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Department of Soil and Plant Microbiology,
Estación Experimental del Zaidı́n (EEZ), CSIC,
Granada, Spain

RECEIVED 17 July 2024

ACCEPTED 01 August 2024

PUBLISHED 22 August 2024

CITATION
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HcZnT2 is a highly mycorrhiza-
induced zinc transporter from
Hebeloma cylindrosporum in
association with pine
Tania Ho-Plágaro1†, Muhammad Usman1, Janne Swinnen2,
Joske Ruytinx2, Françoise Gosti 1, Isabelle Gaillard1

and Sabine D. Zimmermann1*

1IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France, 2Research Groups
Microbiology and Plant Genetics, Department of Bioengineering Science, Vrije Universiteit Brussel,
Brussel, Belgium
Zinc (Zn) shortage is a common micronutrient deficiency affecting plants

worldwide, while Zn toxicity may occur when this metal is in excess.

Ectomycorrhizal (ECM) fungi are known to be able to modulate the transfer of

macro- and microelements, among them Zn, to the plant. However, the

underlying mechanisms are not well understood. We identified the HcZnT2

gene from the ECM fungus Hebeloma cylindrosporum, encoding a member of

the Cation Diffusion Facilitator (CDF) family including Zn transporters, and

analyzed its transcriptional regulation, the transport function by yeast

complementation experiments, and its subcellular localization using a GFP

fusion protein in yeast. HcZnT2 is highly induced during mycorrhization of

Pinus pinaster, and upregulated in presence of the host plant root even

without any direct contact. However, HcZnT2 is repressed by Zn excess

conditions. By functional expression in yeast, our results strongly support the

ability of HcZnT2 to transport Zn and, to a lesser extent, manganese. HcZnT2

localization was associated with the endoplasmic reticulum of yeast. Mycorrhizal

gene activation at low external Zn suggests that the Zn transporter HcZnT2might

be important for the early establishment of the ECM symbiosis during Zn

deficiency, rather than under Zn excess. HcZnT2 arises as an extremely

remarkable candidate playing a key role in Zn homeostasis and regulation

in ectomycorrhiza.
KEYWORDS

ectomycorrhizal symbiosis, cation diffusion facilitator (CDF), Hebeloma
cylindrosporum, mycorrhizal gene activation, Pinus pinaster, yeast complementation,
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1 Introduction

Mycorrhizas are widespread mutualistic associations between

fungi and plant roots, that are thought to have played a key

evolutionary role in facilitating the colonization of the terrestrial

ecosystems by plants, around 450 million years ago (Rich et al.,

2021). Among the diverse advantages arising from the mycorrhizal

symbiosis, the most outstanding one is the nutritional benefit

obtained by both interacting partners, in which mycorrhizal fungi

provide mineral nutrients and water to their host plants in exchange

for sugar and lipids (Marschner and Dell, 1994; Solaiman and Saito,

1997; Read and Perez-Moreno, 2003; Keymer et al., 2017).

However, the regulation of these exchanges is still poorly

described (Carbonnel and Gutjahr, 2014; Garcia et al., 2016).

It is well known that mycorrhizal fungi improve the acquisition of

minerals such as phosphorous, nitrogen and potassium from the soil,

and are able to transfer these macronutrients to the plant, improving

their nutritional status (Garcia et al., 2016). Although less studied,

several reports also point to the ability of mycorrhizal symbiosis to

optimize plant micronutrition (Ruytinx et al., 2020). Several

micronutrients have the particularity to be essential for fungal and

plant growth but they can become toxic at high concentrations. In this

context, mycorrhizal fungi are not only able to promote micronutrient

transfer to the plant under deficiency conditions, but also to restrict this

flux if theseminerals are present at toxic levels (Adriaensen et al., 2004).

This is the case of zinc (Zn), whose deficiency is the most widespread

and recurrent in pasture and crop plants worldwide (Alloway, 2008),

while in some cases Zn toxicity conditions have been also reported to

occur and to have negative effects on plants, generally in areas affected

by mining or metallurgic activities (Ernst, 1990; Alloway, 2008;

Nagajyoti et al., 2010). However, the regulation of Zn transport along

the soil-fungi-plant continuum and the mechanisms involved are

still unclear.

Fungal Zn transporters have mainly been identified in two protein

families: the CDF (Cation Diffusion Facilitator) and the ZIP (Zrt/Irt-

like protein) transporter families (Eide, 2006). Both families also

include iron (Fe) and manganese (Mn) transporters, and several

members in these families have been demonstrated to be able to

transport in addition other divalent metal ions, such as cadmium (Cd),

cobalt (Co), and nickel (Guerinot, 2000; Montanini et al., 2007). ZIP

transporters have been reported to transport extracellular or stored Zn

into the cytoplasm (Kambe et al., 2006), while CDFs transport Zn into

organelles or out of the cell, decreasing the cytoplasmic Zn levels

(Montanini et al., 2007). Several CDFs have been identified and

described in ectomycorrhizal (ECM) fungi forming symbioses with

woody plants. In Hebeloma cylindrosporum, HcZnT1 mediates Zn

storage in endoplasmic reticulum (ER)-derived vesicles (Blaudez and

Chalot, 2011). SlZnT1 and RaCDF1 direct vacuolar Zn storage in

Suillus luteus (Ruytinx et al., 2017) and in Russula atropurpurea (Sácký

et al., 2016), respectively. RaCDF2 exports Zn in R. atropurpurea

(Sácký et al., 2016). Finally, RaZIP1 and SlZRT1 are also involved in Zn

uptake in R. atropurpurea (Leonhardt et al., 2018) and S. luteus

(Ruytinx et al., 2017), respectively.

Interestingly, an RNA-seq analysis performed with the

ectomycorrhizal fungus H. cylindrosporum associated with young

pine roots compared to free fungal mycelia (Doré et al., 2015)
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revealed that a gene encoding a putative fungal CDF member (jgi

protein ID 421984) was the one showing the highest induction

within the complete fungal transportome (Guerrero-Galán, 2017).

Phylogenetically, this gene was closely related to the HcZnT1 gene

characterized previously as a Zn transporter involved in

detoxification by Blaudez and Chalot (2011). In the present study,

we characterized the function and localization of this new putative

Zn transporter, here named HcZnT2, by heterologous expression in

different yeast strains including Saccharomyces cerevisiae wild-type

(WT) or Zn-, Mn- and Cd-hypersensitive mutant strains.

Moreover, we analyzed the transcriptional regulation of HcZnT2

by the host plant Pinus pinaster and by external Zn concentrations.
2 Materials and methods

2.1 Plant and fungal material and
culture conditions

The homokaryotic strain h7 of the ECM basidiomycete H.

cylindrosporum Romagnesi (Debaud and Gay, 1987) and

maritime pine seeds (P. pinaster Soland in Ait. from Medoc,

Landes-Sore-VG source, France) were used for the experiments.

To analyze the tolerance of H. cylindrosporum to different

external Zn concentrations, actively growing fungal implants

(diameter of 8 mm) were grown on solid (12 g l-1 agar-agar) N6

medium (N6: Boukcim and Plassard (2003) with vitamines by

Morizet and Mingeau (1976); Cf. Supplementary Material) at

different ZnSO4 concentrations (0, 0.30, 3, 30, 310 and 3100 mM).

After two weeks of incubation at 26°C, the radial growth and dry

weight of the fungus were measured.

In order to simulate the space of the Hartig net, a symbiotic

interface-mimicking experiment was performed at different Zn

concentrations (0, 30, 1000 µM ZnSO4), based on the protocol

described (Becquer et al., 2017; Torres-Aquino et al., 2017). Fungal

mycelia were used for RNA extraction and RT-qPCR analysis

(Supplementary Material). Data analyses for gene expression

levels were performed as described by Cuéllar et al. (2010) and

Guerrero-Galán et al. (2018).
2.2 HcZnT2 cloning, plasmids and
yeast strains

A cDNA library of H. cylindrosporum mycelia (collected from the

symbiotic-interface mimicking assay) was used to amplify the HcZnT2

full-length cDNA sequence and to obtain the pYES2::HcZnT2

construct for functional expression and the pYES::HcZnT2-EGFP

construct (Hamilton et al., 1987) for localization in yeast

(Supplementary Material).

For heterologous functional expression and subcellular

localization in yeast (Gietz and Woods, 2006), the S. cerevisiae

WT strain BY4741 and three derived mutants were used: the Zn-

hypersensitive double mutant strain Dzrc1 Dcot1, the Mn-

hypersensitive mutant Dpmr1, and the Cd-hypersensitive mutant

Dycf1 (Cf. Supplementary Material). Double transformation with
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the pYX222 (his+) empty vector was done to avoid addition of the

Zn chelator histidine (Krämer et al., 1996; Murphy et al., 2011).
2.3 Functional complementation of yeast
and subcellular localization

For metal tolerance assays, transformed yeasts were grown to

mid log phase (OD600 = 1) in liquid SD-His-Ura medium with 2%

w/v D-galactose instead of D-glucose (induction medium). Yeast

cells were pelleted, washed with sterile distilled water, and adjusted

to OD600 = 1. A 1/10 dilution series was prepared (100, 10-1, 10-2,

and 10-3). Drop assays were performed for three independent yeast

colonies on SD-His-Ura control induction medium and on SD-His-

Ura induction medium supplemented with different concentrations

of ZnSO4, MnSO4 or CdSO4.

For subcellular localization of HcZnT2-EGFP fusion protein

(Supplementary Material), yeast transformants were grown to mid-

log phase OD600 = 1 on SD-His-Ura inductionmedium, followed by a

40 min incubation at 30°C in the dark in the presence of the

corresponding dye in order to stain the vacuolar membrane or the

nuclei. Staining of the vacuolar membrane was performed based on

the protocol described by Vida and Emr (1995), by incubating the

cells in 40 µM FM4-64 (Molecular Probes, Invitrogen, Carlsbad, CA,

United States) SD-His-Ura induction medium. For nuclei

visualization, yeasts were incubated in SD-His-Ura induction media

containing 10 mg ml–1 of the cell-permeant nuclear counterstain

Hoechst 33342 (Invitrogen, Carlsbad, CA, United States).
2.4 Bioinformatics analysis and
construction of a phylogenetic tree of CDF
family proteins

Amino acid sequence alignment and calculation of amino acid

sequence identity between HcZnT2 and the close homologue

HcZnT1 were performed with Clustal Omega (Sievers et al., 2011).

The structural model of HcZnT2 was calculated using the

AlphaFold2 advanced notebook on Google Colab (Jumper et al.,

2021). The default settings were applied, specifically utilizing de

novo generation of multisequence alignments with mmseqs2. We

generated five models for each prediction with 1 ensemble, 12

recycles, and 1 random seed.

A phylogenetic tree was constructed with CDF family proteins

(Montanini et al., 2007) of H. cylindrosporum and selected fungal

species (Cf. Supplementary Material).
3 Results

3.1 HcZnT2 encodes a putative
zinc transporter

A cDNA library of H. cylindrosporum mycelia was used and

specific primers were designed in order to amplify the full-length

cDNA encoding the protein corresponding to the CDF-type gene jgi
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ID 421984. The amplified PCR product was ligated into the pYES2

vector. Three independent clones were sequenced and shown to be

identical (GenBank OR167112). However, with respect to the

sequence annotated in the Mycocosm database (https://

m y c o c o s m . j g i . d o e . g o v / c g i - b i n / d i s p T r a n s c r i p t ?

db=Hebcy2&id=421984&useCoords=1), the sequenced cDNA

showed a shorter length and slight nucleotide differences probably

due to some intron splicing errors of the initial annotation. The size

of the amplified fragment was 1095 bp length (in contrast to the

1116 bp sequence from the database). The resulting encoded amino

acid sequence contains 364 aa.

Phylogenetic analysis predicted jgi ID 421984 to be located within

the cluster of ER/Golgi localized Zn transporter (Figure 1). Proteins

assembled in three major clusters according to the transported metal

substrate: Zn, Mn or Fe. The protein corresponding to jgi ID 421984

resided within the Zn cluster. Within this major Zn sub-group, four

clusters were identified. Three of these clusters contain previously well-

characterized S. cerevisiae CDF transporters that were named

accordingly, ZRC1/COT1, MSC2 and ZRG17 (Kamizono et al., 1989;

Conklin et al., 1992; Li and Kaplan, 2001; Ellis et al., 2005). The fourth

cluster fell in between the ZRG17-like and MSC2-like cluster of ER/

Golgi-localized transporter proteins and includes jgi ID 421984 along

with the previously characterized HcZnT1. Despite the fact that

bootstrap values were relatively low (47 – 59) and more sequences

would be needed to be included to better support and resolve evolution

of proteins within these particular clusters, an ER/Golgi localization can

likely be assumed for members of the fourth cluster based on its

placement within the overall tree. Both H. cylindrosporum proteins

were very closely related, sharing 80.66% amino acid sequence identity.

For this reason, the protein corresponding to the jgi ID 421984 was

named systematically HcZnT2.

In order to predict the structure of HcZnT2, we performed a

protein modelling using AlphaFold2. The representative structure

indicated that the HcZnT2 protein possess six putative

transmembrane helix domains (Supplementary Figure S1), as it is

experimentally demonstrated for bacterial members (Anton et al.,

1999; Wei and Fu, 2005).
3.2 HcZnT2 expression is dependent on
the host plant and on zinc concentrations

Taking advantage from transcriptomic data of H.

cylindrosporum in mycorrhizal association with maritime pine, we

analysed the expression regulation of the fungal genes coding for

membrane transport systems. Precisely, a RNA-seq analysis was

carried out by Doré et al. (2015) with the ECM fungus H.

cylindrosporum (WT dikaryotic strain TV98 IV3) from ECM pine

root tips under two environmental conditions, in vitro (in same

culture conditions) and in soil (mycorrhizal roots in soil). For in

vitro transcript analysis, fungal gene expression from ECM root tips

synthesized by 3-week-old axenic cultures using P. pinaster as host

was compared to six-day-old H. cylindrosporum free-living mycelia

on the same controlled medium (GSE63868 GEO dataset). For the

soil transcriptome, ECM root tips were produced in the greenhouse

by inoculation of 20-day-old pine seedlings with the fungus and
frontiersin.org
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following 6-month co-cultivation on a different substrate (80%

organic matter) (GSE66156 GEO dataset). Based on the raw

transcriptomic data generated by Doré et al. (2015), we observed

that the HcZnT2 gene expression was 292-fold induced in the in vitro

ECM roots compared to the fungus alone and, strikingly, Guerrero-

Galán (2017) found that in this experiment HcZnT2 was the most

highly induced transporter-encoding gene in the ECM roots, among

all the identified genes encoding fungal membrane transport systems.

Moreover, data analyses performed by Guerrero-Galán (2017)

confirmed that this mycorrhiza-induced gene expression also

occurred in the soil transcriptome, though to a lesser extent with a

34-fold induction, explained by divergent culture and nutritional

conditions. In addition, another RNA-seq study carried out at early

stages ofH. cylindrosporum - P. pinaster interactions (GSE93184 GEO

dataset; Doré et al., 2017) showed that HcZnT2 was already 30-fold

induced at the initial formation of the fungal mantle, when hyphal

patches attached to host epidermal root cells start to appear (4 days

post-inoculation). However, HcZnT2 was not significantly induced

during rhizosphere colonization at 2 days post inoculation (Doré

et al., 2017), when hyphae are not yet adhered to the root tissues.
Frontiers in Plant Science 04
Regarding this observed significant transcriptional upregulation,

we wondered if HcZnT2 gene induction in ECM roots requires the

physical contact between plant and fungus, meaning established

symbiosis, or only a kind of signaling by the presence of the host

plant roots. In addition, data were needed to know if HcZnT2

transcriptional regulation might be dependent on Zn concentrations

in the external media. For this purpose, a short-term symbiotic

interface-mimicking experiment (Becquer et al., 2017) was

performed with fungal cultures in the presence or absence of young

pine roots in the same medium but without direct contact at different

Zn concentrations (0, 30 and 1000 µM). The 30 and 1000 µM Zn

concentrations were selected as optimal and toxic Zn concentrations,

respectively, based on Zn tolerance tests for fungal growth

(Supplementary Figure S2). First, we observed a reduction of

HcZnT2 gene expression with higher Zn concentrations (Figure 2),

indicating rather a role under Zn deficiency than in detoxification

conditions. Excitingly, at least at 30 µM external Zn, HcZnT2 gene

expression was significantly upregulated by the presence of pine

seedlings after 48 h of mycelia incubation (Figure 2), suggesting the

involvement of HcZnT2 in early plant-fungal signaling.
FIGURE 1

Phylogenetic analysis of fungal proteins from the cation diffusion facilitator (CDF) family. Neighbor-Joining (NJ) tree of putative CDF proteins from
Saccharomyces cerevisiae, Hebeloma cylindrosporum and other fungal species. Bootstrap values (1000 replicates) are indicated and branch lengths
are proportional to phylogenetic distances. Localization and substrate (metal) are indicated for functionally characterized proteins. Mn and Fe
clusters are collapsed and used as outgroups. H. cylindrosporum sequences are framed, and HcZnT2 is indicated by an arrow.
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3.3 HcZnT2 is able to restore the growth of
Zn- and Mn- hypersensitive yeast mutants
exposed to metals

HcZnT2 cDNA was heterologously expressed in the S. cerevisiae

Dzrc1 Dcot1 double mutant strain, which is defective in vacuolar Zn

transport and then unable to grow on high concentrations of Zn

because of the lack of detoxification of the cytosol (MacDiarmid

et al., 2000). A drop test was performed and yeast growth was

monitored on either SD-His-Ura induction control media (0 mM

ZnSO4) or in the same media supplemented with 8 mM ZnSO4.

While transformation with the empty vectors did not complement

at all the Zn hypersensitive phenotype of the Dzrc1 Dcot1 strain,

HcZnT2 showed the ability to completely restore yeast growth of

this mutant at 8 mM ZnSO4 (Figure 3A).

HcZnT2 was also expressed in S. cerevisiae yeast mutants

lacking the endogenous metal transporters for Mn (Dpmr1) and

Cd (Dycf1), being unable to grow on Mn and Cd, respectively (Li

et al., 1997; Ton et al., 2002). The results showed that the defective

growth of the Dpmr1 strain at 500 µMMnSO4 was partially restored

after transformation with HcZnT2 (Figure 3B). However, HcZnT2

does not confer Cd tolerance to the Cd-hypersensitive Dycf1mutant

at any of the tested concentrations (Supplementary Figure S3).

These results suggest that HcZnT2 transports rather specifically Zn

and, in a lesser extent Mn, but not Cd.
3.4 HcZnT2 has an ER subcellular
localization in yeast

The HcZnT2 transporter was predicted to be ER/Golgi-

associated by the phylogenetic analysis (Figure 1). To test the

subcellular localization of the fungal HcZnT2 transporter, a

heterologous approach was pursued by expressing a functionally

active HcZnT2-EGFP fusion protein in yeast. In cells counter-
Frontiers in Plant Science 05
stained with the lipophilic red fluorescent vacuolar dye FM4-64

(Vida and Emr, 1995), we observed that the EGFP fluorescence was

forming a ring-like pattern that did not co-localized with the FM4-

64 labelled vacuoles (Figure 4A). However, nuclei staining

performed with the blue fluorescent dye Hoechst 33342 revealed

that the EGFP ring was surrounding the nucleus (Figure 4B), what

is typical of ER structures forming the nuclear envelope. In fact,

EGFP fluorescence was also found as strands and in the cell

periphery (arrows in Figure 4), what is characteristic of the

outward ER extensions and of the peripheral ER, respectively.
4 Discussion

ECM fungi are known by their capability to improve plant

mineral nutrition, but also to alleviate the negative effect caused by

toxic trace metals on plants. In the case of plant micronutrients,

which are essential for plants but toxic when present in excess, ECM

fungi are reported to play a dual role by either promoting or

avoiding plant acquisition of these trace elements depending on

their concentrations in the soil (Denny and Wilkins, 1987; Bücking

and Heyser, 1994). However, little information is known about the

mechanisms involved.

In this study, we identified the HcZnT2 fungal gene from H.

cylindrosporum highly induced in ECM pine roots, which encodes a

member of the CDF family falling into the Zn transporter cluster. In

particular, the HcZnT2 protein is phylogenetically close to the Msc2-

like and Zrg17-like proteins (Figure 1). Some fungal proteins

belonging to the Zn transporting group have been already

characterized, and their ability to transport Zn has been confirmed.

This is the case of the S. cerevisiae Zrc1 and Cot1 (MacDiarmid et al.,

2000), the R. atropurpurea RaCDF1 (Sácký et al., 2016), the S. luteus

SlZnT1 (Ruytinx et al., 2017), and the highly related H.

cylindrosporum HcZnT1 transporter (Blaudez and Chalot, 2011).

Here, the ability of HcZnT2 to transport Zn was suggested by

complementation tests using a yeast double mutant deficient in
FIGURE 2

HcZnT2 gene expression in a symbiotic interface-mimicking experiment at different zinc concentrations. Determination of transcript levels of
HcZnT2 in Hebeloma cylindrospourm cultures after 48 h incubation in induction media in the absence or in the presence of pine seedlings at
different Zn concentrations (0 µM, 30 µM and 1000 µM). Values correspond to mean ± SE (n=4). Bars with a same letter are not significantly different
(P>0.05) according to Tukey´s multiple comparison test.
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vacuolar Zn transport. As predicted by the phylogenetic tree

(Figure 1), HcZnT2-GFP revealed a pattern typical of ER targeting,

with fluorescence mainly observed surrounding the nucleus and also

distinguishable as structures in the cell periphery, and as cytoplasmic

strands connecting both the nucleus and periphery (Figure 4).

Although ER-specific labelling would be required to confirm

further the ER localization, our results strongly indicate that the

fungal HcZnT2 transporter is located and might allow the storage of

Zn in the ER (or in some nearby vesicles or compartment/s), being

able to restore the growth of yeast mutants impaired in Zn storage in

the vacuole upon Zn toxicity conditions. Similar results have been

obtained for the close homologue HcZnT1 protein, which shares

80.66% amino acid sequence identity with HcZnT2. An ER

fluorescence pattern localization has been also observed for

HcZnT1::GFP when expressed in yeast, and the Zn-sensitive

phenotype of both cot1 and zrc1 yeast mutants is fully

complemented by HcZnT1 (Blaudez and Chalot, 2011).

Depending on the fungal species, Zn acquisition or storage has

been shown to occur in different compartments. S. cerevisiae is able to

transport Zn into the ER to assure proper functioning of ER (Ellis et al.,
Frontiers in Plant Science 06
2004). For S. luteus and Suillus bovinus, an accumulation of Zn in the

vacuole has been reported (Ruytinx et al., 2013, 2017). The arbuscular

mycorrhizal (AM) fungus Glomus intraradices (Gonzalez-Guerrero

et al., 2008) and likely the ECM fungus Paxillus involutus (Tuszynska

et al., 2006) are also able to store Zn in the vacuoles. So far, it is not

known ifH. cylindrosporum has the ability to accumulate Zn in the ER.

In H. cylindroporum mycelia, through zinquin labelling, Blaudez and

Chalot (2011) only observed accumulations of Zn in numerous small

punctuate vesicles which did not coincide with vacuoles and resembled

the mammalian and Schizosaccharomyces cerevisiae cytoplasmic

vesicles storing Zn, commonly known as zincosomes (Li and

Kaplan, 2001; Devirgiliis et al., 2004; Wellenreuther et al., 2009).

However, the storage of Zn in other possible fungal compartments

cannot be discarded, as zinquin binding to Zn2+ is impaired by the

acidic pH present in some compartments (including the vacuoles), and

maybe also by the presence of Zn-ligand complexes, as suggested by

Blaudez and Chalot (2011). Although it is tempting to speculate that

HcZnT2 (and HcZnT1) from H. cylindrosporum allows storage of Zn

in the ER or some nearby compartments, the correspondence of these

structures with the so-called zincosomes remains to be elucidated.
FIGURE 3

HcZnT2 restores transporter deficient yeast mutants suggesting Zn and Mn transport. Cultures with an OD600 = 1 were 10-fold serial diluted (100, 10-

1, 10-2, and 10-3), as indicated above the panels. 10-µl-drops of these serial dilutions were spotted on SD-His-Ura induction control medium (first
column) or supplemented (second column). (A) Functional complementation of the zinc-hypersensitivity of the Dzrc1 Dcot1 yeast mutant by
HcZnT2. Wild-type BY4741 (WT) and double mutant Dzrc1 Dcot1 yeast strains harbouring the empty vector pYX222 (EV1) that brought histidine
autotrophy and either pYES2 empty vector (EV2) or pYES2::HcZnT2 were used. Medium was supplemented with 8 mM ZnSO4 (second column).
Pictures were taken after 2 days of growth for the control (0 mM Zn) and after 4 days for the Zn treatment. One representative example out of three
independent experiments is shown. (B) Functional complementation of the manganese-hypersensitivity of the Dpmr1 yeast mutant by HcZnT2. Wild-
type BY4741 (WT) and mutant Dpmr1 yeast strains harbouring the empty vector pYX222 (EV1) that brought histidine autotrophy and either pYES2
empty vector (EV2) or pYES2::HcZnT2 were used. Medium was supplemented with 500 µM MnSO4 (second column). Pictures were taken after 6
days of growth. One representative example out of three independent experiments is shown.
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The high similarity between the transporters HcZnT1 and

HcZnT2, together with their common ability to transport Zn and to

be localized in or next to the ER, points to a functional redundancy of

both transporters concerning Zn homeostasis regulation. However,

both genes are clearly regulated differently as only HcZnT2 shows this

significant and pronounced mycorrhiza-dependent transcriptional

regulation. Further HcZnT2 expression analyses in isolated fungal

cultures grown at different Zn concentrations, and parallel HcZnT1

expression data in such experiments, could help to elucidate

differences on the role of HcZnT1 and HcZnT2 in Zn homeostasis

regulation. Both transporters may also differ in their specificity to

transport other alternative metals, as some CDF Zn transporters have

been reported to transport other metals in addition to Zn. For

example, the yeast Zn transporters ScCot1 and ScZrc1 are also able

to transport Co or Cd, respectively (Kamizono et al., 1989; Conklin

et al., 1992). With this respect, we confirmed that the HcZnT2

transporter has some ability to transport Mn, while HcZnT1 is

probably not able to transport this metal (Blaudez and Chalot, 2011).

Interestingly, data from previous RNA-seq analyses (Doré et al.,

2015, 2017) showed that HcZnT2 is induced from the initial formation

of the fungal mantle (30-fold) to developed ECM roots, in both soil (34-

fold) and in vitro (292-fold) conditions. This important mycorrhiza-

induced expression level increase ofHcZnT2was found to be the highest

among all identifiedmembrane transport systems from the ECM fungus

(Guerrero-Galán, 2017). Here, a short-term symbiotic interface-

mimicking experiment was performed at different Zn concentrations

(0, 30 and 1000 µM). HcZnT2 was repressed at 1000 µM Zn

concentration (toxic Zn levels) indicating a role of HcZnT2 under Zn

deficiency or low Zn concentrations, rather than in Zn detoxification

conditions. Excitingly, a high transcriptional induction of HcZnT2 was

found by the presence of the host plant roots after only 48 h of co-

incubation without physical contact at 30 µM external Zn, suggesting
Frontiers in Plant Science 07
that HcZnT2 is induced by early signaling between the symbiotic

partners when external Zn levels are optimal for fungal growth. This

remarkable transcriptional induction of HcZnT2 by the presence of host

plant roots confirmed not only the mycorrhiza-induced expression from

the former RNA-seq data but goes beyond that indicating the

involvement of HcZnT2 in early signaling between the symbiotic

partners or as target of a priming response, preparing the fungus for

symbiotic transport processes. It is worth mentioning that the Zn levels

considered here as “optimal” are based on Zn tolerance tests performed

with fungal axenic cultures (or liquid co-cultures), so the optimal levels

for plants in soil might be different. Actually, optimal Zn in soils for

improved plant yields is reported to be in a range of 4-10 ppm in

agricultural fields (Pande et al., 2007; Hussain et al., 2013; Liu et al.,

2017), and Zn content reported in forests soils ranges from 20 to 300

ppm (Zhao et al., 2021). These soil Zn contents are far above the 30 µM

(equivalent to 0.2 ppm) Zn used here in liquid cultures. Then, 30 µM Zn

might correspond to a Zn deficient treatment considering the plant

needs. This would explain the similar results obtained for the expression

ofHcZnT2 in both 0 and 30 µMZn treatments, thus supporting the idea

of an induction of HcZnT2 by the presence of the host plant by early

signaling when the plant is under Zn deficient conditions, as a potential

mechanism to cope with this nutritional stress. Zn sequestration was

shown for Hebeloma mesophaeum, a Zn-accumulating ectomycorrhizal

(EM) species frequently associated with metal disturbed sites (Sácký

et al., 2014). The role of ECM fungi inmodulating Zn uptake by the host

plant was shown also for poplar inmetalliferous soil (Langer et al., 2012),

Moreover, Blaudez and Chalot (2011) suggested a dual role for HcZnT1

in Zn homeostasis of H. cylindrosporum for detoxification of the cytosol

and supply of Zn to the ER.

Regarding the role of Zn within early steps of cross-talk between

plant host and fungal symbiont and during symbiosis

establishment, interesting results obtained in yeast point to the
FIGURE 4

HcZnT2-EGFP is likely localized in the endoplasmic reticulum in yeasts. WT BY4741 yeast cells expressing the HcZnT2-EGFP fusion protein were
grown in induction media and incubated with the red fluorescent dye FM4-64 at 30°C to label the vacuolar membranes (A) or with the blue
fluorescent dye Hoechst 33342 at 30°C to label the nuclei (B). The corresponding merged images (EGFP + FM4-64 or EGFP + Hoescht 33342) and
DIC (differential interference contrast) images are shown. White arrows indicate EGFP-labelled cytoplasmic strands, which probably correspond to
ER extensions connecting the nuclear envelope to the peripheral ER structures.
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implication of Zn homeostasis in Golgi membrane trafficking. In

fact, a CDF transporter, Cis4 in fission yeast Schizosaccharomyces

pombe was found to mediate Zn uptake in the cis-Golgi (Fang et al.,

2008; Jaiseng et al., 2012). Mutant phenotypes, as weak cell wall and

decreased phosphatase secretion, indicated impaired membrane

trafficking. Even though yeast is far away from ECM association,

these findings would fit with a role of Zn regulation in the steps of

highly active membrane trafficking during the symbiosis

establishment, as mycorrhiza formation requires many membrane

dynamics (Leborgne-Castel and Bouhidel, 2014). In line with the

hypothesis that Zn homeostasis might play an essential role in

mycorrhizal symbiosis, in AM symbiosis in Medicago truncatula,

another type of Zn transporter, MtZIP14, was recently found to be

involved in fungal colonization (Watts-Williams et al., 2023). In

general, AM symbiosis is thought to enhance plant Zn uptake

(Lehmann et al., 2014). Mycorrhizal networks of AM fungi and

expression changes of Zn transporters in fungi and plants might be

involved (Cardini et al., 2021). Moreover, a tight interaction

between Zn and P pathways in AM symbiosis is suggested in

maize (Yu et al., 2024). Further studies will be needed to analyze

if Zn content in the roots is affected by H. cylindrosporum

colonization, and to dissect more in detail the biological function

of the fungal HcZnT2 during the ECM symbiotic interaction in

different environmental and nutritional conditions.

Altogether, the early and significant mycorrhiza-dependent

transcriptional regulation of HcZnT2 indicates clearly the importance

of the control of Zn transport and homeostasis in the establishment

and functioning of the ECM association with pine roots, probably

linked to membrane dynamics. As the most highly mycorrhiza-

induced membrane transport system in H. cylindrosporum, HcZnT2

constitutes a strong candidate as key player in ECM symbiosis.
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Master student Léa Jobert is acknowledged.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

The author(s) declared that they were an editorial board

member of Frontiers, at the time of submission. This had no

impact on the peer review process and the final decision.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fpls.2024.1466279/

full#supplementary-material
References
Adriaensen, K., van der Lelie, D., Van Laere, A., Vangronsveld, J., and Colpaert, J. V.
(2004). A zinc-adapted fungus protects pines from zinc stress. New Phytol. 161, 549–
555. doi: 10.1046/j.1469-8137.2003.00941.x
Alloway, B. J. (2008). “Zinc in soils and crop nutrition,” in International Zinc Association

Communications (IZA Publications, Brussels). Available at: https://www.zinc.org/.
Anton, A., Große, C., Reißmann, J., Pribyl, T., and Nies, D. H. (1999). CzcD is a heavy
metal ion transporter involved in regulation of heavy metal resistance in Ralstonia sp.
strain CH34. J. Bacteriol. 181, 6876–6881. doi: 10.1128/JB.181.22.6876-6881.1999
Becquer, A., Torres-Aquino, M., Le Guernevé, C., Amenc, L. K., Trives-Segura, C.,
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Doré, J., Perraud, M., Dieryckx, C., Kohler, A., Morin, E., Henrissat, B., et al. (2015).
Comparative genomics, proteomics and transcriptomics give new insight into the
exoproteome of the basidiomycete Hebeloma cylindrosporum and its involvement in
ectomycorrhizal symbiosis. New Phytol. 208, 1169–1187. doi: 10.1111/nph.13546

Eide, D. J. (2006). Zinc transporters and the cellular trafficking of zinc. Biochim.
Biophys. Acta (BBA)-Mol. Cell Res. 1763, 711–722. doi: 10.1016/j.bbamcr.2006.03.005

Ellis, C. D., MacDiarmid, C. W., and Eide, D. J. (2005). Heteromeric protein
complexes mediate zinc transport into the secretory pathway of eukaryotic cells.
J. Biol. Chem. 280, 28811–28818. doi: 10.1074/jbc.M505500200

Ellis, C. D., Wang, F., MacDiarmid, C. W., Clark, S., Lyons, T., and Eide, D. J. (2004).
Zinc and the Msc2 zinc transporter protein are required for endoplasmic reticulum
function. J. Cell Biol. 166, 325–335. doi: 10.1083/jcb.200401157

Ernst, W. (1990). “Mine vegetation in Europe,” in Heavy Metal Tolerance in Plants:
Evolutionary Aspects, vol. 18. Ed. A. J. Shaw (CRC Press, Boca Raton, FL, USA), 21–38.

Fang, Y., Sugiura, R., Ma, Y., Yada-Matsushima, T., Umeno, H., and Kuno, T. (2008).
Cation diffusion facilitator Cis4 is implicated in Golgi membrane trafficking via
regulating zinc homeostasis in fission yeast. Mol. Biol. Cell 19, 1295–1303.
doi: 10.1091/mbc.e07-08-0805

Garcia, K., Doidy, J., Zimmermann, S. D., Wipf, D., and Courty, P.-E. (2016). Take a
trip through the plant and fungal transportome of mycorrhiza. Trends Plant Sci. 21,
937–950. doi: 10.1016/j.tplants.2016.07.010

Gietz, R. D., and Woods, R. A. (2006). Yeast transformation by the LiAc/SS Carrier
DNA/PEG method. Yeast Protocol.Methods Mol. Biol. 313, 107–120. doi: 10.1007/978-
1-4939-0799-1_4

Gonzalez-Guerrero, M., Melville, L. H., Ferrol, N., Lott, J. N., Azcon-Aguilar, C., and
Peterson, R. L. (2008). Ultrastructural localization of heavy metals in the extraradical
mycelium and spores of the arbuscular mycorrhizal fungus Glomus intraradices. Can. J.
Microbiol. 54, 103–110. doi: 10.1139/W07-119

Guerinot, M. L. (2000). The ZIP family of metal transporters. Biochim. Biophys. Acta
(BBA)-Biomembr 1465, 190–198. doi: 10.1016/S0005-2736(00)00138-3

Guerrero-Galán, C. (2017). Impact of the ectomycorrhizal symbiosis for plant adaptation
to nutritional and salt stress: characterization and role of potassium channels in the model
fungus Hebeloma cylindrosporum (France: PhD thesis, Univ. Montpellier).

Guerrero-Galán, C., Delteil, A., Garcia, K., Houdinet, G., Conéjéro, G., Gaillard, I.,
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