a

variety of pests and diseases, which significantly impact its growth

and the efficiency of its resource utilization. Consequently, the rapid

and precise monitoring of pests and diseases affecting the CCB tree

is essential for guaranteeing its yield and maintaining its

medicinal efficacy.

Advancements in remote sensing technology have made it

possible to utilize various aerial and space-based remote sensing

technologies for pests and diseases monitoring, which is now a

crucial method (Li et al., 2010). In the field of pests and diseases

monitoring, satellite remote sensing technology has been applied

for a long time and has achieved impressive results. By analyzing

spectral information in multi-spectral images, a wide range of

forestry pests and diseases can be effectively identified and

monitored. However, satellite remote sensing technology has

limitations, such as temporal delays in monitoring results due to

long revisit cycles, restrictions in imaging conditions, atmospheric

interference, and topographical undulations. Although high-

resolution satellite data, such as IKONOS, QuickBird, and

WorldView, can provide precise remote sensing data at the meter

or even sub-meter level, they are expensive to acquire, have slow

update speeds, and may not have sufficient spatial resolution for

precise identification at the tree species level.

In recent years, the rapid evolution of unmanned aerial vehicle

(UAV) has elevated it to a crucial platform for terrestrial

monitoring with inherent speed, convenience, and effectiveness

(Wu et al., 2024). UAV remote sensing swiftly captures a diverse

array of images, including high-definition, multi-temporal, multi-

angular, multi-spectral, and hyper-spectral images, even in intricate

terrain. This technology significantly supports forest pests and

diseases surveillance efforts in specific regions. However, as image

resolution improves, it simultaneously presents a richer source of

information, which necessitates the development of algorithms that

can maintain precision and processing speed despite these increased

data complexities.

The fundamental principle of using UAV technology for

monitoring forest pests and diseases lies in the fact that plants,

when exposed to pest or disease stress, typically display distinct

stress symptoms or damage, resulting in alterations to their spectral

reflectance that can be captured by UAV sensors. By utilizing multi-

spectral or hyper-spectral UAV sensors, researchers have acquired

high-resolution UAV data, capitalizing on plant spectral

characteristics to create artificial intelligence-related algorithms

for pest and disease monitoring, with satisfactory detection

accuracy. For example, Park et al. (2021) utilized a multi-spectral

camera-equipped UAV to capture high-resolution multi-spectral
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aerial images, and applied a multi-channel CNN-based object

detection technique to detect pine wilt disease-infected trees,

achieving impressive detection results. Run Yu et al. (2021)

integrated UAV multi-spectral images with target detection

algorithms to monitor pine wilt disease incidence, providing

technical support for its control. Kim et al. (2015) extracted pine

wilt disease-affected trees using time-series hyper-spectral aerial

images and analyzed their distribution characteristics. Zeng et al.

(2023) achieved a maximum recognition rate of 93.2% for early

detection of rubber tree white powder disease using UAV multi-

spectral remote sensing. Sahin et al. (2023) utilized a multi-spectral

camera and CRF-enhanced U-Net for weed identification, achieving

an average recognition rate of 88.3% for soil, crops, and weeds. Luis

Pádua et al. (2020) utilized UAV multi-spectral images and a

random forest algorithm to select crown height model (CHM)

features for cork oak tree pest and disease monitoring, with the

highest overall accuracy of 91% in September and the lowest of 76%

in May. Sivakumar et al. (2020) trained and evaluated convolutional

neural network models based on target detection for pest detection

in low-altitude UAV images, concluding that the Faster RCNN

model performed best in detecting late-stage weeds in

soybean fields.

Multispectral/hyperspectral sensors have more spectral channels,

which can capture finer spectral bands, thus obtaining more detailed

material spectral information. This is helpful for analyzing land

features, studying various spectral matching models, and is widely

used in military reconnaissance, mineral exploration, environmental

monitoring, precision agriculture, medical diagnosis, and other fields.

However, their cost is high, the system is more complex, and they

require a higher level of professional operation. Specialized data

processing techniques are needed to analyze the large amount of

spectral data. Moreover, while providing high spectral resolution,

they may sacrifice some spatial resolution. Therefore, the cost of

obtaining high-resolution multispectral/hyperspectral UAV image

data is high and suitable for fields that require higher precision and

more challenging identification tasks. Ordinary visible light sensors

typically have only three bands (red, green, blue). Due to the limited

number of bands, the amount of information provided is limited and

mainly used for basic image capture and some simple environmental

monitoring. However, they usually have a higher spatial resolution,

suitable for capturing clear images. Because of their lower cost,

simpler system, easy mass production and application, and

relatively easier data processing, many scholars use lower-cost

high-resolution RGB image data instead of high-cost multispectral/

hyperspectral images. These RGB data are also converted into various

vegetation indices, such as VEG, CIVE, and others, to facilitate the

detection of crop pests and diseases. In contrast to satellite remote

sensing, the spatial resolution of UAV remote sensing can achieve

levels of decimeters or even centimeters, substantially diminishing the

influence of mixed pixels on the accuracy of estimations. However,

the payload capacity of small, low-altitude UAV remote sensing

platforms is restricted, often precluding the use of high-precision

professional instruments, and typically relies on visible light cameras,

which results in a deficiency of near-infrared information. To

mitigate this issue, researchers have exploited the trough-peak-

trough features of vegetation reflectance within the visible light
frontiersin.org
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spectrum to create diverse visible light vegetation indices. These

indices have been applied in studies related to vegetation information

extraction, leaf greenness content estimation, and more. For instance,

Wang Xiaojun et al. (2015) successfully distinguished between

vegetation and non-vegetation in UAV images using visible light

vegetation indices; Hunt Jr. et al. (2005) utilized UAV visible light

vegetation indices to forecast the yield of corn and soybeans; Schmidt

et al. (2017) employed a UAV-based species identification system for

rangeland plants (with a spatial resolution of 3 m) based on RGB

images (with a resolution of 30 cm) to conduct distribution

monitoring of needlegrass species through a supervised

classification support vector machine approach, using RGB images

as ground reference data. Bryson Mitch et al (Bryson et al., 2010;

Garcia-Ruiz et al., 2013) have applied visible light low-altitude UAV

images to monitor yellow dragon disease in crops and have widely

implemented this in precision agriculture practices.

Preliminary research has revealed that the collective

performance of various vegetation indices offers enhanced stability

and dependability over individual indices when monitoring crop

pests and stresses. The simplest approach to integrating multiple

vegetation indices is by using a weighted summation, yet the

determination of appropriate weights presents a significant

challenge in this field. To address the constraints of conventional

methods, this paper incorporates the BWO (Beluga Whale

Optimization) algorithm into the weighted segmentation process

of vegetation indices, with the goal of achieving accurate monitoring

of plant pests and diseases. The BWO algorithm, an optimization

method inspired by biological behavior, boasts global search

capabilities and rapid convergence, showcasing its effectiveness in

tackling optimization challenges. The CCB trees typically grow on

mountains, and the conventional pest and disease monitoring

methods that rely on manual inspection are time-consuming,

labor-intensive, and inefficient, posing safety risks to personnel.

Drones offer an aerial perspective for inspecting large areas of

CCB trees, effectively addressing many of the limitations of

conventional manual inspections. The aim of this study is to apply

the BWO algorithm for the weighted combination of vegetation

indices, integrating diverse threshold segmentation methods to

detect pest and disease-infested areas in CCB Trees. The red (R),

green (G), and blue (B) color bands along with 24 additional

vegetation indices are chosen for BWO-based weighting to create

a novel vegetation index. These indices provide essential information

on the physiological state and growth conditions of the plants. A

rational weighting of the CCB Tree’s vegetation index can boost the

precision and efficiency of pest and disease monitoring, thus

providing a scientific basis and technical support for the prompt

identification and prevention of pests and diseases in CCB Trees.

The contribution of this paper can be summarized as follows:
Fron
1. The paper presents a novel method for generating a new

vegetation index utilizing the BWO algorithm. This

method innovatively amalgamates data from several

vegetation indices across different aspects, solely with the

use of RGB images, to develop a novel vegetation index that

surpasses individual indices in detecting pests and diseases

with higher accuracy.
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2. The paper presents a method for identifying pests and

diseases in plants by combining multiple threshold

segmentation methods with a newly developed vegetation

index. By employing a simple ensemble strategy based on

majority voting, this technique shows improved detection

performance over individual threshold segmentation

techniques and standalone vegetation indices.

3. The paper proposes an ensemble strategy optimized by the

BWO algorithm, which leverages a variety of threshold

segmentation methods along with a novel vegetation index.

This approach delivers a more reliable enhancement in

the detection accuracy of pests and diseases by

dynamically adjusting the weights of each threshold

segmentation technique.

4. Considering the multicollinearity among various vegetation

indices derived from RGB data, this study applies Random

Forest Variable Importance and Correlation Coefficient

Iterative Analysis to evaluate the collinearity among

multiple vegetation indices. The results indicate that

using a selected subset of these indices can significantly

reduce computational complexity without compromising

detection accuracy, by accounting for the multicollinearity

among them.
The organization of this paper is as follows: In section 2, the

study area and the data used are introduced. Section 3 outlines the

methodologies employed, which include 24 different vegetation

indices, Random Forest Variable Importance, Correlation

Coefficients Iterative Analysis using, Voting Ensemble Approach,

and the BWO Ensemble Strategy. Section 4 provides the

experimental outcomes, confirming the efficacy of the BWO

method. The paper concludes with final remarks in Section.
2 Materials and methods

2.1 Study area overview

The study area is located in the CCB Plantation Base in

Xinhuang County, Huaihua City, Hunan Province. Xinhuang

Dong Autonomous County (hereinafter referred to as Xinhuang

County) belongs to the mid-subtropical monsoon humid climate,

with distinct four seasons, warm and humid, short cold period, long

frost-free period, abundant rainfall, with an average annual

temperature of 16.6°C, an average annual precipitation of 1160.7

mm, and a total sunshine between 1014.5 and 1590.2 hours. The

annual frost-free period is 297.4 days. The geographical location is

between 108°47’13” - 109°26’45” east longitude and 27°4’16” - 27°

29’58” north latitude. It is located in the western part of

southwestern Hunan, under the jurisdiction of Huaihua City,

Hunan Province, at the end of the extension of the Miaoling

Mountains in the Yunnan-Guizhou Plateau, mainly with

mountainous topography, with a forest coverage rate of 67.5%, of

which the planting area of CCB trees reaches 18 km, which is the

leading variety of traditional Chinese medicine in the county. The

origin is in the gentle slope land below 800 meters above sea level
frontiersin.org
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and with a slope of less than 25°; the soil layer is loose, and the soil

type is yellow soil or red soil. The pH value is 5.5 to 7.0, the soil

depth is more than 50 cm, the drainage and air permeability are

good, and the organic matter content is ≥1.0%. The superior

geographical and climatic conditions, suitable temperature and

precipitation, and vast mountain resources provide an ideal

growth environment for the growth of CCB trees, and provide

sufficient raw materials for the production and development of

Xinhuang CCB.
2.2 UAV data collection

The data collection in this study was carried out using a DJI

Mavic 3M UAV, as depicted in Figure 1.

This professional UAV is equipped with a 20-megapixel visible

light camera and four 5-megapixel multispectral cameras,

facilitating high-precision aerial surveys, crop growth monitoring,

and natural resource investigations. The UAV also utilizes

multispectral sensors to capture solar radiation data, which is

stored in image files, improving the accuracy and consistency of

NDVI (Normalized Difference Vegetation Index) results. Equipped

with RTK (Real-Time Kinematic) technology, it provides

centimeter-level precision positioning. The UAV’s specifications

include a bare weight of 951 grams (including propellers and RTK

module), a maximum takeoff weight of 1050 grams, dimensions of

347.5mm * 283mm * 139.6mm. Its flight time is up to 43 minutes,

and the longest hovering time is 37 minutes, allowing a single flight

to cover up to 3000 acres for mapping tasks. The UAV offers

adjustable flight speed and stable flight, with the capability to hover

precisely, making it suitable for repeated, multi-scale, and high-

resolution data acquisition of crop pests and diseases stress at

specific points.

In Xinhuang County, a severely pests and diseases affected area

within the CCB plantation base was chosen for UAV multispectral

and RGB visible light image acquisition. The aerial imaging mission

took place on July 28, 2023, at 3:00 PM local time, with ideal

weather and a soft breeze. The UAV operated in a constant-altitude

patrol mode, maintaining a downward-facing camera lens. During

the flight, the conditions were favorable, with an altitude of

approximately 80 meters and intermittent hovering for image

acquisition. Due to relaxed specifications for spectral range and

pixel center alignment, no radiometric calibration was applied to
Frontiers in Plant Science 04
the images. The captured visible light images consisted of three

fundamental bands: red, blue, and green. Following preprocessing

with DJI-Terra software, the RGB data generated a seamless mosaic

of the entire region, as depicted in Figure 2, where darker shadow

areas denote the mountain’s rear slopes.

As described in following Figure 3, three sub-regions within the

image are chosen for algorithmic study, which clearly show plants

damaged by pests and diseases. By manually delineating the exact

locations of the affected plants, the gray scale values for these

regions are set to 0, whereas the gray scale values for the healthy

plant areas are set to 255. As a result, a binary ground truth image is

created, which can be used for both training the algorithm and

assessing accuracy metrics.
3 Methods

3.1 General methodology

Based on a variety of RGB-derived vegetation indices, this paper

proposes a new vegetation index based on BWO and a new

ensemble learning strategy to achieve precise detection of trees

with pests and diseases. The specific technical route is shown in

Figure 4 below.

To begin with, high-resolution RGB image data was collected

using an UAV and underwent essential preprocessing for quality

assurance, including image matching, image mosaic, image dodging

and so on. Following this, various vegetation indices were extracted

from the images, including Normalized Green-Red Difference

Index (NGRDI), Green Leaf Index (GLI), Red-Green Ratio Index

(RGRI), and Excess Green Index (ExG), along with others, to

describe vegetation coverage and health status. These computed

indices were subsequently optimized using random forest variable

importance and correlation coefficients iterative analysis. The BWO
FIGURE 1

DJI Mavic 3M UAV.

FIGURE 2

Mosaic RGB image of the study area by UAV.
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algorithm was employed in a small region of the image, with the

Critical Success Index (CSI)s index after single-threshold

segmentation set as the optimization objective, to construct a new

vegetation index based on the optimization algorithm. The

optimized weights were subsequently applied to the entire image.

Ultimately, based on the ensemble threshold approach, a new

ensemble strategy based on BWO was proposed, generating the

final pests and diseases detection results.
3.2 An overview of 24 vegetation indices

Currently, vegetation indices are mainly based on visible and

near-infrared wavelengths, including the NDVI and the Ratio

Vegetation Index (RVI). The remote sensing imagery necessary

for these indices is usually characterized by high procurement

expenses, limited real-time capabilities, and a coarse spatial

resolution. In this study, 24 different vegetation indices were

computed from visible light imagery obtained via UAV. By

combining these indices with the original red, green, and blue (R,

G, B) images, their potential application was investigated in the

surveillance of pests and diseases affecting CCB trees.

The mathematical formulas for calculating indices within the

visible light bands are detailed in Table 1.
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where the red, green, and blue bands (R, G, B) correspond to

pixel values of their respective wavebands, while r, g, and b signify

normalized values for each.

Each vegetation index represents a distinct plant response to

specific environmental conditions. Due to the use of normalized

RGB bands in certain indices, leading to inconsistent units, this

paper normalized the 24 vegetation indices derived from RGB

images and created grayscale images for uniformity. All subsequent

analyses were carried out on these normalized images, as depicted in

Figure 5. The pseudo-color image results reveal that indices such as the

GLI, RGRI, and EGRBDI tend to be more sensitive to plants suffering

from pests and diseases. The ExGR stands out in identifying healthy

vegetation. On the other hand, indices like the IKAW andWImay not

be as efficient in reflecting plant health. By integrating the responses of

these indices to the healthy and unhealthy plants, the accuracy of pests

and diseases monitoring can be significantly improved. This holistic

approach leverages the complementary nature of diverse vegetation

indices, facilitating more precise detection and evaluation of pests and

diseases impacts in remote sensing surveillance.
3.3 Nine threshold segmentation methods

Threshold segmentation is a region-based image segmentation

technique that categorizes image pixels into various groups. This
(a) (b) (c)

(d) (e) (f)
FIGURE 3

Sub-images of the study area and the corresponding ground truth. (A–C) are the original RGB images; (D–F) are the corresponding ground truth.
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technique, known as image threshold segmentation, is a traditional

and frequently used method in image segmentation, and it has

become the most basic and widely applied segmentation technique

due to its simplicity, low computational cost, and stable

performance. The objective of image threshold is to partition the

set of pixels according to grayscale levels, resulting in subsets that

form regions corresponding to real-world objects. These regions

have consistent properties within them, while adjacent regions do

not share such consistency. This partitioning is achieved by

selecting one or more thresholds based on the grayscale levels.

The fundamental approach of threshold entails initially setting a

threshold, after which all pixels are dichotomized into two classes

based on the relationship between their feature values and the

established threshold. If a pixel’s feature value surpasses the

threshold, it is labeled as the object class; otherwise, it’s

categorized as the background. By judiciously choosing the

threshold, one can effectively isolate the image’s subject from its
Frontiers in Plant Science 06
surroundings. Given an original image denoted by f(x,y), a feature

value T is identified within the image, leading to the segmentation

of the original into two distinct components, forming the resulting

segmented image.

g(x, y) =
b0, (fx, y) < t

b1, (fx, y) ≥ t

(
(1)

If b0 = 0, b1 = 1, this refers to the image binarization process.

This paper utilizes threshold techniques for the automatic

segmentation of various vegetation index images to extract pests

and diseases regions. The following nine threshold methods

are employed.
3.3.1 OTSU
The Otsu (Kumar and Ramakrishnan, 2012) Threshold

Technique, synonymous with the Maximum Variance Between
FIGURE 4

Overall technical flowchart.
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Classes approach, stands as a prevalent and widely referenced

algorithm within the threshold literature. Its core principle

revolves around identifying the optimal gray-level value that

effectively separates the foreground and background by

maximizing the distinction between their respective classes. This

process entails leveraging the image’s grayscale histogram to

establish a suitable threshold, K, which partitions the image into

two components: the foreground (Objective, O) and the

background (Background, B). The algorithm optimizes for the

highest between-class variance, as depicted in the equation below:

e2(K) = P0(m − m0
0)

2 + Pb(m − m0
b)

2 (2)

where m signifies the average grayscale intensity of all pixels

within the image, whereas m0
0 and m0

b respectively indicate the mean

grayscale intensities for the foreground (Objective) and background

(Background) regions. The optimal threshold is established when

the condition is fulfilled: K is selected in such a way that the

between-class variance, denoted as e2(K), is maximized.
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3.3.2 Block OTSU method
BOTSU (Liu and Wang, 2009) is carried out on a cell-by-cell

basis for threshold segmentation, offering a more targeted and

precise approach than applying threshold to the entire image.

This method utilizes the OTSU algorithm, and its underlying

principle is as follows: Let t denote the threshold value used to

separate the foreground from the background. The proportion of

foreground pixels within the image is w0, and their average

grayscale intensity is m0. The proportion of background pixels is

w1, and their average grayscale intensity is m1. The total average

grayscale intensity of the image is:

m = w0 � m0 + w1 � m1 (3)

Beginning at the minimum grayscale value, iterate through all

possible values of t until reaching the maximum. The optimal

threshold is identified as t when the value g = w0 � (m0 − m)2 +
w1 � (m1 − m)2 is maximized. This expression represents the

between-class variance. The two parts of the image separated by
TABLE 1 Visible vegetation index.

VIs formula Reference

Eexess green index (ExG) 2 ∗ green − red − blue (Woebbecke et al., 1995)

Triangular greenness index (TGI) green − 0:39 ∗ red − 0:61 ∗ blue (Marques et al., 2021)

Green-blue difference index (GBDI) green − blue (Dai et al., 2020)

Modified excess green index (MExG) 1:26 ∗ green − 0:884 ∗ red − 0:311 ∗ blue (Hamuda et al., 2016)

Excess green index (ExR) 1:4 ∗ red − green (Meyer and Neto, 2008)

Excess Green minus Excess Red (ExGR) ExG − ExR (Meyer et al., 2004)

Vegetativen (VEG) green=(reda − blue1−a), a = 0:667 (Hague et al., 2006)

Visible-band difference vegetation index (VDVI) (2 ∗ green − red − blue)=(2 ∗ green + red + blue) (Liu. et al., 2020)

Color Index of Vegetation Extraction (CIVE) 0:441 ∗ r − 0:811 ∗ g + 0:385 ∗ b + 18:78745 (Kataoka et al., 2003)

Normalized Green-red Difference Index (NGRDI) (green − red)=(green + red) (Hunt et al., 2005)

Red Green Ratio Index (RGRI) red=green (Verrelst et al., 2008)

Visible Atmospherically Resistant Index (VARI) (green − red)=(green + red − blue) (Gitelson et al., 2003)

Modify Green-Red Vegetation Index (MGRVI) (green2 − red2)=(green2 + red2) (Bendig et al., 2015)

Excess green-red-blue difference index (EGRBDI) ((2 ∗ green)2 − red ∗ blue)=((2 ∗ green)2 + red ∗ blue) (Gao et al., 2020)

Red-Green-Blue Ratio Index (RGBRI) (green2 − red ∗ blue)=(green2 + red ∗ blue) (Zhao et al., 2019)

Enhance Normalized Red-Blue Difference Index (E-NGBDI) (green2 − blue2)=(green2 + blue2) (Zhou and Zhu, 2016)

Green leaf index (GLI) (2 ∗ g − r − b)=(2 ∗ g + r + b) (Louhaichi et al., 2001)

Excess blue index (EXB) (1:4*blue − green)=(green + red + blue) (Mao et al., 2003)

kawashima index (IKAW) (red − blue)=(red + blue) (Kawashima and Nakatani, 1998)

1 (COM1) ExG + CIVE + ExGR + VEG (Guijarro et al., 2011)

2 (COM2) 0:36 ∗ ExG + 0:47 ∗CIVE + 0:17 ∗VEG (Guerrero et al., 2012)

GBRI blue=red (Sellaro et al., 2010)

Woebbecke index (WI) (green − blue)=(red − green) (Woebbecke et al., 1995)

VI (2 ∗ g − r − b) − (1:4 ∗ r − g) (Meyer and Neto, 2008)
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the threshold t, namely the foreground and background, make up

the entire image. In this paper, the segmentation is executed on a

100x100 pixel region.

3.3.3 Local dynamic threshold method
The LDT method (Venkatesh and Rosin, 1995) is mainly used in

situations where the contrast is low and it is challenging to extract

useful information using a global threshold. This method first

partitions the image into distinct regions and calculates the

segmentation threshold for each region, enabling adaptive

computation of varying thresholds for different brightness levels in

the image. Generally, the local dynamic threshold is determined

based on the mean grayscale value and standard deviation within the

neighborhood of the current pixel. For a grayscale image, if the

coordinates of the current pixel are (x, y), and the neighborhood is

centered at this point with a size of r×r, then g(x, y)denotes the

grayscale value at position (x, y). The formula for calculating the
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mean grayscale value m(x, y) and grayscale variance s(x, y) within the

r×r neighborhood is as follows:

m(x, y) =
1
r2 o

x+ r
2

i=x−r
2o

y+ r
2

j=y−r
2
g(i, j) (4)

s(x, y) =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
r2o

x+ r
2

i=x−r
2o

y+ r
2

j=y−r
2
(g(i, j) −m(i, j))2

r
(5)

The local threshold T(x, y) at the pixel location (x, y) is

determined by the mean and variance of the grayscale, and the

formula for its calculation is provided below:

T(x, y) = m(x, y) · ½1 + k · (
s(x, y)
R

− 1)� (6)

where R denotes the dynamic range of the standard deviation, which

is commonly set to R = 128 for 8-bit grayscale images. The parameter k

is a correction factor, generally fulfilling the condition 0< k< 1.
(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

(p) (q) (r)

(s) (t) (u)

(v) (w) (x)

FIGURE 5

Pseudo-color images of 24 RGB-derived vegetation indices. The more blue a color is, the higher the probability that the tree is affected by pests and
diseases; conversely, the more red it is, the healthier the tree is. (A) ExG; (B) TGI; (C) GBDI; (D) MExG; (E) ExR; (F) ExGR; (G) VEG; (H) VDVI; (I) CIVE; (J)
NGRDI; (K) RGRI; (L) VARI; (M) MGRVI; (N) EGRBDI; (O) RGBRI; (P) E-NGBDI; (Q) GLI; (R) ExB; (S) IKAW; (T) COM1; (U) COM2; (V) GBRI; (W) WI; (X) VI.
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3.3.4 Weller adaptive threshold
The WAT technique (Wellner, 1993) employs an adaptive pixel

segmentation technique. The process involves iterating through

each pixel in the image and calculating the moving average of the

preceding contiguous set of pixels. For a given pixel, if its intensity is

notably greater than this average, it is assigned a white value (1),

otherwise, it’s marked as black (0). Let pn denotes the pixel value at

position n in the image, the sum of the last s pixels at that location as

fs(n), and the resulting image T(n) as either 1 (white) or 0 (black),

depending on whether it is darker than T% of the average of the

previous s pixels. The formula can be expressed mathematically as

follows:

T(n) =
1 if  pn < ( fs(n)s ) ( 100−t100 )

0 otherwise

(
(7)
3.3.5 Maximum entropy threshold method
The ME, as one of the frequently applied criteria in multi-

threshold, employs the principle of entropy maximization to

characterize the equivalence of conditions. The MET technique

(Wong and Sahoo, 1989) segments the image into foreground and

background entropy regions, and assesses the image information by

optimizing the sum of the quantized entropy. Given a grayscale

image with 256 levels of pixel grayscale, it is necessary to identify a

set of thresholds k1, k2,…, knf g(n > 0) to segment the target image

into n+1 parts, with each part corresponding to C1,C2,…,Cnf g.
The entropy values for each of these parts as determined by ME are

as follows:

C0 =o
k1

i=0

Pi
U0

� ln
Pi
U0

C1 = − o
k2

i=k1+1

Pi
U1

� ln
Pi
U1

Cn = − o
255

i=kn+1

Pi
Un

� ln
Pi
Un

8>>>>>>>>>><
>>>>>>>>>>:

(8)

where pi represents the probability of the grayscale value of any

pixel in the image relative to the average grayscale value of the

region, and Un denote the cumulative probability of the occurrence

of the (n+1)th subset. It can be mathematically expressed as:

f ( k1, k2,…, knf g) = C0 + C1 +⋯+Cn (9)
3.3.6 Double-peak method
The DPM (Prewitt and Mendelsohn, 1966) represents a

straightforward and efficient image segmentation approach. Its

core idea is to determine the segmentation threshold between the

foreground and background by pinpointing the two peaks within

the image’s grayscale histogram. Subsequently, the global threshold

is established at the grayscale value that lies midway between these

two peaks. Generally, the first peak, which aligns with the

histogram’s maximum value, is labeled as p, while the second

peak is calculated in accordance with the following equation:
Frontiers in Plant Science 09
arg   max  D = (x − p)2 ∗ hist(x) (10)

where x represents the grayscale value, with a range of 0 to 255,

corresponding to the grayscale histogram’s values hits(x). The value

of x that results in the maximum value of D is equivalent to the

grayscale value of the second peak. Subsequently, the threshold

value is determined by choosing the smallest grayscale value that

falls between the two peak values.

3.3.7 Minimum error method
The grayscale image processed by the minimum error method

(Kittler and Illingworth, 1986) is composed of two elements: the

target and the background, both presumed to adhere to a Gaussian

mixture distribution. By computing the mean and variance for

both the target and the background, the objective function is

derived for minimizing classification error, as expressed in

following equation:

E =on
i=1wi · s

2
i (11)

where n represents the number of gray levels, wi is the ratio of

the number of pixels at the i-th grayscale level to the total number of

pixels, and s 2
i represent the weighted variance between the target

and background when using the i-th grayscale level as the threshold.

The threshold that yields the smallest error is deemed the optimal

threshold. Ultimately, this optimal threshold is applied to transform

the image into a binary form.

3.3.8 Iterative threshold method
The essence of the ITM technique (Ridler and Calvard, 1978)

revolves around adaptively adjusting the threshold for automatic

image segmentation. The sequence of actions involves: initially

setting a threshold Th, dividing the image pixels into two classes -

foreground and background, calculating the average grayscale value

mA andmB for each, and then utilizing the arithmetic mean of these

averages as the new threshold Thnew . The algorithm decides on

termination by comparing the disparity between the current and

previous iteration’s thresholds. If the difference falls below a

predetermined limit, the iteration halts; otherwise, the procedure

repeats. This continuous cycle persists until the most suitable

segmentation threshold is attained.

3.3.9 Combining global thresholds with
local thresholds

Firstly, an initial global threshold T is established based on the

average grayscale value of the image, leading to the division of

pixels into two categories: Category G1, comprising pixels with

grayscale values exceeding T, and Category G2, encompassing

pixels with grayscale values below T. Subsequently, the mean

grayscale values for G1 and G2, represented as m1 and m1, are

determined. The new threshold is then determined as the average

of these mean values, denoted as (m1 +m2)=2 (m1 +m2)=2. The

image is binarized once more using this revised threshold. This

procedure is carried out iteratively, with the algorithm proceeding

until the difference between the global thresholds calculated in two
frontiersin.org

https://doi.org/10.3389/fpls.2024.1464723
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Hu et al. 10.3389/fpls.2024.1464723
successive iterations reaches zero. This iterative process refines the

selection of the global threshold, thereby yielding a more precise

binary segmentation (Yang et al., 2017). The computation of the

mean thresholds for the two categories is as follows: m1 =
1
G1j jox∈G1

x and m2 =
1
G2j jox∈G2

x. The global threshold is then

updated to this new value Tn+1 =
m1+m2

2 .
3.4 Random Forest variable importance

Random Forest is a popular ensemble learning technique

extensively applied within the field of machine learning. It

addresses a given problem by building numerous decision trees

and arrives at the ultimate classification outcome through a voting

mechanism. In contrast to alternative approaches, Random Forest

stands out for its user-friendly nature, high robustness, and its

ability to avoid overfitting.

Feature importance evaluation is used to calculate the

importance of sample features, quantitatively describing the

contribution of features to classification or regression. Random

forests can be used to assess feature importance, which, from

another perspective, is a built-in tool of random forests, mainly

divided into two methods: (1) Mean Decrease Impurity (MDI),

which measures the importance of a node by statistically calculating

the decrease in impurity when the node is split; (2) Mean Decrease

Accuracy (MDA), which involves randomly permuting the values of

a feature in the out-of-bag (OOB) data set and then repredicting,

calculating the importance of the feature by measuring the degree of

decrease in classification/regression accuracy. MDI uses training set

data and can directly obtain MDI feature importance assessment

values after RF training is completed; MDA uses OOB data and

requires running a separate feature importance evaluation program

after RF training is completed. Since MDI uses training data

exclusively, it may affect the accuracy of the assessment and is

more inclined to increase the weight of high cardinality features. In

comparison, the results of MDA are more accurate, which is used in

this paper.

Feature selection plays a pivotal role in the Random Forest

algorithm, involving the evaluation and ranking of the significance

of various features. Let’s consider a dataset S that includes m

samples and P feature variables, with y being the class label

associated with each sample. The Random Forest algorithm

constructs T decision trees through T iterations of bootstrap

sampling. Due to this sampling approach, not all samples are

used in the building of each tree; the ones that are not used are

referred to as OOB samples. The OOB error e is determined by

validating against the OOB samples, and this error is recalculated

after randomly altering a particular feature. The degree of change in

the OOB error, both before and after the feature modification,

reflects the importance of that feature. The importance metric J for

feature x can be formulated as follows:

Ja(xj) =
1
T o

Bk∈S

1
Bkj j(oi∈Bk

I(h
�xj
k (i) ≠ yi − I(hk(i) ≠ yi))) (12)
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where the predicted label output by the model is denoted by

hk(i), the genuine label from the validation set is represented by yi,

and any changes to the feature xj lead to the modified prediction

indicated by h
�xj
k (i).

In this experiment, a 300 x 300 pixel area was chosen from a 1000

x 1000 pixel image to record the values of 27 indices. These 27 indices

act as independent variables, while the classification outcomes of the

ground truth map, denoted by 0 or 1, serve as the dependent variable.

Utilizing the Random Forest algorithm, the importance score for each

of these features was determined and subsequently the 27 features

were ranked in order of decreasing importance.
3.5 Correlation coefficient iterative analysis

In dealing with the issue of multicollinearity, the CCIA provides

an effective and intuitive solution. The core idea of this method is to

identify and remove highly correlated feature pairs within the

feature set. By iteratively selecting and eliminating variables with

high correlation, it is possible to gradually construct a feature set

with low multicollinearity, thereby enhancing the interpretability

and predictive performance of the model.

The step-by-step iterative analysis can be detailed as follows:

Initially, a correlation coefficient matrix for all features is generated to

evaluate their linear associations. The matrix then highlights feature

pairs with correlation coefficients exceeding a set threshold. For each

pair of highly correlated features, one feature is chosen to keep while

the other is eliminated to reduce collinearity. This iterative

elimination continues until the correlation coefficients of all feature

pairs fall below the threshold. After the removal of features with high

correlation, the remaining ones are used to construct a multiple linear

regression model that minimizes collinearity.

Mathematically, the correlation coefficient between feature i

and feature j can be calculated using the following formula:

rij = o(xik − �xi)(xjk − �xj)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o(xik − �xi)

2o(xjk − �xj)
2

q (13)

where xik and xjk signify the values of the i-th and j-th feature

for the k-th data point, whereas �xi and �xj denote their

corresponding mean values. The computation of correlation

serves to manage the issue of multicollinearity among features

effectively during feature selection. By using this method, it can

be ensured that multicollinearity among features is effectively

controlled during the feature selection process, thereby laying the

foundation for constructing a robust regression model.
3.6 Beluga whale optimization

The BWO (Zhong et al., 2022) is inspired by the behavioral

traits of beluga whales. It models the whales’ activities of swimming,

foraging, and diving through a three-phase framework: exploration,

exploitation, and whale diving. Beluga whales are operational as
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search agents, navigating the search space by adjusting their

position vectors. During the exploration phase, random selection

of whales ensures a comprehensive search across the scanning area.

In the exploitation phase, the algorithm focuses on local search

within the scanning space, utilizing the charged flight technique to

improve convergence. Following the completion of exploration and

exploitation in each iteration, the algorithm transitions to the whale

diving stage of optimization.

Since the BWO algorithm is based on a population mechanism,

beluga whales are regarded as search agents here. Each beluga whale

acts as a candidate solution during the optimization process and is

constantly updated. The position matrix of the search agents is

modeled as follows:

X =

x1,1 x1,2 ⋯ x1,d

x2,1 x2,2 ⋯ x2,d

⋮ ⋮ ⋱ ⋮

xn,1 xn,2 ⋯ xn,d

0
BBBBB@

1
CCCCCA (14)

where the number of beluga whales is denoted by n, and d

represents the dimensionality of the problem variables. The fitness

values corresponding to all beluga whales are stored as follows:

FX =

f (x1,1, x1,2,⋯, x1,d

f (x2,1, x2,2,⋯, x2,d

⋮

f (xn,1, xn,2,⋯, xn,d

0
BBBBB@

1
CCCCCA (15)

The BWO algorithm adjusts the transition from exploration to

exploitation using the balance factor Bf, as defined by the equation:

Bf = B0 · (1 −
t
2T

) (16)

where t represents the current iteration count, T denotes the

total number of iterations, and B0 is a random value between -5 and

5, which varies at each iteration. When the balance factor Bf is

greater than 0.5, this indicates an exploration phase, while a Bf value

less than or equal to 0.5 indicates a development phase.

(1) Exploration Phase

The exploration phase of the BWO algorithm is inspired by the

swimming behavior of beluga whales. The position of the search

agent is determined by the cooperative swimming of the beluga

whales, and the position update of the beluga whales is as follows:

xt+1i,j = xti,p + xtr,p − xti,p)(1 + r1)� sin(2pr2),  j is even

xt+1i,j = xti,p + xtr,p − xti,p)(1 + r1)� cos (2pr2),  j is odd

(
(17)

where xt+1i,j denotes the position of the i-th individual in the j-th

dimension at the next iteration; if the problem dimension is

assumed to be D, then p represents a random integer within the

range [1, D], thus, xti,j denotes the position of the i-th individual in

the randomly selected dimension p under the current iteration; r is

also a random integer, where the population size is assumed to be N,

and r is a random integer within the range [1, N], thus, xtr,p denotes

the position of the randomly selected individual r in the randomly
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selected dimension p under the current iteration; and r1 and r2 are

both random numbers between (0, 1).

(2) Development Phase

The inspiration for the development phase of the BWO

algorithm is derived from the feeding behavior of beluga whales.

In order to improve the algorithm’s convergence, the Levy flight

strategy is incorporated in the development phase, assuming that

beluga whales utilize this flight strategy to capture prey. The

mathematical model for this strategy is represented as

xt+1i = r3 · x
t
best − r4 · x

t
i + C1 · LF · (x

t
r − xti ) (18)

Where: xti and x
t
r are the current positions of the i-th beluga whale

and a random beluga whale, respectively; xt+1i is the new position of the

i-th beluga whale; xtbest is the best position of the beluga whales; r3 and

r4 are random numbers between 0 and 1; C1 = 2� r4(1 −
t
T ) is the

random jump intensity; and LF is a random number following the Levy

distribution, which is calculated as follows:

LF = 0:05� m · s

jV j1b
(19)

s =
G (1 + b)� sin(p · b2 )

G ( 1+b2 � b � 2
b−1
2

 !1
b

(20)

where both m and V represent random numbers that follow a

normal distribution, while b is a constant with a value of 1.5.

(3) Whale Falling Phase:

In order to maintain a constant population size, a position

update formula is created by utilizing the current location of the

beluga whale and the step size of the whale’s descent.

xt+1i = r5 · x
t
i − r6 · x

t
r + r7 · xstep (21)

xstep = exp
−C2 · t
T

· (Ub − Lb) (22)

where r5, r6 and r7 are random numbers between (0, 1), xstep
denotes the step length of the whale’s fall, C2 = 2Wf � n is a step

factor related to the probability of the whale’s descent and the

population size; Ub and Lb are the upper and lower bounds for the

variable. It is evident that the step length of the whale’s descent is

influenced by the problem variable boundaries, the current

iteration, and the maximum iteration count.

The probability of the whale falling is designed as a linear

function.

Wf = 0:1 − 0:05
t
T

(23)

More detailed implementation information could be found in

Ref (Zhong et al., 2022).
3.7 BWO-weighted new vegetation index

After RFVI or CCIA, a certain number of vegetation indices are

selected as input for the subsequent BWO. Assuming the selected
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vegetation indices are denoted as < VI1,VI2,…,VIn >, training

region images and their corresponding ground truth value regions

are chosen, and the BWO algorithm is applied to the n vegetation

indices with weighting. For this experiment, the value of n can be 5,

10, 15, 20, or 27. The population size is set to PS, and the initial

position of each whale is set to < w1,w2,…,wn >. The new

vegetation index is then defined as:

VI _ new =o
n

i=1
wi � VIi (24)

After acquiring PS new vegetation indices, a specific threshold

segmentation algorithm, for instance, OTSU, is chosen to segment

these indices. The outcomes of this segmentation are then matched

against the corresponding ground truth images to compute the

accuracy assessment metric CSI of training area, generating PS CSI

values. The CSI values act as the fitness measure, guiding the beluga

whales’ behavior to shift between exploration and exploitation

modes based on the balance factor Bf. The whales’ actions are

fine-tuned, and the optimal candidate is selected based on the

descent probabilityWf. This process is iterated until the set number

of cycles is completed, pinpointing the most suitable candidate as

the definitive weight. This weight is then applied to the aggregate

images of the n vegetation indices to derive the final new vegetation

index, following the formula for the new index. It’s crucial to note

that different threshold segmentation algorithms will result in

different weights and new vegetation indices, providing essential

variables for subsequent ensemble learning methods.

Since it is not possible to determine in advance how many

variables to choose for better suitability, following the approach of

most studies, multiple variable combinations are selected to analyze

the impact of the number of variables on accuracy. Specifically, this

paper sets the number of beluga whales to 50, with the

dimensionality of the individual whale position vector being 5, 10,

15, 20, and 27, corresponding to the number of selected vegetation

index variables. The search space range is from -10 to 10, and the

number of iterations is fixed at 50. Following this, nine threshold

segmentation techniques are utilized to refine the BWO of the n

new vegetation indices, which are then integrated to facilitate the

precise monitoring of trees affected by pests and diseases.
3.8 BWO-weighted ensemble
learning strategy

Ensemble learning involves training multiple fundamental

classifiers and combining them either sequentially or in parallel.

This is followed by the application of a particular ensemble strategy

to accomplish the learning task, with the goal of minimizing

variance, bias, and enhancing prediction accuracy. The main

challenge in ensemble learning is the choice of the ensemble

strategy, with common approaches being averaging, voting, and

learning methods. Averaging is appropriate for numerical

regression prediction issues, whereas voting and learning methods

are frequently applied to classification tasks. Voting, a strategy often

employed in ensemble learning recognition tasks, adheres to the

“majority rules” principle. It encompasses absolute majority voting,
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relative majority voting, and weighted voting. For a given task, an

integrated model F(xi) is constructed based on the voting

mechanism, with the assumption that the ensemble consists of M

basic classification outcomes f1, f2,…fMf g. The final classification

category for each pixel is determined by selecting the category that

receives the most votes, which constitutes the “majority s

voting” strategy.

Within the scope of this paper, the fundamental classification

outcomes are the detection images derived from the threshold

segmentation technique. Given the varied performance of these

fundamental classification outcomes, this paper proposes a BWO-

weighted voting approach. By utilizing BWO to assign weights to

each fundamental classification outcome and optimizing these

weights through a fitness function, the ultimate voting result is

ascertained by employing a majority voting strategy.

Here are the detailed steps: Nine distinct threshold

segmentation techniques are applied to the new vegetation index,

generating nine foundational classification results. The nine base

classifications from the sub-region employed in the creation of the

new vegetation index were taken as inputs for the BWO algorithm,

along with parameters like the balance factor Bf , fall probabilityWf ,

population size, and iteration count. The fitness function is defined

by the CSI values. With each iteration, the weights for the base

classifications are adjusted based on the CSI values. Unlike

traditional BWO, the weights in this study are integers ranging

from 0 to 100. For each beluga whale, a number of copies of each

base classification equal to its weight are made; for example, a

classification with a weight of 50 is replicated 50 times. After all

classifications are duplicated, a comprehensive set o
9

I=1
wi including

all classifications is formed, and a majority voting mechanism is

applied to each pixel within this set to produce the final ensemble

outcome. The CSI value between this ensemble outcome and the

actual reference data is calculated to assess the fitness of the

individual. Depending on the balance factor, the algorithm

advances to either an exploration or exploitation phase,

experiences the fall process, and ends after the maximum number

of iterations is reached. The best individual and its corresponding

weights are then chosen as the final weights. These final weights are

then applied to the large-scale image made up of the base

classifications, and the ultimate pest and disease detection result

is obtained through majority voting for each pixel.
4 Experimental results and analysis

4.1 Evaluation metrics

In the assessment of classification outcomes, the prevalent

evaluation technique is the confusion matrix (Friedl et al., 2010),

often referred to as the Error Matrix based on Sample. It is derived

from the counts of correctly classified pixels per class, misclassified

pixels to other classes, and undetected instances. This matrix

functions as a benchmark to evaluate the precision of pixel

classification against actual ground-truth categories. This study

employs the confusion matrix for validation and performance

evaluation, with a thorough examination of errors in pests and
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diseases classification carried out through metrics such as:

Probability of Detection (POD), False Alarm Rate (FAR), CSI,

Overall Accuracy (OA), Kappa Coefficient. Given that the pests

and diseases detection in the present investigation is a binary

classification, the corresponding confusion matrix is presented

in Table 2.

(1) CSI, also known as Accuracy, is a measure used to evaluate

the precision of identifying positive cases. CSI denotes the ratio of

correctly classified positive cases to all positive cases:

CSI =
TP

TP + FN + FP
(25)

(2) POD, alternatively known as Sensitivity or True Positive

Rate (TPR), evaluates the capability to accurately recognize positive

cases. POD signifies the ratio of samples accurately classified as

positive within the total population of actual positive samples:

POD =
TP

TP + FN
(26)

(3) FAR, also known as the Miss Rate or False Positive Rate

(FPR), is a metric used to evaluate the error rate in identifying

negative instances. It indicates the percentage of negative samples

that are incorrectly labeled as positive relative to the total number of

actual negative samples:

FAR =
FP

FP + TN
(27)

(4) The OA serves as a quantitative measure representing the

extent to which every individual sample is accurately assigned to its

corresponding category:

OA =
TP + TN

TP + FN + FP + TN
(28)

(5) The Kappa coefficient is a metric of the accuracy of the

overall image classification result, with a maximum value of 1. A

larger Kappa coefficient indicates a greater degree of consistency

between the classified results and the ground truth.

Kappa =
P0 + Pc
1 − Pc

(29)

where,

P = OA (30)

Pc =
(TP + FN)(TP + FP) + (FN + TN)(FP + TN)

(TP + FN + FP + TN)2
(31)
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4.2 Correlation analysis between indices

The correlation analysis is a quantitative technique that

investigates the interdependence of data, evaluates the

multicollinearity among indices, and furnishes a theoretical

foundation for feature extraction. This paper computed the

correlation coefficients for the 27 normalized attributes

(comprising 24 vegetation indices and the three RGB bands),

resulting in heatmaps displayed in Figure 6 for visual

representation of these relationships.

The red color in the heatmap indicates a higher positive

correlation, while the blue color indicates a higher negative

correlation, and green represents a lower correlation. 5, 10, 15,

and 20 features are selected for further iterative optimization, and

the generated heatmap are shown in Figure 7.
4.3 Feature importance assessment

To assess the performance of 27 variables (comprising 24

vegetation indices and the R, G, B bands) in monitoring pests

and diseases of CCB, a dataset was assembled from 300x300 sub-

regions within the study area. Employing a random forest model,

the relative significance of these 27 variables was determined.

Initially, 27 distinct feature images were generated for this small

region as independent variable, with the disease map serving as the

dependent variable, represented by binary values (0 and 1). The

random forest algorithm was employed to calculate the importance

score for each variable, and the features were subsequently arranged

in descending order of their importance. The results are illustrated

in Figure 8.

According to Figure 8, ExGR and COM1 are the top two

important features, considerably surpassing the other indices,

which implies that these two features are more crucial for

classification. Close behind are CIVE and VEG, with eight other

indices, while B, G, and 15 other indices have relatively low

importance scores, indicating their limited influence on

accurate classification.
4.4 The validity of BWO-weighted new
vegetation index using single OTSU

To verify the efficacy of the proposed BWO-weighted new

vegetation index, the RFVI was utilized to select the top 10 most

important indices and the CCIA was used to choose the 10 least

correlated indices. By employing the OTSU algorithm, binary

classification maps were generated for these 10 indices,

representing pests and diseases detection. The BWO was then

applied to adaptively weight these 10 features, and the resulting

new vegetation index images were segmented using OTSU

adaptively to produce the final pests and diseases detection map.

Figures 9, 10 illustrate the OTSU threshold segmentation

outcomes for the sets of 10 indices chosen by RFVI and CCIA,

respectively. The black areas in these figures represent detected

pests and diseases plants. It is apparent that, when compared to the
TABLE 2 The confusion matrix.

Predicted
as Positive

Predicted
as Negative

Labeled
as Positive

True Positive (TP) False Negative (FN)

Labeled
as Negative

False Positive (FP) True Negative (TN)
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ground truth, the direct segmentation of the original vegetation

index yields unsatisfactory results, with significant misclassification

and false negatives. Conversely, the segmentation method using the

10 weighted indices through BWO (i.e. BWO-weighted new

vegetation index) surpasses the single vegetation index threshold,

as demonstrated by the substantial reduction in false negatives and

a closer distribution and positioning of pests and diseases trees, as

shown in Figures 9L, 10L.

Tables 3, 4 display the calculated accuracy metrics for the

detection results. The direct OTSU segmentation of the indices is

not satisfactory, as shown by a low CSI score, elevated POD and

FAR values, indicating a propensity for over-segmenting pests and

diseases pixels, signified by a low Kappa coefficient. The OTSU

threshold segmentation of BWO-weighted new vegetation index

outperforms the single vegetation index approach across all

evaluation metrics, demonstrating that BWO successfully

amalgamates valuable information from each index, generating

new index capable of distinguishing pests and diseases areas from

healthy ones. The distinctiveness of the indices is crucial, as each

index captures a unique attribute, leading to numerous false

positives in single-index OTSU segmentation. The results also

underscore the advantages of BWO-weighted new vegetation
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index segmentation. The RFVI-selected indices exhibit higher

precision in both OTSU segmentation and BWO-weighted new

vegetation index processing compared to the ten chosen by the

CCIA, suggesting that RFVI better reflects the relative performance

among multiple indices.
4.5 The validity of BWO-weighted new
vegetation index using multiple threshold-
based segment methods

In order to evaluate the detection accuracy of disease trees of

multiple threshold segmentation algorithms under multiple indices

conditions, based on the 10 indices selected respectively by RFVI

and CCIA method in this paper, 9 threshold segmentation methods

were used for automatic segmentation to obtain the detection

results of pests and diseases trees for each index under each

threshold segmentation method. Then for each threshold

segmentation method, the average value of the detection accuracy

of the 10 indices under this method was calculated as the average

detection accuracy of this threshold segmentation method. At the

same time, based on the 10 indices, the detection accuracy of the
FIGURE 6

Heatmaps of correlation coefficients for the 27 features.
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(a) (b)

(c) (d)
FIGURE 7

Heatmaps of Correlation Coefficients for the 5, 10, 15 and 20 Features (A) 5 features; (B) 10 features; (C) 15 features; (D) 20 features.
FIGURE 8

The sorting results of random forest importance.
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BWO-weighted new vegetation index by each threshold

segmentation method was calculated.

The Figures 11, 12 present the results of single-index and single-

threshold segmentation for individual indices, as well as the

segmentation outcomes of the BWO-weighted new vegetation

index. The individual indices are chosen from the top 10 indices

derived from RFVI and CCIA. From the figures, it can be

observed that, irrespective of whether the indices are selected by

RFVI or CCIA method, using any single-threshold segmentation

method will result in severe noise and false negatives, primarily

manifested in an excessive number of black areas (i.e., the pests and

diseases trees) and a significant difference from the ground truth.

However, the BWO-weighted new vegetation index, regardless of

the single-threshold segmentation method used, can effectively

segment the pests and diseases trees with a position similar to the

ground truth, although there is still some noise, but its intensity is

relatively low.

The quantitative evaluation results are shown in Tables 5, 6 as

follows. The average detection accuracy of 9 threshold segmentation
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methods on 10 indices selected by the RFVI and the CCIA was

calculated and expressed as “Th_Avg”, as well as the detection

results on the BWO-weighted new vegetation index, represented as

“Th_BWO”. It can be seen from the table that it is consistent with

the subjective evaluation results in Figures 11, 12. For the 10 indices

selected by the RFVI, the average accuracy of each threshold

method on all indices is relatively similar. The CSI index value is

distributed around 0.30. The lowest is the LDT method, only

0.2579, and the highest is WAT, reaching 0.3974. Except for

WAT, the POD values of all other methods exceed 0.95 and even

reach 0.99, while the FAR also exceeds 0.6, indicating that there are

a large number of false alarms in the detection results. The

Th_BWO results are significantly better than Th_Avg, the CSI

value exceeds 0.55, the OA exceeds 0.85, and the FAR remains at

about 0.3, indicating that there are still certain false alarms, but the

degree is much lighter than Th_Avg. For the 10 indices selected by

the CCIA method, the overall trend is similar to the indices selected

by the RFVI, but on each accuracy metric, the indices selected by the

CCIA method are worse than those selected by the RFVI.
(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)
FIGURE 9

OTSU results for 10 indices selected by RFVI. The black areas indicate CCB trees with pest and disease, while the white areas indicate healthy trees.
(A) ground truth; (B) ExGR; (C) CIVE; (D) VI; (E) VEG; (F) COM1; (G) EGRBDI; (H) RGBRI; (I) VDVI; (J) MGRVI; (K) GLI; (L) BWO-weighted new
vegetation index.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)
FIGURE 10

OTSU results for 10 indices selected by CCIA. The black areas indicate CCB trees with pest and disease, while the white areas indicate healthy trees.
(A) ground truth; (B) RGRI; (C) WI; (D) B; (E) COM1; (F) ExB; (G) IKAW; (H) G; (I) GLI; (J) R; (K) GBDI; (L) BWO-weighted new vegetation index.
TABLE 3 The classification accuracy of the OTSU segmentation applied
to RFVI-selected single indices and BWO-weighted new
vegetation index.

CSI POD FAR OA Kappa

ExGR 0.3466 0.9932 0.6526 0.6599 0.3270

CIVE 0.3378 0.9858 0.6605 0.6498 0.3142

VI 0.3330 0.9876 0.6656 0.6414 0.3058

VEG 0.2461 0.9961 0.7537 0.4502 0.1467

COM1 0.3372 0.9937 0.6621 0.6455 0.3117

EGRBDI 0.5149 0.9553 0.4724 0.8350 0.5685

RGBRI 0.4166 0.9746 0.5788 0.7513 0.4368

VDVI 0.3683 0.9811 0.6291 0.6944 0.3638

MGRVI 0.3946 0.9791 0.6021 0.7263 0.4032

GLI 0.2712 0.9927 0.7282 0.5187 0.1959

BWO 0.6365 0.8777 0.3015 0.9029 0.6952
F
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TABLE 4 The classification accuracy of the OTSU segmentation applied
to CCIA-selected single indices and BWO-weighted new
vegetation index.

CSI POD FAR OA Kappa

RGRI 0.4045 0.9772 0.5917 0.7376 0.4180

WI 0.1930 0.6607 0.7858 0.5100 0.0788

B 0.2167 0.6419 0.7535 0.5893 0.1362

COM1 0.3372 0.9937 0.6621 0.6455 0.3117

ExB 0.3014 0.9770 0.6964 0.5916 0.2542

IKAW 0.2339 0.9915 0.7656 0.4152 0.1223

G 0.1962 0.7044 0.7861 0.4817 0.0686

GLI 0.2712 0.9927 0.7282 0.5187 0.1959

R 0.2710 0.7684 0.7050 0.6315 0.2253

GBDI 0.3656 0.9896 0.6330 0.6877 0.3578

BWO 0.5923 0.9087 0.3702 0.8844 0.6617
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4.6 The influence of the number of
features on the detection results

In the previous experiments, 10 indices were selected for

threshold segmentation and BWO-weighted new vegetation index

respectively by using RFVI and CCIAmethod. How will the selection

of different numbers of indices affect the detection results? To solve

this problem, in this section, the number of indices was set to 5, 10,
Frontiers in Plant Science 18
15, 20, and all features, and 9 threshold segmentation methods were

used respectively to calculate the average value of the detection

accuracy in each case of the number of indices, denoted as “Avg”.

Then, in the same case of the number of indices, BWO-weighted new

vegetation index was calculated, and 9 threshold segmentation

methods were used to calculate the average value of the detection

accuracy of the new index, denoted as “BWO”. The results are shown

in Figure 13 below:
(a) (b) (c)

(d) (e) (f)

(h) (i) (j)
FIGURE 11

Some multiple threshold-based segment results for 10 indices selected by RFVI. The black areas indicate CCB trees with pest and disease, while the
white areas indicate healthy trees. (A) ExGR; (B) OTSU for ExGR; (C) OTSU for BWO-weighted new vegetation index; (D) CIVE; (E) WAT for CIVE;
(F) WAT for BWO-weighted new vegetation index; (G) ExB; (H) DPM for ExB; (I) DPM for BWO-weighted new vegetation index.
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The above figure shows that for both RFVI and CCIA methods,

the number of indices has some impact, but it is relatively stable. In

terms of trends, for “BWO”, the highest value is reached when there

are 10 indices for both RFVI and CCIA methods, and the value

decreases as the number of indices increases. This indicates that on

this dataset, 10 indices already contain information that can better

reflect the characteristics of pests and diseases, and more indices

may introduce some redundancy and conflict, leading to a decrease
Frontiers in Plant Science 19
in detection accuracy. For “Avg”, with the increase in the number of

indices based on RFVI, the detection accuracy first increases and

then decreases, while for the indices based on CCIA method, the

detection accuracy increases with the number of indices. However,

whether the trend is increasing or decreasing, the detection

accuracy of “Avg” always remains at a relatively low level, far

inferior to “BWO”, which also demonstrates the significant

advantage of BWO.
(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
FIGURE 12

Some multiple threshold-based segment results for 10 indices selected by CCIA. The black areas indicate CCB trees with pest and disease, while the
white areas indicate healthy trees. (A) RGBRI; (B) MET for RGBRI; (C) MET for BWO-weighted new vegetation index; (D) TGI; (E) ITM for TGI; (F) ITM
for BWO-weighted new vegetation index; (G) EGRBDI; (H) CGLT for EGRBDI; (I) CGLT for BWO-weighted new vegetation index.
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4.7 The impact of the ensemble
voting strategy

Ensemble learning is capable of synthesizing information from

various components to achieve better results. In previous experiments,

this paper has demonstrated that the BWO-weighted new vegetation

index can significantly outperform a single index in terms of detection

accuracy when applied to any adaptive threshold segmentation

method. In this experiment, the performance differences between the

conventional majority voting strategy and the BWO weighted voting

strategy are examined. For multiple indices selected through RFVI and

CCIA, each index is first segmented using nine threshold segmentation

methods, resulting in a series of segmentation outcomes. For example,

10 indices yield 90 segmentation results, denoted with the suffix “_Ths”.

These segmentation results are then ensembled using the majority

voting strategy and the BWO weighted voting ensemble strategy to

obtain the final detection results. As for the BWO-weighted new

vegetation index, for a certain number of indices, a new vegetation

index is obtained, which is segmented using nine threshold methods,
Frontiers in Plant Science 20
resulting in nine segmentation outcomes, denoted with the suffix

“_BWO_Ths”. These are then ensembled using the majority voting

strategy and the BWOweighted voting ensemble strategy to achieve the

final detection results. The accuracy of various strategies is evaluated

using CSI, OA, and Kappa, with the results shown in Figure 14 below:

It can be seen from the figure that, on the whole, whether it is

CCIA or RFVI, the BWOweighted majority voting strategies (d)-(e)

and (j)-(l) can have higher accuracy than the direct majority voting

strategies (a)-(c) and (g)-(i) in various numbers of indices. Different

numbers of indices have a significant impact on the final accuracy.

For CCIA and RFVI, the highest accuracy of direct index

segmentation occurs in the first 5 indices, while the highest

accuracy of segmentation using the BWO-weighted new

vegetation index occurs in the first 10 indices, meaning that

selecting a few indices with the least correlation or the greatest

importance often achieves higher detection accuracy than using all

indices. By comparing (a) and (d), or (g) and (j), it can be seen that

using the BWO-weighted new vegetation index can achieve

significantly higher accuracy than the direct segmentation of
TABLE 5 The classification accuracy for multiple threshold segmentation methods based on the 10 indices selected by RFVI and the BWO-weighted
new vegetation index.

CSI OA Kappa POD FAR

Th_Avg Th_BWO Th_Avg Th_BWO Th_Avg Th_BWO Th_Avg Th_BWO Th_Avg Th_BWO

OTSU 0.3566 0.6365 0.6572 0.9091 0.3374 0.7136 0.9839 0.8777 0.6405 0.3015

BOTSU 0.3079 0.5607 0.5962 0.8875 0.2662 0.6427 0.9502 0.8028 0.6858 0.3497

LDT 0.2579 0.5511 0.4362 0.8723 0.1620 0.6189 0.9500 0.8552 0.7156 0.3922

WAT 0.3974 0.5778 0.7677 0.8892 0.4322 0.6612 0.8597 0.8562 0.5674 0.3601

MET 0.2955 0.6444 0.4562 0.9120 0.2118 0.7215 0.9878 0.8797 0.7013 0.2933

DPM 0.3453 0.6277 0.6568 0.9071 0.3248 0.7065 0.9867 0.8665 0.6530 0.3051

MEM 0.3443 0.6525 0.6390 0.9171 0.3177 0.7315 0.9856 0.8618 0.6534 0.2713

ITM 0.2625 0.6522 0.4408 0.9166 0.1688 0.7308 0.9938 0.8653 0.7365 0.2741

CGLT 0.2785 0.6557 0.4791 0.9151 0.1956 0.7305 0.9939 0.886 0.7204 0.2838
f

TABLE 6 The classification accuracy for multiple threshold segmentation methods based on the 10 indices selected by CCIA and the BWO-weighted
new vegetation index.

CSI OA Kappa POD FAR

Th_Avg Th_BWO Th_Avg Th_BWO Th_Avg Th_BWO Th_Avg Th_BWO Th_Avg Th_BWO

OTSU 0.2791 0.5923 0.5809 0.8856 0.2169 0.6631 0.8691 0.9087 0.7107 0.3702

BOTSU 0.2627 0.3528 0.5884 0.7196 0.1967 0.3580 0.7869 0.8535 0.7182 0.6245

LDT 0.1852 0.6013 0.4995 0.9078 0.0819 0.6844 0.7150 0.7662 0.7722 0.2635

WAT 0.2569 0.5416 0.7192 0.8735 0.2326 0.6229 0.5893 0.8463 0.6277 0.3993

MET 0.2473 0.6424 0.4645 0.9139 0.1538 0.7225 0.8746 0.8580 0.7384 0.2811

DPM 0.2792 0.6308 0.6028 0.9068 0.2211 0.7079 0.8321 0.8782 0.7060 0.3087

MEM 0.2675 0.6494 0.5824 0.9168 0.2045 0.7290 0.8268 0.8524 0.7136 0.2683

ITM 0.2255 0.6524 0.4548 0.9183 0.1232 0.7324 0.8628 0.8505 0.7579 0.2631

CGLT 0.2437 0.6592 0.4849 0.9168 0.1553 0.7347 0.8596 0.8831 0.7362 0.2778
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indices, indicating the obvious advantage of the BWO-weighted

new vegetation index proposed in this paper. In terms of the

ensemble strategy, the BWO weighted majority voting strategy is

superior to the direct majority voting strategy in most index

selection methods and quantities, showing certain advantages. It

should be pointed out that the optimization goal of BWO in this

paper is the CSI index. The definition of the CSI index does not

concern the situation where both the true value and the predicted

value are TN, while OA and Kappa do consider it. When CSI

reaches the maximum, it is also possible that OA and Kappa are not

optimal. Therefore, there are situations where the values of direct
Frontiers in Plant Science 21
majority voting in figures (e)(f)(k)(l) are higher than those of BWO

weighted majority voting. However, in general, the three accuracy

indicators still show a high degree of consistency.
4.8 More application scenarios

In order to substantiate the effectiveness and generalizability of

the approach outlined within this paper, a rigorous test were

conducted by deploying the BWO-weighted newly formulated

vegetation index and the BWO-weighted ensemble strategy
(a) (b)

(c) (d)

(e) (f)
FIGURE 13

The influence of the number of features on the detection results. (A) CSI of RFVI (B) CSI of CCIA (C) OA of RVFI (D) OA of CCIA (E) Kappa of RFVI
(F) Kappa of CCIA.
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methods. These methods were applied to a set of 10 indices derived

from the RFVI, which had been previously trained in the earlier

section of our paper. The purpose of this exercise was to assess how

well the previously proposed method would perform when

introduced to new and unseen scenarios. The outcomes of this

test, which provide a visual representation of the method’s

adaptability and accuracy, are depicted in Figure 15. This figure

presents a comprehensive view of the results, allowing for a clear
Frontiers in Plant Science 22
evaluation of the proposed method’s ability to generalize across

different settings and conditions. Among them, (a) and (d) are the

original RGB images, which show some CCB trees withered due to

pests and diseases. (b) and (e) are the fine position ground truth

maps of pests and diseases trees manually marked out, and (c) and

(f) are the detection results of the method in this paper. It can be

seen that, overall, the detection results have a very high similarity

with the ground truth maps, especially the details of the pests and
(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

FIGURE 14

Impact of the Integrated Voting Strategy. (A) CSI of CCIA_Ths; (B) OA of CCIA_Ths; (C) Kappa of CCIA_Ths; (D) CSI of CCIA_BWO_Ths; (E) OA of
CCIA_BWO_Ths; (F) Kappa of CCIA_BWO_Ths; (G) CSI of RFVI_Ths; (H) OA of RFVI_Ths; (I) Kappa of RFVI_Ths; (J) CSI of RFVI_BWO_Ths; (K) OA of
RFVI_BWO_Ths; (L) Kappa of RFVI_BWO_Ths.
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diseases trees. Although there is still some noise, the pests and

diseases trees can basically be accurately detected.

The five accuracy metrics of CSI, POD, FAR, OA, and Kappa of

the two scenarios were calculated based on the confusion matrix,

and the results are shown in Table 7 below:

Comprehensive analysis of the data of two different scenarios

reveals that the model trained by the previous dataset shows a high-

precision recognition ability in other scenarios, with little difference

in accuracy from the previous experiments, and can effectively

identify the pests and diseases areas in RGB images. It is worth

noting that the OA index not only assesses the recognition accuracy

of the pests and diseases areas but also considers the non-pests and

diseases areas, and the latter usually has a wider range. Therefore,

the value of the OA index is very high. Overall, despite the

challenges of new scenarios, the model still performs well,

showing good generalization ability.
5 Conclusions

Pests and diseases monitoring of CCB trees is an important

means to enhance its medicinal value. In response to the high cost

and data processing difficulties associated with existing

hyperspectral/multispectral sensors, this paper proposes a high-
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precision pests and diseases monitoring method based on visible

light RGB images captured by UAV. Firstly, based on 24 RGB-

derived vegetation indices, this paper introduces a new vegetation

index based on the BWO algorithm. This new index is capable of

integrating the advantageous features of multiple vegetation indices

from various dimensions, forming a more comprehensive

representation of the plant’s health status. Even when using the

simplest threshold segmentation method, it can effectively detect

pests and diseases-affected trees. Then, based on nine threshold

segmentation methods, a new ensemble learning strategy based on

BWO is proposed. By adaptively weighting the results of multiple

threshold segmentation methods, it can stably achieve a better

detection accuracy than a single threshold segmentation method.

There may be collinearity among different vegetation indices,

indicating a certain degree of information redundancy. This paper

explores collinearity through the methods of RFVI and CCIA,

showing that using a small number of vegetation indices can also
(a) (b) (c)

(d) (e) (f)
FIGURE 15

Generalization Capability in More Application Scenarios. (A, D) are original RGB images, (B, E) are the ground truth, (C, F) are the detection results.
TABLE 7 The accuracy metrics for more scenarios.

CSI POD FAR OA Kappa

Scenario 1 0.5779 0.7233 0.2580 0.9594 0.7105

Scenario 2 0.5964 0.6901 0.1855 0.9759 0.7346
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achieve similar or even better detection accuracy. Real-world

experimental results from a CCB planting base demonstrate that

the proposed method can effectively detect pests and diseases-

affected trees, which has certain value for the precise management

of CCB. Deep learning, which has exhibited considerable potential

and effectiveness in forest resource assessment, is vital for

comprehending and managing forest resources and ecosystems

(Yun et al., 2024). The comprehensive use of multi-source data

such as visible light, multispectral/hyperspectral, and LiDAR point

clouds can provide a more comprehensive, multi-angle, and all-

weather monitoring of plant growth conditions, however, it also

brings more technical challenges. Deep learning is a powerful tool to

meet these challenges employing more data and algorithms.

Therefore, future research will focus on exploring superior feature

extraction methods and ensemble strategies, and further

introducing advanced technologies such as deep learning to

achieve even higher precision in pests and diseases monitoring.
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Pádua, L., Marques, P., Martins, L., Sousa, A., Peres, E., and Sousa, J. J. (2020).
Monitoring of chestnut trees using machine learning techniques applied to UAV-based
multispectral data. Remote Sens 12, 3032. doi: 10.3390/rs12183032

Park, H. G., Yun, J. P., Kim, M. Y., and Jeong, S. H. (2021). Multichannel object
detection for detecting suspected trees with pine wilt disease using multispectral drone
imagery. Remote Sens. 14, 8350–8358. doi: 10.1109/JSTARS.2021.3102218

Prewitt, J. M. S., and Mendelsohn, M. L. (1966). The analysis of cell images. Ann. N.
Y. Acad. Sci. 128, 1035–1053. doi: 10.1111/j.1749-6632.1965.tb11715.x

Ridler, T. W., and Calvard, S. (1978). Picture thresholding using an iterative selection
method. IEEE Trans. Syst. Man Cybern. 8, 630–632. doi: 10.1109/TSMC.1978.4310039

Sahin, H. M., Miftahushudur, T., Grieve, B., and Yin, H. (2023). Segmentation of
weeds and crops using multispectral imaging and CRF-enhanced U-Net. Comput.
Electron. Agric. 211, 107956. doi: 10.1016/j.compag.2023.107956

Schmidt, J., Fassnacht, F. E., Neff, C., Lausch, A., Kleinschmit, B., Förster, M.,
et al. (2017). Adapting a Natura 2000 field guideline for a remote sensing-based
Frontiers in Plant Science 25
assessment of heathland conservation status. Int. J. Appl. 60, 61–71. doi: 10.1016/
j.jag.2017.04.005

Sellaro, R., Crepy, M., Trupkin, S. A., Karayekov, E., Buchovsky, A. S., Rossi, C., et al.
(2010). Cryptochrome as a sensor of the blue/green ratio of natural radiation in
Arabidopsis. Plant Physiol. 154, 401–409. doi: 10.1104/pp.110.160820

Sivakumar, A. N. V., Li, J. T., Scott, S., Pstoa, E., Jhaia, A. J., Luck, J. D., et al. (2020).
Comparison of object detection and patch-based classification deep learning models on
mid- to late-season weed detection in UAV imagery. Remote Sens. 12, 2136.
doi: 10.3390/rs12132136

Venkatesh, S., and Rosin, P. L. (1995). Dynamic threshold determination by local and
global edge evaluation. Graph. Models Image Process. 57, 146–160. doi: 10.1006/
gmip.1995.1015

Verrelst, J., Schaepman, M. E., Koetz, B., and Kneubühler, M. (2008). Angular
sensitivity analysis of vegetation indices derived from CHRIS/PROBA data. Remote
Sens. Environ. 112, 2341–2353. doi: 10.1016/j.rse.2007.11.001

Wang, X. Q., Wang, M. M., Wang, S. Q., and Wu, Y. D. (2015). Extraction of
vegetation information from visible unmanned aerial vehicle images. Trans. CSAE 31,
152–159. doi: 10.3969/j.issn.1002-6819.2015.05.022

Wellner, P. D. (1993). Adaptive thresholding for the Digitaldesk. Xerox, EPC1993-110.
Shanghai, China: Xerox 404.

Woebbecke, D. M., Meyer, G. E., Von Bargen, K., and Mortensen, D. A. (1995). Color
indices for weed identification under various soil, residue, and lighting conditions.
Trans. ASAE. 38, 259–269. doi: 10.13031/2013.27838

Wong, A. K. C., and Sahoo, P. K. A. (1989). Gray-level threshold selection method
based on maximum entropy principle. IEEE Trans. Syst. Man Cybern. 19, 866–871.
doi: 10.1109/21.35351

Wu, Y., Chen, M., Chadli, M., and Li, H. Y. (2024). Dual-type-triggers-based
cooperative adaptive critic control of swarm UAVs under FDI attacks. Automatica
167, 111757. doi: 10.1016/j.automatica.2024.111757

Yang, J., He, Y. H., and Caspersen, J. (2017). Region merging using local spectral
angle thresholds: A more accurate method for hybrid segmentation of remote sensing
images. Remote Sens. Environ. 190, 137–148. doi: 10.1016/j.rse.2016.12.011

Yu, R., Luo, Y., Zhou, Q., Zhang, X., Wu, D., and Ren, L. (2021). Early detection of
pine wilt disease using deep learning algorithms and UAV-based multispectral imagery.
For. Ecol. Manage 497, 119493. doi: 10.1016/j.foreco.2021.119493

Yun, T., Li, J., Ma, L. F., Zhou, J., Wang, R. S., Eichhorn, M. P., et al. (2024). Status,
advancements and prospects of deep learning methods applied in forest studies. Int. J.
Appl. Earth Obs. 131, 103938. doi: 10.1016/j.jag.2024.103938

Zeng, T. W., Zhang, H. M., Li, Y., Yin, C. H., Liang, Q. F., Fang, J. H., et al. (2023).
Monitoring the severity of rubber tree infected with powdery mildew based on UAV
multispectral remote sensing. Forests 14, 717. doi: 10.3390/f14040717

Zhao, J., Yang, H. B., Lan, Y. B., Lu, L. Q., Jia, P., and Li, Z. M. (2019).
Extraction method of summer corn vegetation coverage based on visible light image
of unmanned aerial vehicle. J. Agric. Mach. 50, 232–240. doi: 10.6041/j.issn.1000-
1298.2019.05.027

Zhong, C., Li, G., and Meng, Z. (2022). Beluga whale optimization: A novel nature-
inspired metaheuristic algorithm. Knowl. Based Syst. 251, 109215. doi: 10.1016/
j.knosys.2022.109215

Zhou, Y., and Zhu, Y. (2016). Vegetation extraction from urban aerial images based
on visible light. Green Technol. 16), 247–250.
frontiersin.org

https://doi.org/10.1006/anbo.1997.0544
https://doi.org/10.1006/anbo.1997.0544
https://doi.org/10.7780/kjrs.2015.31.5.3
https://doi.org/10.1016/0031-3203(86)90030-0
https://doi.org/10.1109/DAS.2012.65
https://doi.org/10.1109/CISP.2010.5647451
https://doi.org/10.13203/j.whugis20180161
https://doi.org/10.13203/j.whugis20180161
https://doi.org/10.1109/CCDC.2009.5191959
https://doi.org/10.1080/10106040108542184
https://doi.org/10.13031/2013.15381
https://doi.org/10.3390/agriengineering3020016
https://doi.org/10.1016/j.compag.2008.03.009
https://doi.org/10.1016/j.compag.2003.08.002
https://doi.org/10.3390/rs12183032
https://doi.org/10.1109/JSTARS.2021.3102218
https://doi.org/10.1111/j.1749-6632.1965.tb11715.x
https://doi.org/10.1109/TSMC.1978.4310039
https://doi.org/10.1016/j.compag.2023.107956
https://doi.org/10.1016/j.jag.2017.04.005
https://doi.org/10.1016/j.jag.2017.04.005
https://doi.org/10.1104/pp.110.160820
https://doi.org/10.3390/rs12132136
https://doi.org/10.1006/gmip.1995.1015
https://doi.org/10.1006/gmip.1995.1015
https://doi.org/10.1016/j.rse.2007.11.001
https://doi.org/10.3969/j.issn.1002-6819.2015.05.022
https://doi.org/10.13031/2013.27838
https://doi.org/10.1109/21.35351
https://doi.org/10.1016/j.automatica.2024.111757
https://doi.org/10.1016/j.rse.2016.12.011
https://doi.org/10.1016/j.foreco.2021.119493
https://doi.org/10.1016/j.jag.2024.103938
https://doi.org/10.3390/f14040717
https://doi.org/10.6041/j.issn.1000-1298.2019.05.027
https://doi.org/10.6041/j.issn.1000-1298.2019.05.027
https://doi.org/10.1016/j.knosys.2022.109215
https://doi.org/10.1016/j.knosys.2022.109215
https://doi.org/10.3389/fpls.2024.1464723
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

	A new BWO-based RGB vegetation index and ensemble learning strategy for the pests and diseases monitoring of CCB trees using unmanned aerial vehicle
	1 Introduction
	2 Materials and methods
	2.1 Study area overview
	2.2 UAV data collection

	3 Methods
	3.1 General methodology
	3.2 An overview of 24 vegetation indices
	3.3 Nine threshold segmentation methods
	3.3.1 OTSU
	3.3.2 Block OTSU method
	3.3.3 Local dynamic threshold method
	3.3.4 Weller adaptive threshold
	3.3.5 Maximum entropy threshold method
	3.3.6 Double-peak method
	3.3.7 Minimum error method
	3.3.8 Iterative threshold method
	3.3.9 Combining global thresholds with local thresholds

	3.4 Random Forest variable importance
	3.5 Correlation coefficient iterative analysis
	3.6 Beluga whale optimization
	3.7 BWO-weighted new vegetation index
	3.8 BWO-weighted ensemble learning strategy

	4 Experimental results and analysis
	4.1 Evaluation metrics
	4.2 Correlation analysis between indices
	4.3 Feature importance assessment
	4.4 The validity of BWO-weighted new vegetation index using single OTSU
	4.5 The validity of BWO-weighted new vegetation index using multiple threshold-based segment methods
	4.6 The influence of the number of features on the detection results
	4.7 The impact of the ensemble voting strategy
	4.8 More application scenarios

	5 Conclusions
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References


