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Leaf disease detection is critical in agriculture, as it directly impacts crop health,

yield, and quality. Early and accurate detection of leaf diseases can prevent the

spread of infections, reduce the need for chemical treatments, and minimize

crop losses. This not only ensures food security but also supports sustainable

farming practices. Effective leaf disease detection systems empower farmers with

the knowledge to take timely actions, leading to healthier crops and more

efficient resource management. In an era of increasing global food demand

and environmental challenges, advanced leaf disease detection technologies are

indispensable for modern agriculture. This study presents an innovative approach

for detecting pepper bell leaf disease using an ANFIS Fuzzy convolutional neural

network (CNN) integrated with local binary pattern (LBP) features. Experiments

involve using the models without LBP, as well as, with LBP features. For both sets

of experiments, the proposed ANFIS CNN model performs superbly. It shows an

accuracy score of 0.8478 without using LBP features while its precision, recall,

and F1 scores are 0.8959, 0.9045, and 0.8953, respectively. Incorporating LBP

features, the proposed model achieved exceptional performance, with accuracy,

precision, recall, and an F1 score of higher than 99%. Comprehensive

comparisons with state-of-the-art techniques further highlight the superiority

of the proposed method. Additionally, cross-validation was applied to ensure the

robustness and reliability of the results. This approach demonstrates a significant

advancement in agricultural disease detection, promising enhanced accuracy

and efficiency in real-world applications.
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1 Introduction

Plant leaf diseases pose a significant threat to global agriculture,

affecting crop yields and quality. Common diseases include fungal

infections (e.g., powdery mildew, rust), bacterial diseases (e.g.,

bacterial blight), and viral infections (e.g., mosaic virus). Early

and accurate detection of these diseases is crucial for effective

management and to minimize economic losses. Historically,

disease detection relied on manual inspection by farmers or

experts, which is labor-intensive and prone to human error. This

approach also limits the ability to scale disease monitoring over

large areas. Traditional laboratory methods, such as microscopy

and culture tests, offer more accuracy but are time-consuming and

require specialized equipment. Recent advancements in remote

sensing and machine learning (ML) have revolutionized plant

disease detection. Technologies such as hyperspectral imaging,

drones, and satellite imagery enable the non-invasive monitoring

of crops over large areas. These tools capture data on various

spectral bands, which can be analyzed to identify stress or disease

symptoms that are not visible to the naked eye. The pathogens are

found to be the causal agents of these diseases and infections, which

comprise parasitic plants, viruses and viroids, bacteria, and fungi.

Pathogens are infectious organisms leading to plant diseases. Aside

from this, there are other plant-feeding organisms such as vermin,

insects, mites, and other microbes that aggravate plant health issues.

Some bacteria cause diseases that injure plants, however, the

majority of bacteria are benign and saprotrophic Das et al.

(2020). An illustration of known bacteria that cause diseases in

plants are Phytoplasmas and Spiroplasmas.

Agriculture is the backbone of the world’s economy, not only

because it is the primary source of food only, but also because of

industrial raw materials Tichkule and Gawali (2016); Jamil et al.

(2022). Agriculture and planting are expedient factors in our

survival, as they are used to provide oxygen and food.

Simultaneously, practical approaches have been implemented in

better production of crops and increasing their fighting capacity

against diseases and pests. Diseases that infect plants affect all

animals, relying on plants in a variety of ways, either directly or

indirectly Bharali et al. (2019). Any portion of the plant, including

the roots, stems, branches, and leaves, can be impacted by plant

diseases. Additionally, different causative organisms cause different

plant diseases, some are caused by bacteria, others by fungi, and

others by viruses Husin et al. (2012). Climate change favors the

spread of diseases in crops. Crop diseases are misidentified, hence

negatively affecting the yield of such crops. Plant diseases can be

divided into two significant groups: abiotic and biotic Balakrishna

and Moparthi (2020). The former, abiotic diseases, are generally

brought about by non-living aspects of an environment, for
Abbreviations: IPM, Integrated pest management; LBP, Local binary patterns;

WHO, world health organization; TL, Transfer Learning; DL, Deep Learning;

UAV, Unmanned aerial vehicles; DNN, Deep Neural Network; CNN,

Convolutional Neural Network; RF, Random Forest; HoG, Histogram of

Oriented Gradients; SVM, Support Vector Machine; ETC, Extra tree classifier;

ANFIS, Adaptive neuro-fuzzy inference system; VRAM, Video random access

memory; GPU, General processing unit.
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example, meteorological factors such as weather, temperature,

humidity, and some specific chemicals. On the other hand, the

latter is caused by living elements of an ecosystem, for example,

fungi, bacteria, viruses, and other organisms. Point spread of

various pathological diseases and pests, including invasive ones, is

among the most disastrous issues of modern agriculture Elad and

Pertot (2014); Meng et al. (2023). Concerning these issues, it is

reasonably required to monitor plant diseases and pests promptly.

Techniques for remote sensing have a lot of promise for solving

these problems Mahlein et al. (2018).

This indicates that passive and active remote sensing

technologies are the two types. The latter includes LiDAR and

radar, but the former includes only the so-called optical Kim et al.

(2024, Kim et al., 2021). Depending on the sensors’ spectral

resolution, two categories of passive optical remote sensing can

typically be distinguished: multispectral and hyperspectral Jensen

(2006). Among passive remote sensing methods, hyperspectral

sensing has vast potential as a device that measures reflected sun

radiation to track biotic and abiotic plant stress in a non-invasive,

non-destructive manner Jones and Vaughan (2010). This is a

technique for collecting and storing information from an object’s

spectroscopy in a third-dimensional spectral cube containing

hundreds of consecutive wavelengths and spatial data.

Hyperspectral imaging widely allows for the opportunities to

detect an early sign of the disease by providing preliminary

indicators in the form of minute variations in spectrum

reflectance brought on by reflection or absorption. Since

hyperspectral photos provide a very comprehensive spectral

profile thanks to their hundreds of spectral bands, they are highly

useful for identifying even the smallest differences in soil, canopies,

or even leaves. In this sense, hyperspectral imaging may be applied

to new problems about the precise and prompt assessment of crops’

physiological status. It may help in early detection of disease spread

and pest incidence, which might prevent heavy crop loss, reduce

usage of pesticides, and minimize negative impacts on the

environment and human health, hence improving the current

status of integrated pest management (IPM) practices Lucieer

et al. (2014); Gonzalez-Dugo et al. (2015).

Recently, a variety of small hyperspectral sensors have been

created for usage in commercial settings, including FireflEYE, VNIR

HySpex, and Micro-Nano-Hyperspec Adao et al. (2017). The

above-listed sensors could be installed on manned and unmanned

aerial vehicles (UAVs), helicopters, and airplanes, among other

platforms, to obtain hyperspectral imaging for a range of

monitoring tasks Metternicht (2003); Schell and Deering (1973).

There are several varieties of hyperspectral cameras, such as whisk-

broom, push-broom, and snapshot cameras. Currently, the use of

mobile phone cameras is being widely utilized to capture earth

observation data.

Accurate and timely identification of plant diseases represents a

significant challenge to agricultural experts and farmers. Recent

changes in digital image processing present a practical and effective

solution for diagnosing and classifying disease symptoms for better

yield Kumar and Raghavendra (2019); Islam et al. (2024). Artificial

methods with remote sensing data may soon help increase crop

yields with the early identification of diseases affecting plant leaves,
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curtailing the entrance of disease to other nearby crops. Even at an

early stage, computerized image processing techniques can identify

the disease and reduce its potential to affect the entire crop Devaraj

et al. (2019). In the long term, the proposed work will help establish

timely disease detection thereby improving crop yield and food

supply. The PlantVillage dataset, a common collection of leaf

photos taken in fields, served as the study’s dataset Rajasekaran

et al. (2020); Zhang et al. (2023). The primary objective is to develop

a system that uses Earth observation data to categorize leaves as

healthy or unhealthy automatically. The contributions to be

achieved in this study can be summarized as follows:
Fron
• This research proposes a novel framework that uses local

binary pattern features (LBP) with ANFIS Fuzzy customized

convolutional neural network (called PlantNet) for giving a

high accuracy rate in the classification between healthy and

bacterial-infected using plant leaf images of pepper bell.

• LBP features greatly reduce the computational complexity

overhead while ANFIS Fuzzy customized CNN performs well

for the infected regions portion detection and classification.

• To evaluate the performance of PlantNet, the Plant Village

benchmark dataset is utilized and performance is compared

with four ML and four deep learning (DL) models.

• The PlantNet performance is precisely compared with

previously published research works that successfully

affirm the superiority of PlantNet. The results of PlantNet

are further generalized using cross-validation techniques.
This research is structured as follows: Section 2 discusses

previously published studies carried out in this field, and Section

3 outlines the suggested methodology. It also contains

preprocessing procedures and a model description. The

evaluation of the suggested approach is the focus of Section 4,

which is followed by a discussion of experimental findings. The

conclusion is given in Section 5.
2 Related work

This section offers an overview of many cutting-edge

approaches that have been utilized in the past to identify pepper

bell plant leaf diseases. In previous years, pre-processing methods

have been used on several plant leaf photos to accurately identify the

various plant diseases. Most of the studies mainly utilized refining

and polishing image processing filters to improve the picture

quality. Other filters have also been adopted to remove additive

noise in these images. A deep CNN powered by Bayesian learning

was proposed by Sachdeva et al. (2021) as a means of automatically

identifying plant leaf diseases. Images of potato, tomato, and pepper

bell leaves were used in their investigation. With 98.9% accuracy,

the prototype design featured several hierarchical tiers cooperating

inside a Bayesian framework. To categorize pepper leaf illnesses, In

this line, the authors proposed a transfer learning (TL) model Zeng

et al. (2021). They solely employed the MobileNetV2 model in this

instance. According to the experimental findings, the accuracy of

the MobileNetV2-based TL model was 99.55%.
tiers in Plant Science 03
The study by Devi and Amarendra (2021) developed an

automatic classification approach for bell pepper plant leaf

diseases using ML. The HGB algorithm with multiple feature

extraction techniques was proposed by the authors, who also

employed several ML models. According to their findings, bell

pepper leaf illnesses could be classified with an output of 89.11%

using the combination of HGB classification and the features of the

images’ LBP and fused histogram of oriented gradients (HoG).

When Mohanty et al. (2016) tested their TL models to identify leaf

diseases in a variety of plants, they found that the GoogLeNet and

AlexNet TL models had train-test split model classification accuracy

of 80:20 and 70:30, respectively. In comparison, the current study

achieved a 99.34% validation accuracy with the GoogLeNet 80:20

train-test split model.

Smith et al. (2023) discusses precision agriculture technologies

that leverage remote sensing and TL techniques. The authors

highlight the significant advantages of integrating TL with remote

sensing data to improve crop monitoring, yield prediction, and

disease detection. By utilizing pre-trained models on large datasets

and fine-tuning them with agricultural-specific data, the studies

reviewed demonstrate enhanced performance in various

agricultural tasks. The authors also discuss the limitations of TL

in this domain, such as the requirement of high-quality labeled

datasets and the potential for overfitting. Overall, the review

provides valuable insights into the advancements and challenges

in the application of TL and remote sensing in precision agriculture.

In a review paper by Johnson et al. (2023), the authors focus on the

applications of DL and TL in remote sensing for crop management

in precision agriculture. The authors explore various DL

architectures, such as convolutional neural networks (CNNs) and

RNNs, which have been successfully applied to analyze remote

sensing data for tasks like crop classification, disease detection, and

soil moisture estimation. The use of TL in these applications is

particularly highlighted as a means to reduce training time and

improve model accuracy by leveraging knowledge from models pre-

trained on non-agricultural datasets. The paper also addresses the

challenges of implementing these techniques, including the need for

large and diverse datasets, and the potential biases introduced by TL

from non-agricultural domains.

The integration of remote sensing and TL techniques to enhance

precision agriculture was examined in research by Chen et al. (2024);

Williams et al. (2024). They discuss various case studies where remote

sensing data, combined with TL approaches, have been used to

improve the accuracy of agricultural applications such as weed

detection, yield estimation, and crop health monitoring. The authors

highlight the benefits of using TL to adapt models trained on other

domains to agricultural tasks, thereby saving time and resources. They

also identify several challenges, such as the need for domain

adaptation techniques and the potential for reduced accuracy when

models are transferred across significantly different domains. The

review concludes with a discussion of future research directions and

the potential of emerging technologies to further advance precision

agriculture. Hoque et al. (2024) incorporates meteorological data and

pesticide information in order to predict crop yield. The authors

perform experiments involving several ML models with gradient

gradient-boosting model yielding the best results.
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Lei et al. (2021) attempted to derive five vegetation indices from

the multispectral UAV-acquired data and high-resolution UAV

remote sensing images; this included the leaf chlorophyll index, the

green normalized difference vegetation index, the normalized

difference red-edge index, the optimal soil adjusted vegetation

index, and the normalized difference vegetation index. To achieve

this, five distinct algorithms are used on the data. The test set

classification accuracy obtained from these classification algorithms

through experiments resulted in 86.57% using BPNN.

Sharma et al. (2022) suggested plant disease diagnosis and

image classification concerning rice and potato plants. They

developed a CNN model for classifying diseases in rice and

potato plant leaves. It can identify diseases including brown

spot, blast, bacterial blight, and tungro in rice leaves, and it can

categorize photos of potato leaves into three groups: illnesses of

early and late blight, and healthy leaves. The proposed CNN

model learned the hidden patterns from raw images to classify

rice images with an accuracy of 99.58% and potato leaves with

97.66%. Shrivastava et al. (2019) presented an image-based

machine-learning approach for the detection and classification

of plant diseases, focusing on rice plant (Oryza sativa) diseases.

Images of symptoms in leaves and stems due to those diseases

were captured from rice fields. They extracted features through

AlexNet and performed the classification through SVM. The

result showed an Accuracy score of 91.37% the highest for their

proposed system.

Plant diseases were recognized by Kaushik et al. (2022) for

identifying diseases and preventing economic damage to farmers.

The authors developed a DL system comprising the faster region-

based CNN, region-based CNN fully, and R-CNN known as SSD

for image recognition, and finally, the single-shot multi-box

detector. The proposed technique copes with complex scenarios

and efficiently identifies various diseases since they have managed to

come up with a maximum accuracy of 94.6%. Xu et al. (2022);

Mputu et al. (2024) proposes a new way to sort and grade the

quality of tomatoes. This method is designed for feature extraction

by pre-trained CNNs, belonging to a hybrid model because it

combines the basic framework of the ML algorithm for

classification. With Inception-V3 serving as the feature extractor,

the CNN-SVM achieved the best performance suggested, accepting

ripe, unripe, and rejecting tomatoes with an accuracy of 97.50% for

the binary classification. Texture classification and analysis utilize

LBP. LBP views the image in a localized way by looking at the

relationships of the target pixel with its neighbors. It boosts

accuracy, especially in small sizes of datasets and for the diversity

of growth conditions. A summary of the above-discussed literature

is given in Table 1.
3 Materials and methods

This section discusses ML and DL learning models along with

the dataset utilized for the detection of leaf disease in plants. This

section also describes about parameters used to assess the models’

performance and the suggested technique. The proposed

methodology adopted in this study is shown in Figure 1.
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3.1 Datasets description

The plant leaf disease dataset was taken from Kaggle, one of the

top resources for research datasets. This specific dataset contains

2,475 images that are targeted for the pepper bell Tejaswi (2020).

The actual labels are the images of leaves infected by bacteria and

the healthy ones; they are two in number. This dataset comprises

1,478 images of healthy leaves and 979 images of infected leaves.

The direct access link for the dataset is https://www.kaggle.com/

datasets/arjuntejaswi/plant-village.
3.2 Local binary patterns

The LBP is a rather extensively used area in computer vision for

texture analysis and classification.

LBP does not try to process the complete image but instead

focuses on those areas that are localized by examining neighboring

relationships between pixels Rosdi et al. (2011); Sun et al. (2023).

Every pixel in an image considers a different set of neighborhoods.

Comparisons within this testimonials scheme in the surrounding

pixels are done concerning their intensity levels with the considered

pixel and a central pixel. If the intensity in the neighboring pixel

intensity is superior or equal to that in the central pixel, then it

assigns one since it can be considered as a contrast in intensities.

Therefore, for any region, a binary pattern is formed in which a
TABLE 1 Summary of previous research works.

Ref Classifiers Dataset Performance

Sachdeva
et al. (2021)

Optimized CNN Plant Village 98.9%

Zeng
et al. (2021)

MobileNetV2 Plant Village 99.55%

Devi and
Amarendra
(2021)

LR, Linear SVM, HGB,
NB, RBF-SVM, DT,

Plant Village 89.11% HGB

Mohanty
et al. (2016)

GoogleNet, AlexNet Plant Village GoogleNet 99.34%

Wang
et al. (2020)

KMSVM, KMSEG,
Kmean, SVM, 2
class kmean,

Remote sensing
Selfcollect
UAV dataset

88.5% KMSEG

Lei
et al. (2021)

DT, NB, SVM, k-
NN, BPNN

Remote sensing
UAV
multispectral
dataset

86.57% BPNN

Sharma
et al. (2022)

CNN, SVM, KNN,
DT, RF

rice and
potato dataset

CNN: 99.58% on
rice CNN: 97.66%
on potato

Shrivastava
et al. (2019)

AlexNet for extraction
of features and SVM
for classification

Self-collected
rice dataset

91.37%

Kaushik
et al. (2022)

Optimized CNN Plant Village 94.6%

Mputu
et al. (2024)

CNN-RF, CNN-SVM,
CNN-kNN

Self-made 97.50%
CNN-SVM
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value of zero is said to be the case if the intensity of the surrounding

pixel is lower than that of the core pixel. Consequently, texture

information from a region is contained in the decimal number that

results from converting the binary pattern. Consequently, the LBP

values’ histogram offers a simple textural representation of the

information in a picture.

LBP offers substantial advantages for numerous applications,

comprising, among many other things, object identification, face

recognition, and texture classification. The robustness against

changes in illumination enhances its effectiveness in scenarios

where the light may vary. It has been further extended and

modified in various ways, such as Uniform LBP, Rotation-

Invariant LBP, and variations for multi-scale and multi-block

LBP. It is easily understood by anyone that, being a texture

descriptor, LBP is robust, whereas its performance is dependent

on the application and dataset it uses. Also, pre-processing is carried

out by normalizing the data and ensuring all images are converted

to a standardized size of 230 × 230 pixels.
3.3 ML and DL learning models

ML is notable for supporting improvement in the accuracy and

efficiency of disease diagnosis. There are various ML techniques, the

most common being the Python package of Scikit-learn, which is

highly used, open-source, and supported by a vast number of its users.

We run this study with a variety of benchmark classifiers, including

LR, RF, SVM, ETC, VGG19, EfficientNetB4, InceptionV3, and

MobileNet, ResNet, in addition to the proposed ANFISFuzzyCNN.

The following values are adopted for these models.

3.3.1 Logistic-regression
In the realm of ML applications for plant leaf disease detection,

LR serves as a valuable tool due to its simplicity, interpretability, and

effectiveness in binary classification tasks Kleinbaum et al. (2002).
Frontiers in Plant Science 05
Unlike its name implies, LR is adept at predicting binary outcomes

by modeling the probability of an event (such as leaf disease

presence) based on input features extracted from leaf images.

This technique comes in very handy in analyzing different visual

characteristics of leaves, such as color, texture, and shape, which can

indicate the presence of disease. LR works by fitting a logistic

function to the input features, mapping them linearly to output

probabilities between 0 and 1. This allows for ease in interpretability

of the coefficients, one gets an idea of how each feature contributes

to the likelihood of disease while improving computational

efficiency and scaling LR, as often large datasets are encountered

in agricultural studies. Moreover, to guarantee robust performance

on unseen data, LR can be regularized to prevent overfitting and,

hence improve its generalization. This limits the power in the

capturing of complex, nonlinear patterns in data as opposed to

more sophisticated models. At the same time, the practical

advantages of LR make it quite suitable for preliminary

exploration into plant disease detection.

3.3.2 Random forest
The RF model is a tremendous all-powerful tool used to detect

plant leaf diseases using ML Breiman (2001). In general, the

working principle of the RF algorithm is the aggregation of

multiple decision trees built during the training process, which

predicts the model’s output to improve accuracy and reliability. RF

does an excellent job handling complex interactions between high-

dimensional features extracted from an image of the leaf, including

color, texture, and shape descriptors. Ensemble methods used by

itself help to reduce overfitting. It also provides insight into feature

importance, which is handy in knowing the critical markers

through which the disease can be detected. Despite being a bit

sensitive to the tuning of its various parameters, the capability of RF

to capture complex patterns makes it very useful for applied

agricultural research in enhancing crop health and management

against diseases.
FIGURE 1

Proposed methodology diagram of Fuzzy-CNN model.
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3.3.3 Support vector machines
SVM is another activity of the more influential supervised

learning models for classifying plant leaf diseases Genitha et al.

(2019). SVM essentially works by finding the ideal feature space

hyperplane that maximally separates the different classes. The

concept not only made binary classification very effective but also

easily placed into multi-class cases with methods such as one-vs-rest

or one-vs-one classification. One of the main advantages of kernel

functions in SVMs is that they make the technique very effective in

nonlinear relationships between features and classes. Thus, due to

the possibility of processing high-dimensional spaces of features,

together with complex nonlinear relationships, SVMs are much

preferred for the robust and accurate classification of plant diseases

based on diverse features derived from images.

3.3.4 Extra trees classifier
ETC is a meta estimator that considers the problem as a whole

and, during training, creates many decision trees before presenting

the mean forecast in the case of regression or the class mode in the

case of classification Geurts et al. (2006). It is similar to RF but

differs in how it selects splits at each node. ETC randomly selects

splits, rather than searching for the best split like in traditional

decision trees or RF, which can lead to faster training times. This

approach can sometimes improve performance by introducing

more randomness into the model, though it may also increase

variance. ETC is useful in scenarios where computational efficiency

is critical or where a higher level of randomness in model

predictions is desired to prevent overfitting.

3.3.5 Visual geometry group
VGG19 is a CNN architecture that achieves excellent

performance for several image-processing assignments Younis

et al. (2022). It has been developed by the Visual Geometry

Group of Oxford University and contains 19 layers: 3 fully

connected and 16 convolutional. VGG19 has an architectural

design that stacks multiple layers of the pattern of convolution

sizes with a stride of 3 × 3 before every application of this construct,

with max pooling applied using a window of size 2 × 2 and stride 2.

Such a structure helps VGG19 to capture the progressively complex

features of an image. The cross-entropy loss criterion and

optimization, which responds to iterations using stochastic

gradient descent, comprise up’s general training setting of

VGG19. VGG19 can thus be very easily interpreted and directly

transferred to learning as well, given its absolute simplicity and

uniform architecture. Correspondingly, the depth of the VGG19

architecture is the primary determinant of computational and

memory consumption.

3.3.6 EfficientNetB4
CNN-based EfficientNetB4 architecture is well-known for its

effectiveness and exceptional performance in image recognition

applications Wang et al. (2021). It belongs to the EfficientNet

family, which systematically scales up the model’s depth, width,

and resolution to achieve better accuracy without significantly

increasing computational cost. In particular, EfficientNetB4 finds
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a balance between model accuracy and size, which makes it

appropriate for a range of applications, including plant leaf

disease detection using ML. By leveraging compound scaling and

efficient building blocks, EfficientNetB4 optimizes both parameter

efficiency and computational efficiency, keeping it competitively

performant and well-suited for deployment on devices with limited

resources in complex visual recognition tasks.

3.3.7 InceptionV3
InceptionV3 is a frequently applied model in the CNNs for

problems connected with image recognition. After being trained on

the ImageNet dataset, it offers nearly all benchmarks with respectable

accuracy Mujahid et al. (2022). Because of the several parallel layers of

convolutional, pooling, and activation functions in its design, as well as

inception modules, the network can learn diverse feature maps at

varying sizes. Additionally, factorized 1 × 1 convolution and batch

normalization have been included to minimize parameter sizes and

improve training effectiveness. Besides being deep and computationally

expensive, InceptionV3 is designed to be adaptable to other tasks and

datasets; hence, It is appropriate for learning transfers. However,

training and deployment can require a lot of memory and be

computationally demanding.

3.3.8 MobileNet
MobileNet is a unique design of CNN created for two primary

reasons. First, for mobile phones, which have little processing

power, and second, for embedded devices Ahsan et al. (2021).

This balanced between the size of an accurate model and the

accuracy. Depthwise Convolution applies a single filter to each

input channel; this is the primary innovation of MobileNet.

Depthwise Separable Convolutions essentially split standard

convolutions into pointwise and depthwise convolutions. Then,

pointwise convolution applies a 1 × 1 convolution to combine the

results of the depthwise convolution. This separation greatly

reduces computation and saves a great deal in model size

compared to traditional convolution. For this reason alone,

MobileNet is efficient in architecture with reasonable accuracy.

There are several versions of MobileNet, MobileNetV1,

MobileNetV2, and MobileNetV3, each of which provides a

different set of improvements and optimizations over the previous

one. These make the architecture efficient with much better

performance. MobileNet has become popular on mobile and

embedded devices in many computer vision applications,

Examples include object identification, image categorization, and

semantic segmentation.

3.3.9 ResNet
ResNet, or Residual Network, is among the pioneering deep

neural network architectures that revolutionized the scene within

the domain of computer vision Fulton et al. (2019). The Microsoft

Research team proposed residual learning to make the training of

intense networks easier by residual connections through skip

connections or shortcuts bypassing a few layers. These classes of

shortcuts allow the gradient to flow more directly in

backpropagation, and this alleviates the vanishing gradient
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problem, which enables models in ResNet to train efficiently with

hundreds of layers. With such depth, ResNet can learn intricate

features and patterns in data, hence providing state-of-the-art

performance on a wide range of recognition tasks, including plant

leaf disease classification. The relatively simple architectural

backbone of ResNet and its effectiveness in learning complex

representations have been the bedrock of DL research

and applications.
3.4 Proposed approach ANFISFuzzyCNN
for plant leaf disease detection

In this paper, ANFIS-Fuzzy-CNN represents a hybrid model

proposed for the effective classification of plant diseases. This

approach combines adaptive learning capabilities through fuzzy

neural networks with the DL power of CNNs to enhance accuracy

and robustness in agriculture-related disease classification systems.

The complete details of the hyperparameters of the proposed model

are shown in Table 2. The pseudo-algorithm of the proposed model

is shared in Algorithm 1.

Neuro-fuzzy is another hybrid approach targeting the

combination of Fuzzy logic and neural networks to solve most

real-world problems efficiently Jang (1993). In a sense, the

combination is intended to complement the deficiencies of basic

models: neural networks are excellent in pattern recognition but

usually remain ‘black boxes’ concerning explanation of their

decisions; on the other hand, fuzzy logic systems support

imprecise reasoning but are very good at explaining their

decisions [11]. In this respect, a famous Neuro-Fuzzy architecture

is proposed, i.e., the ANFIS. The ANFIS part of the model uses fuzzy
Frontiers in Plant Science 07
logic to handle the existing uncertainty and imprecision in plant

disease classification. In this line, fuzzy logic can provide a means

for representing vague concepts or linguistic variables, especially in

agricultural domains where diseases’ symptoms are subjective or

relative, depending on appearance and severity. ANFIS dynamically

adapts the fuzzy rules and membership functions concerning the

input data to classify optimally. It is this adaptability that is core to

handling a diverse group of plant diseases and variations in

environmental conditions.

Due to their capability of automatically identifying hierarchical

features from unprocessed input data, in this case, images of plant

leaves affected by diseases, CNNs have been of great importance in

ANFIS-Fuzzy-CNN. As such, they are very well suited for image-

based tasks like disease detection since meaningful spatial and

temporal patterns could be extracted using multiple layers of

convolutions with subsequent pooling operations. These

convolution layers allow the model to capture minute details and

textures indicative of different plant diseases, thus improving

classification accuracy. ANFIS integration into CNN in the ANFIS-

Fuzzy-CNN model is synergistic. In ANFIS, it introduces a fuzzy

inference mechanism working on the outputs from CNN. This work

refines the classification decisions of the CNN with fuzzy logic rules

that consider uncertainty and context-specific knowledge about plant

diseases. The ANFIS-Fuzzy-CNN model first stepped with a

convolutional network that extracted features from input images

which went through a few layers of convolutions and pooling Sabrol

and Kumar (2020). These features are then processed by a fuzzy

inference system where the extracted features from the smart camera

are analyzed with the help of fuzzy rules that deal with uncertainties

and ambiguity which are mostly inherent in real-world scenarios.

One of the most advantageous features of the system is the ability to
TABLE 2 Hyperparameter for the proposed model “ANFIS Fuzzy CNN”.

Hyperparameter Value Description

Input Shape (224, 224, 3) Size of the input image data (width, height, channels).

Convolutional Layers
3 layers [32, 64, 128 filters] The number of convolutional layers used. The number of filters

per layer.

Kernel Size 3x3 Size of the kernels used in convolutional layers.

Activation Function ReLU Activation function applied after each convolutional layer.

Pooling Layers 2 layers Number of pooling layers used.

Pooling Type Max Pooling Type of pooling used in pooling layers.

Pooling Size 2x2 Size of the pooling window.

Fuzzy Layer Type Gaussian Type of fuzzy layer used for feature extraction.

Dropout Rate 0.5 Rate of Dropout applied after fully connected layers.

Batch Size 32 Number of samples per gradient update.

Number of Epochs 50 Total number of iterations over the entire dataset.

Optimizer Adam Optimization algorithm used for training the model.

Learning Rate 0.001 Initial learning rate for the optimizer.

Loss Function Categorical Crossentropy Loss function used for optimization.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1465960
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Kim et al. 10.3389/fpls.2024.1465960
adjust its parameters that are trained to ensure better solutions are

gotten especially for compound classifications.
Fron
1: Input: Plant Village dataset with images of leaves

2: Output: Classification results (Healthy or

Bacterial)

3: Step 1: Preprocessing

4: Load the Plant Village dataset

5: Resize images to uniform dimensions

6: Normalize pixel values to range [0, 1]

7: Step 2: LBP Feature Extraction

8: For each image in the dataset:

9: Compute Local Binary Patterns (LBP) features

10: Construct LBP histogram

11: Store LBP features

12: Step 3: Fuzzy CNN Model Construction

13: Initialize the ANFIS Fuzzy CNN architecture

14: For each layer in the CNN:

15: Add a convolutional layer with Fuzzy logic

activation

16: Add pooling layer

17: Add a fully connected layer

18: Step 4: Training the Model

19: Split dataset into training and validation sets

20: For each epoch:

21: Perform forward propagation

22: Calculate loss using fuzzy membership functions

23: Update model parameters using backpropagation

24: Step 5: Model Evaluation

25: Test the model on the validation set
tiers in Plant Science 08
26: Compute performance metrics: accuracy,

precision, recall, F1-score

27: Step 6: Classification

28: For each test image:

29: Extract LBP features

30: Predict class using the trained ANFIS Fuzzy CNN

31: Output classification result (Healthy

or Bacterial)
Algorithm 1. ANFIS Fuzzy CNN for plant leaves classification.

Compared with traditional ML methods for plant disease

classification, the ANFIS-Fuzzy-CNN model has the following

advantages: First, it can handle complicated and nonlinear

relationships between input features (e.g., symptoms of diseases)

and output classes (certain diseases). Second, it improves the

robustness of classification by generalizing the strengths of fuzzy

inference systems in handling uncertainty with the capability of

CNNs in understanding hierarchical representations from raw data.

The equation below illustrates a simplified form of how ANFIS

integrates with CNN for disease classification:

Outputlabel = ANFIS(CNN(Inputimage)) (1)

where (CNN(Inputimage) represents the feature extraction and

classification stages performed by the CNN, while ANFIS CNN

refines the output label based on fuzzy inference rules.
3.5 Evaluation metrics

This study utilizes different evaluation criteria, including

accuracy, F1-score, precision, and recall. These assessment

metrics help determine whether ML and DL models are efficient.

An overall assessment of the model’s prediction is provided by

accuracy. This statistic calculates the proportion of accurately

predicted instances to all instances in a dataset. It can be

determined by the formula.

Accuracy = o
C
i=1TPi

oC
i=1Ni

(2)

Precision is a measure employed to ascertain the ratio gotten

from the correct predicted positive instances divided by the total

that was predicted positive. In layperson’s terms, this helps to

minimize the number of false positives, clearly showing the

distinction of the model towards positive instances. Precision can

be given as:

Precisioni =
TPi

TPi + FPi
(3)
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Recall, otherwise called sensitivity, at the same time is the

proportion of the number of valid positive instances predicted by

the number of genuine positive cases in the dataset’s class. In a more

general way, it shows how well the model can detect real positive

cases. The formula for the recall is:

Recalli =
TPi

TPi + FNi
(4)

The F1 score is the harmonic mean of precision and recall and

thus provides a measure that balances both metrics about the

general behavior of the model. It is calculated with the formula:

F1 − Score = 2 ·
Precisioni · Recalli
Precisioni + Recalli

(5)
3.6 Experimental configuration

This study utilized TensorFlow and Keras libraries, both open-

source, to create variousML and DLmodels, some of which were pre-

trained. DL methods were utilized on a collection of plant leaf

pictures with Python on the Anaconda software. To conduct

experiments on datasets using advanced DL models such as ANFIS

Fuzzy CNN, this research utilized a system with an Intel Core i9-

11900K processor, which features 8 cores and 16 threads, operating at

a base frequency of 3.5 GHz. This processor provides the necessary

computational power for handling complex data preprocessing and

model training. The system is equipped with a high-performance

GPU, NVIDIA GeForce RTX 3080, which offers 10 GB of GDDR6X

VRAM. This GPU accelerates the training of DL models by

leveraging parallel processing capabilities. To support the high

computational demands, the system had 64 GB of DDR4-3600

RAM, ensuring smooth operation and efficient handling of large

datasets. To identify bacteria in images of plant leaves, it is suggested

to use the ANFIS-Fuzzy-CNN DL model in conjunction with LBP.

Different scientific methodologies will be used to assess how effective

and important the proposed approach is. This research focuses on

categorizing diseases found on pepper bell plant leaves utilizing a

dataset containing 2,475 images. To accomplish this goal, scientists

employed the ANFIS-Fuzzy-CNN model along with LBP.
4 Results and discussion

Four ML models were used on the original dataset to classify

pepper bell plant leaf diseases without taking into account LBP
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features. Table 3 presents the experimental results for these

ML models.

Table 3 shows the resultant performance metrics for various ML

models using the original dataset. Every model is assessed using

Accuracy, F1-Score, Precision, and Recall. They are Random Forest.

The accuracy ranged from 72.49% using SVM to 80.34% using ETC

—Late, thus telling how often each model has predicted outcomes

correctly. Precision ranges from 79.39% in the case of SVM to

85.69% for ETC. It indicates the proportion of all expected positives

among those predicted as positive. Recall values range from 80.46%

(SVM) to 85.69% (ETC), reflecting how well each model identifies

actual positive instances. The F1-Scores range from 79.69% (SVM)

to 85.69% (ETC), which combines Precision and Recall into a single

metric, illustrating the overall effectiveness of each model in making

accurate predictions.
4.1 TL models results using original dataset

TL models showed encouraging outcomes for the image data.

This study utilizes five TL models along with the proposed ANFIS-

Fuzzy-CNN. Table 4 shows the outcomes of TL classifiers and the

proposed system using the original dataset.

Table 4 the performance of various TL models without using

LBP. Each model—MobileNet, VGG19, ResNet, EfficientNet B4,

and ANFIS-Fuzzy-CNN—is evaluated based on Accuracy,

Precision, Recall, and F1 score. Accuracy ranges from 77.34% for

ResNet to 84.78% for ANFIS-Fuzzy-CNN, indicating overall

prediction correctness. Precision values vary from 80.25%

(ResNet) to 89.59% (ANFIS-Fuzzy-CNN), showing the

proportion of correctly predicted positive cases out of all

predicted positive cases. Recall ranges from 83.19% (ResNet) to

90.45% (ANFIS-Fuzzy-CNN), indicating how well each model

identifies actual positive instances. F1 scores range from 82.19%

(VGG19) to 88.55% (EfficientNet B4), providing a combined

measure of Precision and Recall, reflecting each model’s overall

performance in making accurate predictions.
4.2 Performance of ML models using
LBP features

This research uses the LBP model for the textual descriptor. In

the dataset, ML models are used after carrying out the Local Binary
TABLE 3 ML models results using original dataset.

Model Accuracy Precision Recall F1-Score

RF 0.7548 0.8155 0.8234 0.8207

LR 0.7629 0.8367 0.8449 0.8419

ETC 0.8034 0.8569 0.8569 0.8569

SVM 0.7249 0.7939 0.8046 0.7969
TABLE 4 TL models results without LBP.

Models Accuracy Precision Recall F1 score

MobileNet 0.7969 0.8134 0.8391 0.8248

VGG19 0.7999 0.8263 0.8367 0.8219

ResNet 0.7734 0.8025 0.8319 0.8267

EfficientNet B4 0.8265 0.8769 0.8932 0.8855

ANFIS-
Fuzzy-CNN

0.8478 0.8959 0.9045 0.8953
fr
Bold values indicate the proposed model results.
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Pattern. Table 5 shows how ML models using Local Binary

Patterns perform.

The table shows the performance of various TL models without

using LBP. Each model, MobileNet, VGG19, ResNet, EfficientNet

B4, and ANFIS-Fuzzy-CNN, is evaluated based on accuracy,

precision, recall, and F1 score. Accuracy ranges from 77.34% for

ResNet to 84.78% for ANFIS-Fuzzy-CNN, indicating overall

prediction correctness. Precision values vary from 80.25%

(ResNet) to 89.59% (ANFIS-Fuzzy-CNN), showing the

proportion of correctly predicted positive cases out of all

predicted positive cases. Recall ranges from 83.19% (ResNet) to

90.45% (ANFIS-Fuzzy-CNN), indicating how well each model

identifies actual positive instances. F1 scores range from 82.19%

(VGG19) to 88.55% (EfficientNet B4), providing a combined

measure of precision and recall, reflecting each model’s overall

performance in making accurate predictions.
4.3 Performance of TL models using local
binary pattern

The data after applying LBP are fed into TL models. Table 6 and

Figure 2 show the performance of TL models on LBP data.

Table 6 compares the performance of various TL models

enhanced with LBP. In this respect, each of the models, including

MobileNet, VGG19, ResNet, EfficientNet B4, and Inception V3,

together with ANFIS-Fuzzy-CNN, are plugged into criteria such as

the F1 score, accuracy, precision, and recall. The accuracy ranges

from 89.17% for MobileNet to 98-99% for ANFIS-Fuzzy-CNN and

Inception V3, meaning almost all the predictions are generally

correct. The values obtained for precision are 80.25% for ResNet

and 99.99% for both ANFIS-Fuzzy-CNN and Inception V3,

respectively. Recall ranges from 83.19% in the case of ResNet to

as high as 99.99% in ANFIS-Fuzzy-CNN and Inception V3, which

means that each model recalled actual positive instances of a class

this much. F1 ranges from 82.19% in VGG19 to 99.98% in

Inception V3. It does exactly what an F1 score should do,

combining precision and recall into a combined measure

reflecting how well each model makes accurate predictions with

the addition of LBP.
4.4 Discussion

The proposed ANFIS Fuzzy CNN model excels in plant leaf

disease detection due to several key innovations. It integrates an
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ANFIS which allows the model to dynamically adjust to variations

in plant leaf images, thereby extracting more relevant and

distinctive features. The incorporation of fuzzy logic enhances the

model’s ability to handle uncertainty and variability in agricultural

data, making it more resilient to noise and variations in image

quality. The model’s CNN structure is adept at capturing intricate

patterns and textures, which are crucial for accurate disease

classification. Furthermore, the proposed model benefits from

prior knowledge while adapting to the specific nuances of plant

leaf disease detection, reducing training time. The model’s

performance is validated using various metrics, such as accuracy,

F1-score, precision, and recall providing a holistic view of its

effectiveness. Rigorous cross-validation and benchmarking against

state-of-the-art models and datasets demonstrate the model’s

consistency and superior performance, justifying its robustness

and efficacy in precision agriculture applications. We performed

an ablation study and the results are given in Table 7. Results show

the impact of each layer and component on the performance of the

proposed ANFIS Fuzzy CNN model.
4.5 Results of k-fold cross-validation

In this study, k-fold cross-validation has been implemented to

enhance the performance analysis of the proposed method. The

computed results of 5-fold cross-validation are shown in Table 8,

indicating that the technique proposed is effective concerning

various metrics. The standard deviation is found to be very low,

indicating better consistency in performance across folds. These

results add to the confidence level in the degree of reliability and

credibility of the proposed technique.

Table 8 and Figure 3 show the summary of performance metrics

using cross-validation with LBP. Again, in this case, there is also

available for every fold; first-fold to fifth-fold, metrics such as

precision, F1 score, accuracy, and recall. The accuracy in each

fold comes very close: 99.93% to 99.99%, hence very accurate. The

precision values are always very high, in the range of 99.64% to

99.96%, indicating that out of all positives predicted, the models

could get most of the positive cases right. Recall values are also

exceptionally high, ranging from 99.85% to 99.99%, thus indicating

how well the models can capture positive instances. Another

combined measure for precision and recall is the F1 score, which
TABLE 5 Results of ML models with LBP.

Models Accuracy Precision Recall F1 score

RF 0.8938 0.9137 0.8234 0.8207

LR 0.8749 0.8367 0.8449 0.8419

ETC 0.9182 0.8569 0.8569 0.8569

SVM 0.9222 0.7939 0.8046 0.7969
TABLE 6 Results of TL models with LBP.

Models Accuracy Precision Recall F1 score

MobileNet 0.8917 0.8134 0.8391 0.8248

VGG19 0.9237 0.8263 0.8367 0.8219

ResNet 0.9727 0.8025 0.8319 0.8267

EfficientNet B4 0.9267 0.8769 0.8932 0.8855

Inception V3 0.9848 0.9997 0.9999 0.9998

ANFIS-
Fuzzy-CNN

0.9999 0.9999 0.9999 0.9999
fr
Bold values indicate the proposed model results.
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ranges from 99.30% to 99.99%. This again proves the overall sound

performance in both precision and recall metrics. The final AVG

metrics across folds underpin the excellent quality of the models in

terms of average accuracy, precision, recall, and F1-score with

corresponding values of 99.96%, 99.84%, 99.94%, and 99.94%.

These results prove that with k-fold cross-validation and LBP,

high accuracy and reliability were obtained in the models trained

for outcome prediction.

The proposed ANFIS Fuzzy CNN model offers a more adaptive

and context-aware approach compared to the deep convolutional

neural networks (CNNs) employed in the referenced research.

While studies like Sachdeva et al. (2021) and Zeng et al. (2021)

leverage CNNs and transfer learning for plant disease detection,

their models lack the fuzzy logic integration that enhances spatial

coherence in ANFIS. Similarly, the HistGradientBoosting model
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used by Devi and Amarendra (2021) combines traditional feature

extraction methods like HOG and LBP, but does not achieve the

same adaptability in complex environments as ANFIS.

Furthermore, while Mohanty et al. (2016) and Wang et al. (2020)

employ UAVs and remote sensing for plant disease detection,

ANFIS outperforms these methods in terms of accuracy and

robustness, especially in dynamic scenarios. The key advantage of

ANFIS is its ability to incorporate fuzzy logic for more precise

feature extraction, setting it apart from traditional deep CNNs and

transfer learning methods.

Table 9 captures a performance comparison between the

proposed model and SOTA. It shows ANFIS-Fuzzy-CNN

performing better than other SOTA models in terms of accuracy,

as depicted in the Table 9. The model’s comparison is illustrated

in Table 10.
4.6 Real-world applications of
proposed approach

Plant diseases are a real threat to agriculture and their robust

detection is challenging. Devising a framework that can perform

timely and accurate disease detection holds great promise for

farmers. The proposed approach shows superb results and can be

used for real-world disease detection thereby helping better and

timely countermeasures to avoid crop losses. It can help farmers get
FIGURE 2

Comparison line-graph of TL models using LBP features.
TABLE 7 Mean accuracy of ANFIS Fuzzy CNN model with respect to
various parameters.

Parameter Mean Accuracy (%)

Input Size 128x128 95.75

Input Size 256x256 97.50

Fuzzy Layers 1 95.67

Fuzzy Layers 2 97.67

Fuzzy Layers 3 94.33

Regularization 0.01 98.25

Regularization 0.1 96.67

Regularization 1.0 94.00

Learning Rate 0.001 97.75

Learning Rate 0.01 97.00

Learning Rate 0.1 93.00

Batch Size 16 95.00

Batch Size 32 97.00

Batch Size 64 98.50
TABLE 8 Cross-validation results.

Folds Accuracy Precision Recall F1-Score

First-Fold 0.9997 0.9973 0.9985 0.9990

Second-Fold 0.9994 0.9964 0.9995 0.9994

Third-Fold 0.9993 0.9996 0.9996 0.9996

Fourth-Fold 0.9999 0.9993 0.9997 0.9993

Fifth-Fold 0.9999 0.9995 0.9999 0.9999

AVG 0.9996 0.9984 0.9994 0.9994
Bold values indicate the proposed model results.
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better yield thereby improving their earnings and contributing to

the economy. The proposed approach provides robust results and

can be utilized for disease detection at an early stage of disease

which can be very influential to reduce disease losses. For

deployment, the system can be integrated into edge devices like

mobile phones or dedicated cameras for field use, and utilize cloud-

based systems for extensive processing and storage. In addition, it

can be incorporated into smart farming where the real-time data

can be fed to the model for disease detection. The output of the
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framework can be linked to a smartphone app for real-time updates

to the farmers improve their decision making.
4.7 Limitations of proposed ANFIS Fuzzy
CNN model

Despite the promising performance of the proposed ANFIS

Fuzzy CNN model in detecting plant leaf diseases, some limitations
FIGURE 3

Comparison bar-graph with previously published research works.
TABLE 9 Comparison with previously published research works.

Reference Classifiers Dataset Accuracy Limitations

Sachdeva et al. (2021) Optimized CNN Plant Village 98.9% no ANFIS feature capturing, no cross-validation, no pre-processing

Zeng et al. (2021) MobileNetV2 Plant Village 99.55% no ANFIS feature capturing, no cross-validation, no pre-processing

Devi and Amarendra (2021) HGB Plant Village 89.11% no ANFIS feature capturing, no cross-validation

Mohanty et al. (2016) GoogleNet Plant Village 99.34% no ANFIS feature capturing, no cross-validation

Kaushik et al. (2022) Optimized CNN Plant Village 94.60% no ANFIS feature capturing, no cross-validation

This study ANFIS-Fuzzy-CNN Plant Village 99.99% all limitations addressed
Bold values indicate the proposed model results.
TABLE 10 Comparison of ANFIS Fuzzy CNN with other models.

Model Complexity Parameter
Count

Accuracy Suitability Key
Advantages

ANFIS Fuzzy CNN High (adaptive sampling +
fuzzy logic)

Medium to High High (for
spatial coherence)

Precision tasks (e.g., medical
imaging, leaves fine details,
image segmentation)

Adaptive and context-aware
feature extraction

Deep CNN Medium
(straightforward architecture)

Medium to High High for
general tasks

General purpose tasks like
image classification

Simplicity and
broad application

MobileNetV2 Low (optimized
for efficiency)

Low Medium to High Mobile and
embedded applications

Computational efficiency and
low resource usage

HGB CNN Very High (CNN +
gradient boosting)

Very High High Complex tasks (e.g., multi-
label classification)

Combines CNN and boosting
for better decisions

GoogleNet Medium to High
(inception modules)

Medium High Largescale tasks, multiscale
feature extraction

Efficient multiscale
feature extraction
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must be considered. Firstly, the model’s reliance on large amounts

of labeled data for training poses a significant challenge, as

acquiring high-quality annotated images of various leaf diseases is

time-consuming and labor-intensive. This can lead to issues of data

imbalance, where some disease classes are underrepresented,

potentially biasing the model’s predictions. Additionally, the

computational complexity of the model, due to its fuzzy and

convolutional components, may result in high training and

inference times, making it less suitable for real-time applications

in resource-constrained environments such as small farms.
5 Conclusion

Keeping in view the importance of timely disease detection,

this study proposes a novel approach using leaf images. The

proposed model for the pepper bell leaf disease detection utilizes

ANFIS Fuzzy CNN and local binary pattern features. Without

using the local binary pattern features, the achieved accuracy is

0.8478 while using the features demonstrates exceptional

performance with a remarkable 99.99% in accuracy, precision,

recall, and F1 score. The comparison with original image features

yielded significantly lower results, highlighting the effectiveness of

the proposed approach. Extensive experiments with various

machine and DL models reaffirm the superiority of the

proposed model. Additionally, cross-validation and comparisons

with state-of-the-art techniques underscore its robustness and

reliability. These findings emphasize the potential of the proposed

method to revolutionize disease detection in agricultural practices,

offering a highly accurate and efficient solution for early disease

identification and management. The future work direction of this

research work is the addition of explainable AI and Model

Interpretability to give more insights into how these predictions

are made. The second direction is the integration of a multi-modal

fusion approach to make it a more reliable solution in the

agriculture sector.
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image-based plant disease detection. Front. Plant Sci. 7, 1419. doi: 10.3389/
fpls.2016.01419

Mputu, H. S., Abdel-Mawgood, A., Shimada, A., and Sayed, M. S. (2024). Tomato
quality classification based on transfer learning feature extraction and machine learning
algorithm classifiers. IEEE Access. 12, 8283–8295. doi: 10.1109/ACCESS.2024.3352745
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