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Genome wide association study
reveals new genes for resistance
to striped stem borer in rice
(Oryza sativa L.)
Xing Xiang1,2†, Shuhua Liu1,2†, Yuewen He3†, Deqiang Li1†,
Andrews Danso Ofori1,2, Abdul Ghani Kandhro1,2,
Tengda Zheng1,2, Xiaoqun Yi1,2, Ping Li1,
Fu Huang1,2 and Aiping Zheng1,2*

1State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan
Agricultural University, Chengdu, China, 2College of Agronomy, Sichuan Agricultural University,
Chengdu, China, 3Guangan Vocational & Technical College, Guangan, China
Rice is one of the most important food crops in the world and is important for

global food security. However, damage caused by striped stem borer (SSB)

seriously threatens rice production and can cause significant yield losses. The

development and use of resistant rice varieties or genes is currently the most

effective strategy for controlling SSB. We genotyped 201 rice samples using

2849855 high-confidence single nucleotide polymorphisms (SNPs). We

conducted a genome-wide association study (GWAS) based on observed

variation data of 201 rice cultivars resistant to SSB. We obtained a quantitative

trait locus (QTL)-qRSSB4 that confers resistance to SSB. Through annotation and

analysis of genes within the qRSSB4 locus, as well as qRT-PCR detection in

resistant rice cultivars, we ultimately selected the candidate gene

LOC_Os04g34140 (named OsRSSB4) for further analysis. Next, we

overexpressed the candidate gene OsRSSB4 in Nipponbare through transgenic

methods, resulting in OsRSSB4 overexpressing lines (OsRSSB4OE). In addition,

we evaluated the insect resistance of OsRSSB4OE lines using wild type

(Nipponbare) as a control. The bioassay experiment results of live plants

showed that after 20 days of inoculation with SSB, the withering heart rate of

OsRSSB4OE-34 and OsRSSB4OE-39 lines was only 8.3% and 0%, with resistance

levels of 1 and 0, respectively; however, the withering heart rate of the wild-type

reached 100%, with a resistance level of 9. The results of the in vitro stem

bioassay showed that, compared with the wild-type, the average corrected

mortality rate of the SSB fed on the OsRSSB4OE line reached 94.3%, and the

resistance reached a high level. In summary, we preliminarily confirmed that

OsRSSB4 positively regulates the defense of rice against SSB. This research

findings reveal new SSB resistance gene resources, providing an important

genetic basis for SSB resistance breeding in rice crops.
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1 Introduction

As the world’s largest food crop, rice (Oryza sativa L.) is a staple

food for nearly 3.5 billion people worldwide, accounting for

approximately half of the world’s population (Zhang et al., 2020).

According to rough estimates, rice production must increase at a

rate of 1% per year to provide sufficient rice for the growing

populations of rice-consuming countries. However, global rice

production is seriously threatened by Lepidopteran pests,

resulting in severe yield loss (Xia et al., 2010; Li et al., 2016).

Among them, the striped stem borer (SSB) poses a particularly

serious threat to rice, causing an annual economic loss of

approximately 1.8 billion dollars (Sheng et al., 2003). Generally

speaking, striped stem borers only occur twice a year, but with

global warming causing higher temperatures in winter and spring,

the severity of their harm is increasing (Xiang et al., 2023). At

present, stem borer control relies heavily on chemical insecticides

(Lou et al., 2013). However, long-term overuse of chemical

insecticides has led to a reduction in the number of beneficial

organisms in agricultural ecosystems, environmental pollution, and

food safety issues becoming increasingly common (Chagnon et al.,

2015). Therefore, cultivating and applying insect-resistant rice

varieties is the most effective way to control this pest and to

ensure food security.

To date, only over ten resistance genes related to SSB have been

reported in rice plants. Among them, the positive regulatory genes

included OsHI-XIP (Xin et al., 2014), OsACS2 (Lu et al., 2014),

OsWRKY70 (Li et al., 2015), OsMPK4 (Liu et al., 2018), OsAOC,

OsOPR3 (Guo et al., 2014), OsAPIP4 (Liu et al., 2021), OsLRR-RLK1

(Hu et al., 2018), OsMPK3 (Wang et al., 2013), OsHI-LOX (Zhou

et al., 2009), OsERF3 (Lu et al., 2011b), OsAOS1, and OsAOS2 (Zeng

et al., 2021); Negative regulatory genes included OsNPR1 (Li et al.,

2013), OsCYP71A1 (Lu et al., 2018), OM64 (Guo et al., 2020), Osr9-

LOX1 (Zhou et al., 2014), OsHPL3 (Tong et al., 2012), and

OsWRKY53 (Hu et al., 2015). Rice borer resistance is a

quantitative trait, similar to most important agronomic traits,

such as yield, quality, and drought resistance, which are

controlled by minor effect polygenes, namely quantitative trait

genes or quantitative trait loci (QTLs), and manifest as

quantitative inheritance. In genetically isolated or variable

populations, QTLs are statistically significant associations between

allele variations at specific loci and phenotypic traits that exhibit

continuous variation (St Clair, 2010). However, the key QTLs for

SSB resistance in rice plants have not yet been reported. However,

the detection and identification of insect-resistant breeding is

relatively difficult, making the breeding of SSB-resistant rice

varieties slow. In recent years, genetically modified technology has

been used to introduce exogenous genes into rice in order to obtain

insect-resistant varieties more quickly, such as Huahui 1 (transgenic

with Cry1Ab/1Ac fusion gene), but its biological safety issues have

been questioned (Wang et al., 2016). Therefore, detecting new

endogenous resistance genes and QTLs in many rice cultivars is

crucial for the successful cultivation of rice that can resist SSB.

With the advancement of sequencing technology, genome-wide

association studies (GWAS) based on high-density single nucleotide
Frontiers in Plant Science 02
polymorphisms (SNPs) have become a valuable method for

identifying the genetic basis of phenotypic variation (Lipka et al.,

2012; Burghardt et al., 2017). To study the genetic diversity of

drought resistance in rice, Sun et al. (2022). evaluated the drought

stress phenotype of 271 rice germplasms under field drought

conditions and identified seven SNPs significantly associated with

drought through GWAS. Researchers inoculated 584 rice materials

with three varieties of rice blast fungus and identified 27 loci

associated with rice blast resistance using genome-wide association

studies (Liu et al., 2020). Wang et al. (2021). conducted a genome-

wide association study on sheath blight resistance in 259 different rice

varieties. Based on the best linear unbiased prediction (BLUP) value,

1396 SNP loci were found to be significantly correlated with sheath

blight resistance (log10P ≥ 6). Therefore, it is feasible to conduct

genome-wide association studies using large amounts of insect-

resistant phenotype data from rice populations.

In our study, 201 rice varieties were artificially introduced into

striped stem borer larvae during the peak tillering stage to evaluate

their SSB resistance. Based on previous research (Wang et al., 2021)

by our group, we conducted GWAS for SSB resistance using

2849855 high-confidence SNPs (missing data < 20%; minor allele

frequency [MAF] > 1%). Moreover, we overexpressed candidate

genes in the rice variety Nipponbare using genetic transformation

methods to verify their gene functions. Our results enabled the

detection of candidate genes related to SSB resistance in these rice

cultivars. This provides important genetic resources for breeding

rice with insect resistance.
2 Materials and methods

2.1 Plant materials and tested insects

In this study, 201 rice cultivars were used. These varieties

originate from multiple geographical locations, including China,

Senegal, Mexico, Malaysia, Colombia, and Brazil. Among them, 108

varieties were preserved by the International Rice Research Institute

and 93 varieties were preserved by the College of Agronomy of

Sichuan Agricultural University. Detailed information for each

variety is provided in Supplementary Table S1. To evaluate the

SSB resistance of the rice varieties, seeds of all 201 rice varieties were

sown in experimental fields (Wenjiang Huihe Base of Sichuan

Agricultural University). After 30 days of age, transplanting was

carried out with one row of 10 plants per variety (row spacing of 30

cm and plant spacing of 20 cm).

The striped stem borer was collected from the rice field of Huihe

Base, Sichuan Agricultural University, in 2019. In an artificial climate

chamber (temperature 27 ± 1°C, relative humidity 70-80%, lighting

time 16L: 8D), the artificial feeding method described by

Kamano (1973) was used to cultivate the striped stem borer. Every

three generations, the stems of rice variety TN1 were used to feed the

borers for one generation (with the aim of maintaining a high vitality

state in the striped stem borer population), and this process was

continued for over 30 generations. First-instar larvae (ant borers)

were used in this experiment.
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2.2 Field inoculation and determination of
insect resistance

According to the standards of the International Rice Institute

(with slight modifications) (Pathak et al., 1971), we identified the

insect resistance of the rice varieties in the field. First, during the

peak tillering period of rice, we selected three healthy and well-

grown rice plants from each variety. Subsequently, we removed

the weak tillers from each rice plant and counted the remaining

number of tillers. Third, we used a small soft bristled brush to

inoculate the corresponding number of ant borers (half of the tiller

number of rice plants) onto each rice variety, with three replicate

sets for each rice variety. Rice variety TN1 was used as the blank

control (susceptible control). Finally, to ensure the accuracy of the

experiment, natural enemies, pests, and insect eggs were removed

prior to inoculation. Thirty days later, we counted the number of

withered seedlings and booths for 201 rice varieties. The damage

index is the ratio of the total number of withered seedlings and

withered booths to the number of tillers in the rice plant, and the

corrected damage index (D) is the ratio of the damage index of the

rice plant to the damage index of the blank control TN1. The

average damage index of each variety was calculated based on

three rice plant lines. The data were processed using Microsoft

Excel 2021. Statistical analysis was conducted on the corrected

damage index between different rice subpopulations using analysis

of variance (ANOVA), followed by the Scheffe multiple

comparison test in SPSS v26.0 (IBM Corp., USA). According to

Heinrichs’ (Heinrichs et al., 1985) rating criteria for rice insect

resistance (D=0, represented by 0, representing high resistance;

0<D≤ 20%, represented by 1, representing resistance; 20%<D ≤

40%, represented by 3, representing moderate resistance; 40%<D

≤ 60%, represented by 5, representing insect tolerance; 60%<D ≤

80%, represented by 7, representing sensitivity; D>80%,

represented by 9, representing high sensitivity), record the insect

resistance scores of each rice cultivar.

For the insect resistance evaluation of transgenic rice plants,

we conducted bioassay experiments on both live plants and

detached stems. For the bioassay of live plants, we selected two

transgenic rice plants and one wild-type rice plant (Nipponbare)

that were at the mid-tillering stage and had similar growth vigor;

Then, we removed the smaller tillers from the rice plants and

counted the remaining tillers; Finally, we inoculated the rice plants

with the ant borers, with the number of larvae corresponding to

half of the tiller count of each rice plant; After 20 days, we counted

the withered heart rate of each rice plant. For the bioassay of

detached stems, we selected four control plants (Nipponbare) and

four transgenic rice plants to be tested, and then cut 5 cm long

stems from the same position on each plant for later use; Second,

we gently attached 10 ant borers to each detached stem using a soft

bristled brush, and placed the infected stem into a 20×150 mm test

tube with 2 mm deep water at the bottom, sealed with filter paper;

The test tubes were then placed at room temperature; Thirdly, on

the 7th day after insect inoculation, the number of dead larvae in

the stem was dissected and recorded separately. Subsequently, the
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larval mortality rate (i.e., the ratio of dead larvae to the total

number of infected larvae) and corrected larval mortality rate (i.e.,

the ratio of the larval mortality rate of each rice variety minus the

mortality rate of the control variety to 1 minus the mortality rate

of the control variety) were calculated. Using the mortality rate (d)

of SSB larvae as an indicator, the evaluation criteria for rice insect

resistance are as follows: d=100%, represented by 0, indicating

high resistance; d>80%, represented by 1, indicating resistance;

60%<d ≤ 80%, represented by 3, indicating moderate resistance;

40%<d ≤ 60%, represented by 5, indicating insect tolerance; 20%

<d ≤ 40%, represented by 3, indicating susceptibility to insects;

0<d ≤ 20%, represented by 1, indicating high susceptibility.
2.3 DNA extraction and sequencing

Young leaves of 21-day-old seedlings of each variety were

sampled for genomic DNA extraction. Total genomic DNA was

prepared using the cetyltrimethylammonium bromide (CTAB)

method (Uzunova et al., 1995). Genomic DNA samples from all

201 rice lines were fragmented by sonication to a size of 350bp, and

DNA fragments were then end-polished, A-tailed, and ligated with

full-length adapters for Illumina sequencing with further PCR

amplification. Reads containing adapter sequence stretches of -Ns

and low-quality scores were excluded from the raw data. The

remaining high-quality paired-end reads were mapped to the

Nipponbare reference genome using Burrows-Wheeler

Aligner software with the command ‘mem -t 4 -k 32 –M’ (Li and

Durbin, 2010). After alignment, genomic variants (in GVCF format

for each accession) were identified with the GVCF model using

Genome Analysis Toolkit (GATK) software (McKenna et al., 2010).
2.4 GWAS analysis

Only SNPs with sequencing depth ≥ 4, missing rate < 0.2, and

MAF ≥ 0.01 were used in the GWAS. GEMMA(http://

www.xzlab.org/software.html) software is used to analyze SNP-

GWAS data (Zhou and Stephens, 2012; Zhou et al., 2013; Zhou

and Stephens, 2014; Zhou, 2017). In the GWAS analysis, individual

kinship and population stratification were the main factors causing

false-positive associations. Therefore, a Mixed Linear Model

(MLM) was used for trait association analysis, with population

genetic structure as a fixed effect and individual kinship as a random

effect, to correct for the influence of population structure and

individual kinship: y=Xa+Zb+Wm+e [y is a phenotypic trait, X is

a fixed effects index matrix, a is an estimating parameter for fixed

effects, Z is the index matrix of SNP, b is the effect of SNP, the

matrix where W represents random effects, m is the predicted

random individuals, and e is a random residual that follows e~(0,

de2)]. In addition, a significant P-value threshold (P<10-6) was set to
control the whole-genome type 1 error rate, which was calculated by

rounding to 1/n (total SNPs) ≈ 6 to screen for potential

candidate SNPs.
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2.5 Transgenic analysis

In order to further identify the function of candidate genes for

SSB resistance, an OE line was generated under the background of

Nipponbare (susceptible cultivar). To generate the OE line, gene-

specific primers were used to amplify the coding sequence (CDS) of

each candidate gene from Nipponbare using PCR. The cDNA

product was then cloned downstream of the CaMV 35S promoter

in pBWA (V) HS, and the resulting vector was introduced into

Agrobacterium tumefaciens strain GV3101. The transformation of

rice was completed by Wuhan Boyuan Biotechnology Co., Ltd.,

China. To identify the OE line, the expression levels of candidate

genes in transgenic rice were analyzed using qRT-PCR. T4

generation transgenic rice was used for the inoculation

experiments. The primers used in this study are listed in

Supplementary Table S5.
2.6 qRT−PCR

The relative expression levels of candidate genes in rice were

studied using qRT-PCR. Select one rice plant (Aituogu151) at the

peak tillering stage with healthy growth, and inoculate each tiller

with one second-instar larva of striped stem borer. After 12 hours,

cut 2 cm (near the borer holes) of the stem from three tillers with

borer holes, immediately cool them in liquid nitrogen, and store

them at -80°C. The extraction and reverse transcription of total

RNA were performed using a reagent kit from Beijing TransGen

Biotech Co., Ltd. The PCR reaction volume was 10 µL, with 1 µL of

cDNA template and 0.25 µL of forward and reverse gene-specific

primers. Each PCR was performed in four replicates. The b-Actin
gene was used as an internal control for data standardization. The

2−DDCt method was used to calculate gene expression levels.

Supplementary Table S5 lists the primers used in this experiment.
3 Results

3.1 Genome variation

To identify SSB resistance genes in rice, we sequenced 201 rice

varieties (Supplementary Table S1) using an Illumina Hi-Seq

platform. The raw readings are presented in Supplementary

Table S2. After mapping to the Nipponbare genome, 2849855

high-confidence SNPs were obtained (missing data < 20%; minor

allele frequency [MAF] > 1%) (Table 1; Figure 1). Among the

2849855 high-confidence SNPs, 1130951, 548458, 359036,

458738, and 314291 were located in the intergenic, exonic,

upstream, intronic, and downstream regions, respectively

(Table 1). In the coding sequence (CDS), 16207 stop gains,

222512 synonymous, 308670 non-synonymous, 2811 splices,

and 1069 stop-loss SNPs were identified (Table 1). In addition,

there were 2046787 SNPs of the Ts (transitions) type and 803068

SNPs of the Tv (transversions) type. The ratio of Ts to Tv is 2.549,
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indicating that the bias during the variant call process is within a

reasonable range. The number of SNPs in the 12 rice

chromosomes ranges from 189859 (Chr. 9) to 330608 (Chr. 1),

with Chr. 8 (8.35 SNPs/kb), which had the highest SNP

frequencies (Table 2; Figure 1). This SNP dataset contained 201

rice varieties, providing abundant resources for the molecular

improvement of SSB resistance in rice.
3.2 Phenotypic variation among
rice varieties

All 201 rice varieties were inoculated with the corresponding

number of 1st instar larvae of the SSB during the peak tillering

period, and the resistance phenotype data of each cultivar were

statistically analyzed (Supplementary Table S1). According to

Figure 2A, the cultivars with a withered heart index (D) in the

range of 0-10% have the highest number, reaching 71; The next two

intervals are 10 < D ≤ 20% and D > 90%, which contain 48 and 30

rice cultivars, respectively; The average withered heart index is

34.72%; The wide range of D values observed in different rice

cultivars indicates a significant correlation between genotype

variation and rice resistance to SSB. From Figure 2B, it can be

seen that the distribution of withered heart index data for landrace

of indica is relatively concentrated, while the distribution of

withered heart index data for improved cultivar of indica is

relatively scattered (i.e. with large data fluctuations), indicating

that artificial selection has not yet been successful in rice insect

resistance breeding; In addition, the median withering index of

japonica, landrace of indica, and improved cultivar of indica were

25.73%, 19.50%, and 38.13%, respectively, and the median
frontiersin.or
TABLE 1 Results of filtered SNP annotation.

Category Number of SNPs

Upstream 359036

Exonic

Stop gain 16207

Stop loss 1069

Synonymous 222512

Non-
synonymous

308670

Intronic 458738

Splicing 2811

Downstream 314291

upstream/downstream 35570

Intergenic 1130951

ts 2046787

tv 803068

ts/tv 2.549

Total 2849855
g
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withering index of the three types of rice varieties was closer to the

lower quartile, belonging to a right skewed distribution.
3.3 GWAS for resistance to the SSB

Based on 2849855 high-confidence SNPs, GWAS was

performed using a mixed linear model (MLM) to analyze the

phenotypic data (withered heart index) of resistance traits. As

shown in Figure 3C, the predicted line in the Q-Q graph is a 45°

dashed line originating from the origin, indicating that the
Frontiers in Plant Science 05
resistance trait is not caused by population stratification.

Through GWAS analysis, we obtained a total of 17 SNP loci

(−log10P ≥ 5) that were significantly associated with SSB

resistance, as well as their corresponding genotype variation

data in 201 cultivars (Figure 3A; Supplementary Table S4).

Interestingly, two pairs of SNP loci (ID 11 and 12; ID 16 and

17) belonged to the inclusion relationships (Supplementary

Table S4). In addition, the strongest signal, ID5 (peak

value=6.784146511), was observed on chromosome 4

(Figure 3A). Next, we standardized the P-values of all SNP

sites using the Z-score, and then plotted the obtained Z-score

values in a Manhattan plot (Figure 3B). As shown in Figure 3B,

ID5 on chromosome 4 also had the highest Z-score. Therefore,

we selected the lead SNP (ID5) on chromosome 4 for subsequent

analysis. Based on the linkage disequilibrium decay rate of up to

194 kb in rice (Wang et al., 2021), we selected a region of

approximately 194 kb upstream and downstream of the

leading SNP position (20.752349 Mb) on chromosome 4 as

candidate loci (referred to as qRSSB4) to narrow down the

region containing causal genes.
3.4 Analysis of candidate genes within the
qRSSB4 locus

A region of approximately 400 kb containing 65 genes was

selected for candidate gene analysis. We annotated 65 genes

using the Rice Genome Annotat ion Project database

(http://rice.uga.edu). According to the functional annotation of

genes and previous reports, 18 non transposon genes (ORF1-18)

were se lected as candidate genes , with gene IDs of

LOC_Os04g33950 , LOC_Os04g33990 , LOC_Os04g34000 ,

LOC_Os04g34030 , LOC_Os04g34050 , LOC_Os04g34140 ,

LOC_Os04g34250 , LOC_Os04g34270 , LOC_Os04g34300 ,
FIGURE 1

Distribution density of SNP loci on various chromosomes.
TABLE 2 Number of SNPs in 201 rice accessions using the sequenced
data mapped to the Nipponbare reference genome.

Chromosome
length
(bp)

SNP number
(MAF>1%,

integrity>0.8)

SNP
number/
per Kb

Chr1 43270923 330608 7.640419411

Chr2 35937250 266983 7.429143855

Chr3 36413819 276357 7.589344035

Chr4 35502694 240515 6.774556320

Chr5 29958434 233005 7.777609471

Chr6 31248787 239110 7.651817013

Chr7 29697621 217667 7.329442315

Chr8 28443022 237516 8.350589470

Chr9 23012720 189859 8.250176424

Chr10 23207287 191801 8.264688587

Chr11 29021106 225247 7.761489173

Chr12 27531856 201187 7.307425987
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LOC_Os04g34330 , LOC_Os04g34360 , LOC_Os04g34370 ,

LOC_Os04g34390 , LOC_Os04g34410 , LOC_Os04g34420 ,

LOC_Os04g34490, LOC_Os04g34590, LOC_Os04g34600. To

determine which gene was a hypothetical candidate gene, we

examined the expression levels of these genes in Aituogu151 (An

insect-resistant rice variety) in response to SSB invasion. The results

showed that seven genes responded to SSB invasion (Figure 4).

Among them, ORF6 (LOC_Os04g34140) was significantly induced

under the invasion of SSB, with the strongest response, followed by

ORF2 (LOC_Os04g33990), ORF4 (LOC_Os04g34030), ORF5

(LOC_Os04g34050), ORF7 (LOC_Os04g34250), and ORF16

(LOC_Os04g34490); However, ORF3 (LOC_Os04g34000) was

significantly downregulated under the invasion of SSB (Figure 4).
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Therefore, ORF6 was most likely a candidate gene for the qRSSB4

locus, named OsRSSB4, for further functional validation.
3.5 OsRSSB4 positively regulates rice
resistance to the SSB

To further verify the involvement of OsRSSB4 in defense

regulation of rice against SSB, we adopted a transgenic

approach. The expression of OsRSSB4 was enhanced by

expressing OsRSSB4 under the control of the cauliflower mosaic

virus (CaMV) 35S promoter (the recipient variety was

Nipponbare). We obtained a stable OsRSSB4 overexpressing
FIGURE 3

Manhattan plot and quantile-quantile (QQ) plot obtained from a genome-wide association study (GWAS) on rice resistance to SSB. (A) Manhattan
plot of the resistance trait (withered heart index) of the striped stem borer (which is a genetic marker effect value, i.e., the whole-genome P-values
sorted by physical location on the chromosome by F-test). (B) Manhattan plot after Z-score standardized P-values. (C) QQ plot of the rice resistance
traits of the striped stem borer (showing the distribution of actual P values and expected P values based on the null hypothesis of correlation).
FIGURE 2

Sensory and resistance responses of 201 rice lines inoculated with SSB. (A) Frequency distribution of deadheart index after inoculation of 201 rice
lines with SSB. (B) Box plot of resistance phenotype data of three rice subgroups to SSB.
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variety (OsRSSB4OE) through four consecutive generations of

screening. Compared with the wild type, the expression level of

OsRSSB4 in the OsRSSB4OE variety was 86–105 times higher

(Figure 5C). Furthermore, we conducted bioassays on the insect

resistance of the T4 generation OsRSSB4OE variety using live

plants and detached stems, with the wild-type variety as a control.

The results showed that, compared with the wild-type, the

OsRSSB4OE variety exhibited good resistance to SSB
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(Figures 5A, B). After 20 days of inoculation with SSB, the

withered heart rate of the wild type reached 100% (12/12), and

the resistance level was 9. The withered heart rate of OsRSSB4OE-

34 and OsRSSB4OE-39 varieties was only 8.3% (1/12) and 0% (0/

14), with resistance levels of 1 and 0, respectively. Meanwhile, the

detached stem feeding experiment also showed the same trend

results; The results showed that compared with the wild type, the

average corrected mortality rate of the SSB fed on the OsRSSB4OE
FIGURE 5

Identification of insect resistance of overexpressed variety (OsRSSB4OE). (A) Rice was inoculated with SSB for 0 days. (B) Rice plants were inoculated
with SSB for 20 days. (C) Compositional expression levels of OsRSSB4 in various rice plant lines. Perform a one-way ANOVA on the data from each
group to determine if there are significant differences between them. If the one-way ANOVA indicates significant differences, use the pairwise
comparison method of the Dunnett test to compare the differences between each treatment group and the control group (****P < 0.0001).
FIGURE 4

Expression levels of candidate genes at the qRSSB4 locus in Aituogu151 during SSB invasion. (SSB0h): represents 0h before inoculation with SSB;
(SSB12h): represents 12 h after inoculation with SSB. By conducting an Independent Samples t-test on the two sets of data, we can determine
whether there is a significant difference between the two groups and obtain the P-value. The error line represents the standard error of three
biological replicates **P < 0.01; ***P < 0.001; ****P < 0.0001).
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variety reached 94.3%, and the resistance reached a high level

(Table 3). Overall, it has been preliminarily confirmed that

OsRSSB4 is involved in the defense of rice against SSB, and

positively regulates the resistance of rice to SSB.
4 Discussion

The ratio of the total number of withered seedlings and white

heads to the number of tillers (damage index) is useful for

evaluating the resistance of rice to SSB. It is well known that

during the tillering stage of rice, when there are withered

seedlings and white heads, it is generally believed that the rice

plant is attacked by SSB (Xiang et al., 2023). Therefore, the number

of withered seedlings and white heads may be used as indicators of

rice resistance to SSB. The damage index was used as an indicator

for the first time to evaluate the SSB resistance characteristics of 201

rice varieties at the tillering stage. Further confirmation of a

significantly correlated locus (qRSSB4) with a damage index

indicated that the number of withered seedlings and white heads

is a useful data feature for evaluating rice resistance to SSB.

Analogous to this quantitative characteristic may help in the

genetic analysis of resistance to other pests in crops, such as rice.

For example, the number of rolled leaves formed by a single leaf can

be used as an indicator trait to evaluate the resistance of rice to the

rice leaf roller; The number of row shaped pores in the new leaves of

corn can be used as an indicator trait to evaluate the resistance of

corn to corn borer. In addition, this pest trait is closely related to

photosynthetic efficiency, transpiration, nutrient transport, and

growth and development of plants, which greatly affects the yield

and quality of crops. Therefore, in the future, combining pest traits

with other high-throughput phenotypic techniques could serve as a

method for evaluating the degree of pest impact on crops in

the field.

OsRSSB4 is an important member of the U-box protein family

that regulates PTI and ETI signaling pathways in plant innate

immune responses. The U-box protein in plants is much more

abundant than in other organisms and is collectively referred to as

the plant U-box protein (PUB). To date, 77 U-box proteins have

been identified in rice, 64 U-box proteins have been identified in
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the model plant Arabidopsis, 101 U-box proteins have been

identified in Chinese cabbage, and only 2 and 21 U-box proteins

have been identified in yeast and humans, respectively (Hwang

et al., 2015; Wang et al., 2015). The high PUB protein content in

plants suggests that this type of protein plays multiple important

roles in plant evolution. In Arabidopsis, under the stimulation of

flagellin, the receptor kinase BAK1 phosphorylates PUB12 and

PUB13, thereby activating the ubiquitination of flagellin receptor

FLS2 by PUB12 and PUB13 to promote the degradation of its

ubiquitin-26S proteasome pathway. This signal transduction

ultimately leads to the negative regulation of flagellin FLS2

induced plant PTI resistance by PUB12 and PUB13 (Lu et al.,

2011a; Zhou et al., 2015); The PUB protein MAC3A and MAC3B

with WD40 repeat structure positively regulate the self-activated

innate immune response phenotype of the dominant mutant snc1

of the R protein SNC1. The absence of these two homologous

proteins leads to a decrease in the originally increased SA content

in the snc1 mutant, and the transcription level of disease-related

genes also decreases accordingly (Monaghan et al., 2009). In

tomatoes, the PUB protein ACRE276 exhibits E3 ubiquitin

ligase activity, and after silencing its gene, it specifically loses

Avr9-Cf9 mediated HR (Yang et al., 2006). In tobacco, the PUB

protein ACRE276 can be induced by mechanical damage, and the

Avr9 effector protein is secreted by Cladosporium fulvum.

Silencing the ACRE276 gene through RNAi technology can lead

to the loss of HR mediated by Avr9-Cf9 and Avr4-Cf4 in tobacco,

and HR stimulated by the tobacco mosaic virus (TMV) gene N and

its non-toxic factor p50 was also significantly reduced (Yang et al.,

2006). In rice, the rice PUB protein SPL11 activates SPIN6

through ubiquitination degradation of Rho type GTPase. On the

other hand, SPIN6 can inactivate the active small G protein

OsRac1 and catalyze its hydrolysis, thereby inhibiting OsRac1

mediated innate immune response (Liu et al., 2015); Therefore,

SPL11 regulates the PTI resistance of rice to PAMPs such as

flagellin and chitin, thereby endowing rice with resistance to rice

blast and bacterial blight (Zeng et al., 2008; Liu et al., 2015). In our

study, multiple pieces of evidence have suggested that the PUB

protein OsRSSB4 positively regulate effect on SSB resistance in

rice. Firstly, the GWAS results indicated that OsRSSB4 is

associated with SSB resistance. Secondly, overexpression of
TABLE 3 In-vitro bioassay of Nipponbare (S) and OsRSSB4OE lines (R) on SSB.

Nipponbare(S) OsRSSB4OE(R)

Treatment
Number
of deaths

Mortality
(%)

Treatment
Number
of deaths

Corrected
mortality

Resistance
level

S1 2 20 R1 10 100% 0

S2 1 10 R2 10 100% 0

S3 0 0 R3 8 77.1% 1

S4 2 20 R4 10 100% 0

Average – 12.5 Average – 94.3% 0
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OsRSSB4 in transgenic rice significantly increased its resistance to

SSB. Furthermore, according to the annotation, OsRSSB4 belongs

to the presumed U-box protein CMPG1. The PUB protein

CMPG1 in tobacco and tomatoes has E3 ubiquitin ligase

activity. After silencing the CMPG1 gene, Avr9-Cf9 mediated

HR was lost and plant resistance to C. fulvum was significantly

reduced. Additionally, the effector factors AvrPto secreted by

Pseudomonas syringae and HR mediated by the R protein Pto

were largely lost when the CMPG1 gene was silenced (González-

Lamothe et al., 2006). In recent years, research has found that the

effector factor Avr3a of Phytophthora infestans inhibits ETI and

PTI regulated by the CMPG1 protein by binding to it (Gilroy et al.,

2011; Yaeno et al., 2011; Chaparro-Garcia et al., 2015). In

summary, our data and previous research findings suggest that

OsRSSB4 may regulate the defense level of rice against SSB by

regulating ETI and PTI.

Th i s s tudy found tha t in add i t i on to OsRSSB4

(LOC_Os04g34140), there are six other genes in the qRSSB4

locus that respond to SSB invasion (Figure 4). Among them,

LOC_Os04g33990 encodes a harpin-induced protein 1 domain-

containing protein, and reports indicate that HIN1 is a gene

related to resistance to anthracnose in sorghum (Upadhyaya

et al., 2013). LOC_Os04g34030 encodes E3 ubiquitin ligase,

which has been cloned (gene symbol: OsPUB34). Research has

shown that OsPUB34 may positively regulate resistance to rice

blast by accumulating reactive oxygen species (ROS) and

increasing the expression levels of defense-related genes (Zhang

et al., 2022). LOC_Os04g34050 encodes a valine glucose

(VQ) motif-containing protein. Hao et al. (2022). found

that the OsVQ25 protein balances broad-spectrum disease

resistance and plant growth by interacting with the U-Box E3

ligase OsPUB73 and the transcription factor OsWRKY53.

LOC_Os04g34250 encodes for serine/threonine-protein kinase

receptor precursor. Serine/threonine protein kinases use ATP as

a phosphate donor to catalyze the phosphorylation of serine or

threonine residues on target proteins, including cyclin-dependent

kinases, mitogen-activated protein kinases (MAPKs), protein

kinase D, and DNA-dependent protein kinases. Evidence

suggests that MAPK actively participates in the defense

response of rice against SSB (Wang et al., 2013; Hu et al., 2015,

2018). LOC_Os04g34490 encodes nodulin, which is one of the

plant polypeptide complexes and has certain benefits for plants. In

addition, LOC_Os04g34000, encoding digalactosyldiacylglycerol

synthase (chloroplast precursor), was significantly downregulated

under SSB intrusion. Compared with the wild-type, the content of

JA, JA-Ile, and OPDA, as well as the expression level of JA

response genes, were increased in the functionally deficient

mutant of digalactosyldiacylglycerol synthase in Arabidopsis,

and the phloem cells were lignified under normal growth

conditions (Lin et al., 2016). These results confirm that

LOC_Os04g34000 may be involved in the regulation of SSB

attacks in rice. In summary, our data provides important

reference information for future functional research on SSB

resistance genes in rice.
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