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Introduction: Carbohydrate compounds serve multifaceted roles, from energy

sources to stress protectants, found across diverse organisms including bacteria,

fungi, and plants. Despite this broad importance, the molecular genetic

framework underlying carbohydrate biosynthesis pathways, such as starch,

sucrose, and glycolysis/gluconeogenesis in Salvia guaranitica, remains

largely unexplored.

Methods: In this study, the Illumina-HiSeq 2500 platform was used to sequence

the transcripts of S. guaranitica leaves, generating approximately 8.2 Gb of raw

data. After filtering and removing adapter sequences, 38million reads comprising

210 million high-quality nucleotide bases were obtained. De novo assembly

resulted in 75,100 unigenes, which were annotated to establish a comprehensive

database for investigating starch, sucrose, and glycolysis biosynthesis. Functional

analyses of glucose-6-phosphate isomerase (SgGPI), trehalose-6-phosphate

synthase/phosphatase (SgT6PS), and sucrose synthase (SgSUS) were performed

using transgenic Arabidopsis thaliana.
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Results: Among the unigenes, 410 were identified as putatively involved in these

metabolic pathways, including 175 related to glycolysis/gluconeogenesis and

235 to starch and sucrose biosynthesis. Overexpression of SgGPI, SgT6PS, and

SgSUS in transgenic A. thaliana enhanced leaf area, accelerated flower

formation, and promoted overall growth compared to wild-type plants.

Discussion: These findings lay a foundation for understanding the roles of starch,

sucrose, and glycolysis biosynthesis genes in S. guaranitica, offering insights into

future metabolic engineering strategies for enhancing the production of

valuable carbohydrate compounds in S. guaranitica or other plants.
KEYWORDS

Salvia guaranitica, transcriptome, glycolysis, gluconeogenesis, starch, sucrose, transgenic
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1 Introduction

Salvia guaranitica belongs to the Lamiaceae family. It is a valuable

medicinal and fragrant plant that is native to South America and is

widely cultivated in moderate and tropical climates across the globe,

particularly in Uruguay, Paraguay, Brazil, Egypt, China, West Asia,

and East Asia (Abd El-Wahab et al., 2015; Ali et al., 2018; Santa Cruz

et al., 2021; Ali, 2023). The genus Salvia comprises numerous species

that are marketed in traditional medicine for their healing properties,

including S. officinalis, S. aegyptiaca, S. japonica, S. acerifolia, S.

santolinifolia, S. acuminata, S. hydrangea, S. aethiopis, S. tomentosa,

S. africana, S. tuxtlensis, S. africana, S. miltiorrhiza, S. arrabidae, S.

chloroleuca, S. amplifrons, S. nipponica, S. algeriensis, S. fruticosa,

S. aureus, S. amplifrons, S. przewalskii, S. argentea, S. epidermindis, S.

isensis, S. arabica, S. arizonica, S.aethiopis, S. aequidens, and S.

arenaria, as listed in the Plant List database of the World Flora

Online (WFO) http://www.theplantlist.org/1.1/browse/A/Lamiaceae/

Salvia/. Most sage species possess a significant concentration of

essential oils, notably monoterpenes and sesquiterpenes (Ali et al.,

2017, 2018, 2022c, 2022a, 2022b; El-ramah et al., 2022;

Khater, 2022).

In plants, carbohydrates such as glucose, sucrose, trehalose, and

starch are mono-, di-, and polysaccharides that are created during

photosynthesis (Trouvelot et al., 2014). These carbohydrates and other

essential chemicals are produced by numerous metabolic processes;

including glycolysis/gluconeogenesis (KEGG: map00010), citrate cycle

(KEGG: map00020), pentose phosphate pathway (KEGG: map00030),

pentose and glucuronate interconversions (KEGG: map00040),

fructose and mannose metabolism (KEGG: map00051), ascorbate

and aldarate metabolism (KEGG: map00053), starch and sucrose

metabolism (KEGG: map00500), amino sugar and nucleotide sugar

metabolism (KEGG: map00520), pyruvate metabolism (KEGG:

map00620), glyoxylate and dicarboxylate metabolism (KEGG:

map00630), propanoate metabolism (KEGG: map 00640), butanoate

metabolism (KEGG: map00650), C5-branched dibasic
02
acid metabolism (KEGG: map 00660) and inositol phosphate

metabolism (KEGG: map00562) (accessed on 5 Mar 2024)

(Kanehisa, 2000, 2019; Kanehisa et al., 2023). Carbohydrate

compounds are crucial for various biological processes in plants,

including photosynthesis, plant development, signaling, growth,

defense mechanisms, biochemical processes within plant cells,

regulation of defense genes, plant immunity, symbiotic interactions

in legume plants, and coordination of metabolism in response to biotic

and abiotic stresses caused by environmental changes. Additionally,

carbohydrates also serve as antioxidants and help regulate the

generation of reactive oxygen species (ROS) (Koch, 1996, 2004;

Sheen et al., 1999; Rolland et al., 2002, 2006; Smeekens et al., 2010;

Walters et al., 2013; Keunen et al., 2013; Delaunois et al., 2014; Ali

et al., 2022a, 2022b, 2022c). Consequently, breeders and biotechnology

experts are primarily focused on augmenting the levels of diverse

carbohydrate molecules in plants and crops (Kanehisa et al., 2023).

Currently, RNA-Sequencing (RNA-Seq), a Next-Generation

Sequencing (NGS) technology, has emerged as a powerful tool for

gene identification. It serves as a significant approach for

discovering new genes and elucidating their associations with

specific metabolic pathways (Li et al., 2018, 2023; Badawi et al.,

2019; Safavi-Rizi et al., 2020; Zayed and Badawi, 2020; Mehmood

et al., 2021; Bairakdar et al., 2023; Kanehisa et al., 2023). For

example, the starch metabolism in barley grain (Collins et al.,

2021), starch accumulation and biosynthesis in sorghum seeds

(Ke et al., 2022; Xiao et al., 2022), starch metabolism in Triticum

aestivum, and Fagopyrum tataricum (Gu et al., 2021; Huang et al.,

2022), starch metabolism in Castanea henryi seeds (Liu et al., 2020),

regulator of starch synthesis in Oryza sativa (Liu et al., 2022), starch

biosynthesis in Zea mays (Zhang et al., 2019). Trehalose metabolism

and biosynthesis in T. eastivum, Manihot esculenta, Medicago

truncatula, Zea mays (Macovei et al., 2019; Luo et al., 2021; Lyra

et al., 2021; Sukko et al., 2023), and sucrose metabolism in Z. mays,

Ipomoea batatas, Vitis vinifera, and Arachis hypogaea (Zhu et al.,

2017; Li et al., 2021; Jiang et al., 2023).
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Recently, there have been several research on plant genes

implicated in glycolysis/gluconeogenesis, starch and sucrose

production and regulation. Furthermore, glycolysis/gluconeogenesis,

starch, and sucrose regulatory genes from several plant species were

discovered, cloned, and characterized, and then employed for

engineering the metabolism of many plant species (Huang et al.,

2022). For examples, cloning genes encoding the starch biosynthetic

enzymes from O. sativa, F. tataricum and Z. mays (Jeon et al., 2010;

Huang et al., 2021, 2022), sucrose-phosphate synthase (SPS), and

sucrose synthase (SuSy) from Z. mays, Solanum lycopersicum, and

Saccharum spp. hybrids (Nguyen‐Quoc and Foyer, 2001; Chandra

et al., 2015; Xiao et al., 2024), and trehalose-6-phosphate synthase

besides trehalose-6-phosphate phosphatase from A. thaliana, Rosa

hybrida, Citrus sinensis (Singh et al., 2011; Liu and Zhou,

2022; Fan et al., 2023). Given that the genes for glycolysis/

gluconeogenesis, starch and sucrose biosynthesis and regulation are

unknown in S. guaranitica, this study focuses on identifying the

candidate genes that are associated with glycolysis/gluconeogenesis,

starch, and sucrose biosynthesis from S. guaranitica. Therefore, the

identification and functional characterization of three enzymes-

encoding genes from S. guaranitica which are glucose-6-phosphate

isomerase (SgGPI), trehalose 6-phosphate synthase/phosphatase

(SgT6PS) and sucrose synthase (SgSUS) is the focal point to

elucidate glycolysis/gluconeogenesis, starch, and sucrose biosynthesis

from S. guaranitica. Also, our work resolves their biological roles when

transformed into the model plant, A. thaliana. These results illustrate

the functioning of the regulatory network governing glycolysis/

gluconeogenesis, starch, and sucrose metabolism in S. guaranitica.

Moreover, the results provide valuable genetic resources for enhancing

plant traits.
2 Materials and methods

2.1 Plant sampling, RNA library preparation,
and sequencing

To study the transcriptome profiles, three biological replicates

were collected using three separate S. guaranitica plants. Each

replicate included a pooled sample of both young and mature

leaves. The plants utilized in this study were two years old.

Moreover, three biological replicates were gathered from mature

leaves, tender leaves, flowering parts, flower buds, stems, and roots

for the qRT-PCR assays. The samples were swiftly stored in liquid

nitrogen and thereafter held onto -80°C till needed (Mehmood et al.,

2021). TRIzol™ Reagent (Invitrogen, CA, US) was employed to

obtain the total RNA from different samples as per the guidelines

provided by the manufacturer. After treating the extracted RNA from

various samples with DnaseI (Takara, China), its overall quality was

assessed by subjecting it to electrophoresis on a 1.25% agarose-

formaldehyde gel, followed by visualization with ethidium bromide.

Additionally, the NanoDrop™ 2000/2000c Spectrophotometers

(MA, USA) was utilized to calculate the RNA quality and

concentration from different samples. Ten µg of RNA was used for

cDNA synthesis via the reverse transcription kit (M-MLV, China)

(Huang et al., 2012; Rastogi et al., 2014; Zhu et al., 2019; Santa Cruz
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et al., 2021). High-quality RNAs extracted from different samples

were utilized to construct cDNA libraries (Ali et al., 2017, 2018).

Sequencing was achieved on the high-quality libraries using an

Illumina HiSeq 2500 platform, generating paired-end reads. Clean

reads were acquired by filtering out adapters, poly-N sequences, and

low-quality reads. Subsequently, the assembly was performed by the

Trinity platform https://github.com/trinityrnaseq/trinityrnaseq/wiki

with the parameters “min_kmer_cov set to 2”. Subsequently, the

values of Q20, Q30, GC content, and sequence duplication level

were estimated (Yang et al., 2017).
2.2 In silico differential gene expression
and protein domain analysis

To examine the putative transcription levels of SgGPI, SgT6PS,

and SgSUS across various tissues, the A. thaliana eFPbrowsers

(http://bar.utoronto.ca/efp/cgi-bin/efpWeb.cgi) was employed.

Moreover, the predicted subcellular localizations of their

orthologs from A. thaliana were retrieved. Subsequently, the

image envisioned their cellular localizations was built, and then

the putative domains were estimated through the InterPro database

(https://www.ebi.ac.uk/interpro/) (El-ramah et al., 2022; Elsherbeny

et al., 2022; Makhadmeh et al., 2022a, 2022b; Abdelhameed

et al., 2024b).
2.3.Validation and relative expression
analysis of glycolysis/gluconeogenesis,
starch and sucrose metabolism genes

Towards examining the activity levels of glycolysis/

gluconeogenesis, starch, and sucrose biosynthesis genes in

S. guaranitica at different tissues, twenty candidate genes were

chosen. The expression profiles for these selected genes were

compared within various tissue samples to disclose their

‘transcriptional control’, offering insights into the epistatic

relationship regarding mRNA copies, and the products and the

end-products. The expression profiles of our chosen candidates:

SgGPI, SgT6PS, SgSUS, SgPFK9, SgALDH, SgALDO, SgPYK, SgFBP,

SgACS, SgPCKA, SgGlGA, SgGlGC, SgBMY, SgGBE1, SgAGL,

SgBGL, SgHK, SgPYG, SgUGDH and SgINV, across different

tissues were investigated.
2.4 Cloning of full-length starch, sucrose
and glycolysis synthase cDNAs

The SgGPI, SgT6PS, and SgSUS full-length cDNAs were

amplified using gene-specific primers designed from the Illuimina

sequencing data of S. guaranitica leaves (Supplementary Table S1).

The initial PCR was conducted with the short primers, KOD-Plus-

DNA polymerase (Toyobo, Japan), and leaf cDNA using the

program: 96°C for 4 min, 98°C for 12 s, 60°C for 4 s, 68°C for 2.5

min, and 34 cycles followed by 68°C for 15 min. Regarding the

following PCR, the products from the initial PCR were used as
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templates with the long primers under the same PCR conditions.

The products were then cleaned and then transferred to the

Gateway entry vector (pDONR221), then subsequently sub-

cloned into the destination vector (pB2GW7). The vectors were

incorporated into A. thaliana flowers via Agrobacterium

tumefaciens strain GV3101 by electroporation. The cloning steps

were verified using Sanger sequencing (Rehman et al., 2018; Ali

et al., 2022a, 2022c, 2022b).
2.5 Functional characterization of SgGPI,
SgT6PS and SgSUS in transgenic
A. thaliana leaves

The genes SgGPI, SgT6PS and SgSUS were chosen to be

characterized and expressed in A. thaliana utilizing the

Agrobacterium-mediated floral dip technique. The transformation

was performed using A. tumefaciens GV3101 harboring pB2GW7-

SgGPI, pB2GW7-SgT6PS, and pB2GW7-SgSUS plasmids driven by

the 35S promoters. Using the procedure outlined by (Ali et al., 2018,

2022a, 2022c, 2022b; Ali, 2023). Briefly, the A. thaliana seeds were

germinated in advance and the plants were made ready for

transformation after two months. The secondary inflorescences

were immersed in a solution containing Agrobacterium carrying

the pB2GW7-vector, specifically targeting the gynoecium of the

flower. The plants were cultivated until the siliques reached a brown

and dried state. Subsequently, the seeds were collected, cultivated

again, and subjected to BASTA treatment – a herbicide containing

glufosinate-ammonium – to select the desired transgenic seedlings

carrying the resistance gene against BASTA. Moreover, the presence

of target genes in positive transgenic lines was verified through

semi-quantitative RT-PCR (semi-qRT-PCR). The physiological and

biochemical parameters of different transgenic lines were evaluated.

A total of twelve 45-day-old plants, including putative transgenic

and wild-type plants, were chosen for the purpose of harvesting

mature leaves. These leaves were then subjected to semi-qRT-PCR

for measuring the activity levels of the Salvia-derived genes (SgGPI,

SgT6PS and SgSUS) into transgenic A. thaliana plants.
2.6 Determination of relevant physiological
and biochemical indices

Soluble sugars, including sucrose, glucose, and fructose, were

analyzed as described by (Sonnewald et al., 1991; Ortiz-Marchena

et al., 2014). Briefly, the quantification involved extraction from

both wild-type and genetically modified A. thaliana plant leaves

using 80% ethanol in 10 mM HEPES-KOH (pH 7.7) at 80°C for 2

hours. The supernatant was utilized to measure glucose, fructose,

and sucrose concentrations through the sequential addition of

specific enzymes—5 units each of glucose-6-phosphate

dehydrogenase and hexokinase, 2 units of glucose-6-phosphate

isomerase, and 20 units of invertase—followed by the monitoring

of NAD+ reduction at 340 nm absorbance at various intervals.

Each parameter was tested with three biological replicates.

Furthermore, the quantities of chlorophyll a, b, and total (a+b),
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were measured following (El-Mahdy et al., 2024). Concisely, about

20-30 mg of fresh leaf samples were weighted from each treatment,

then each sample was transferred to a centrifuge tube with 4 mL

dimethylformamide (DMF) and maintained away from light to

preserve chlorophyll integrity. The level of chlorophyll a, b, and

total (a+b) in the extracts were accomplished following (El-Mahdy

et al., 2024). The absorbance readings of the chlorophyll samples

were taken at 664 and 647 nm through JENWAY 6505 UV/

Vis spectrophotometer.
2.7 Statistical analysis

The results were analyzed using SPSS (IBM Corp., 2020),

incorporating three biological replicates. Significance levels were

indicated as (*) for P-values less than 0.05, (**) for P < 0.01, (***) for

P < 0.001, and (****) for P < 0.0001, demonstrating the highest

degree of significance.
3 Results

3.1 Illumina-based sequencing, de novo
assembly, and functional annotation

Lately, the Illumina sequencing technology has emerged as a

robust technique for genome analysis and discovery in non-model

plants. In this research, transcriptome sequences were obtained

from pooled leaves of Salvia guaranitica using the Illumina HiSeq

2500 platform. This process yielded approximately 8.2 Gb of raw

data from the S. guaranitica leaves. Post-filtering and removal of

adapter sequences, 38,521,658 reads (38.52 million) were

obtained, containing 210,521,170 high-quality nucleotide bases.

The quality metrics indicated that 94.95% of the bases had a

quality score of Q20, 90.54% had a quality score of Q30, and

the GC content was 48.58%. Our findings were consistent with

previously obtained results of many other studies which utilized

transcriptome tools to detect and identify key genes associated

with various biomolecules in several species, including Vicia

sativa, Dendrobium nobile, S. officinalis, Ocimum sanctum,

Ocimum basilicum, and Cunninghamia lanceolata (Rastogi et al.,

2014; Ali et al., 2017; Zhu et al., 2019; Huang et al., 2021;

Zhang et al., 2023).
3.2 De novo assembly and
transcriptome analysis

With respect to de novo assembly and transcriptome study,

high-quality and pure reads were assembled using Trinity program

(Ali et al., 2017, 2018; Mehmood et al., 2021). The assembly results

yielded 200,298 RNA variants, the N50 length was 1,850 bp, the

N90 length was 520 bp, and the mean length was 1,125 bp.

Additionally, 75,100 unigenes were identified, with N50 equals to

1,524 bp, N90 is 320 bp, and a mean length of 965 bp. The

assembled lengths were 200 to approximately 2,000 bp. The
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majority of transcripts (83,387 transcripts, 41.652%) were between

200 and 500 bp, then 48,252 transcripts (24.102%) between 1,000

and 2,000 bp, and 41,197 transcripts (20.578%) between 500 and

1,000 bp. Conversely, the fewest transcripts (27,462 transcripts,

13.731%) were longer than 2,000 bp. Similarly, the lengths of the

unigene assemblies ranged from 200 to over 2,000 bp, with the

majority (39,145 unigenes, 52.125%) between 200 and 500 bp,

followed by 16,866 unigenes (22.458%) between 500 and 1,000

bp, and 13,837 unigenes (18.425%) between 1,000 and 2,000 bp. The

fewest unigenes (5,251 unigenes, 6.992%) were longer than 2,000

bp. The length profile of the transcripts and unigenes is presented in

Supplementary Table S2. Our findings correspond with results

observed in other species, such as, Boehmeria nivea, Curcuma

longa, M. sativa, S. officinalis, Centella asiatica, and Apium

graveolens, where transcript and unigene lengths predominantly

fell within 75 to 500 bp (Srividya et al., 2015; Zhu et al., 2019; Xiao

et al., 2024).
3.3 Unigene annotation and classification

Nearly 75,100 unigenes served as search queries across

NR (http://www.ncbi.nlm.nih.gov/), NT, KO, Swiss-Prot

(ht tp : / /www.eb i .ac .uk/uniprot / ) , PFAM, GO (ht tp : / /

www.geneontology.org/), and KEGG (https://www.kegg.jp/kegg/

kegg2.html) Supplementary Table S3. The BLAST2GO program

facilitated the sorting and ranking of the functions of all annotated

unigenes, with 29,695 unigenes (39.54% of the assembled unigenes)

assigned with at least one GO term. Inferred from the homology

results, the unigenes were sorted into 56 functional groups across

three main categories: 63,008 assigned to biological processes (BP),

48,517 to cellular components (CC), and 20,546 to molecular
Frontiers in Plant Science 05
functions (MF). In the CC section, the most enriched GO terms

were “cell part” (9,357) and “cell” (9,281). In the MF section,

“binding” (14,258) and “catalytic activity” (12,754) were

predominant. Within the BP section, “metabolic process” (15,326)

and “cellular process” (14,820) were highly enriched (Figure 1).

These findings are consistent with previous studies on the RNA

profiles of S. miltiorrhiza, S. officinalis, O. sanctum, and O.

basilicum, that also reported high percentages of these GO terms

(Ali et al., 2017, 2018; Mehmood et al., 2021).

Most transcripts belonged to the Metabolism section (5,081),

subsequently, Genetic Information Processing (2,187), Organismal

Systems (1,868), Cellular Processes (1,222), and Environmental

Information Processing (976). From the data analysis, 1,250

transcripts were related to carbohydrate metabolism, with 410

putatively linked to starch, sucrose, and glycolysis metabolism.

This included 175 genes involved in glycolysis/gluconeogenesis

biosynthesis and 235 genes related to starch and sucrose

biosynthesis. The levels of gene expressions were estimated

through the UniProt database for annotation against the

transcriptome libraries. Normalization and calculation were

performed using the DESeq package (1.10.1), represented as

fragments per kilobase of transcripts per million mapped

fragments (FPKM) as shown in Figure 3 and presented in

Supplementary Tables S4 and S5.
3.4 Patterns of tissue expressions,
subcellular localizations and protein
domain analysis

To identify the physiological roles of the SgGPI, SgT6PS, and

SgSUS genes, we investigated their accumulation patterns across
FIGURE 1

Unigenes annotations in S. guaranitica. The three main categories are BP, CC, and MF. In order to ascertain the biofunctions of the S. guaranitica
transcriptome, KEGG pathways of the 75,100 unigenes were determined, with 11,746 unigenes (15.64%) ascribed to 270 pathways. Primarily, five
major pathways were identified: (A) Cellular Processes, (B) Environmental Information Processing, (C) Genetic Information Processing,
(D) Metabolism, and (E) Organismal Systems (Figure 2).
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forty-seven tissues. The analysis was facilitated by the high

similarity between SgGPI, SgT6PS, SgSUS, and the AT4G24620,

AT1G06410, and AT5G37180 from A. thaliana, respectively. The

relative expressions of SgGPI, SgT6PS, and SgSUS were observed in

various tested tissues (Figures 4A–C). These results align with

results reported (Ali et al., 2017, 2018, 2022a) who used similar

tools in the BAR database to predict the putative expression

patterns for several genes, such as, SoNEOD, SoHUMS, SoFLDH,

SoLINS2, GmTPS21, SgTPSV, SgGERIS, and SgFARD, from S.

officinalis, Glycine max, and S. guaranitica, respectively, showing

heightened manifestation in leaves, roots, and seeds. Additionally,

the localizations of SgGPI, SgT6PS, and SgSUS revealed that they

are present in various cell organelles. For example, the SgGPI is

predominantly located in the plastid, cytosol, extracellular space,

and mitochondria. However, SgT6PS is mainly found in the

mitochondrion, cytosol, plasma membrane, Golgi apparatus,

nucleus, peroxisome, and vacuole. Meanwhile, SgSUS is primarily

present in the cytosol, mitochondrion, plastid, nucleus, and plasma

membrane (Figures 4D–F).
3.5 Quantitative RT-PCR analysis

To elucidate the differential gene expression of glycolysis/

gluconeogenesis, starch and sucrose biosynthesis genes

(Supplementary Table S6; Figure 5) across different treatments,

we employed the Bio-Rad Nucleic Acid Amplification and
Frontiers in Plant Science 06
Detection systems (CFX384) with SYBR Green fluorescence and

ROX as a passive reference dye (Newbio Industry, China), following

protocols outlined in previous studies (Rastogi et al., 2014; Zhu

et al., 2019; Huang et al., 2021; Santa Cruz et al., 2021). Primers were

designed using the IDTdna tool (https://eu.idtdna.com/scitools/

Applications/RealTimePCR/), as listed in Supplementary Tables

S6 and S2. The cycle threshold (CT) of the target genes was

calculated using SgB-ACTIN as a reference gene to normalize

gene expression levels. Relative gene expression levels were then

determined through delta-delta Ct method (Supplementary Tables

S6; Figure 5). The relative expression levels of several genes,

including SgGPI, SgT6PS, SgSUS, SgPFK9, SgALDH, SgALDO,

SgPYK, SgFBP, SgACS, SgPCKA, SgGlGA, SgGlGC, SgBMY,

SgGBE1, SgAGL, SgBGL, SgHK, SgPYG, SgUGDH, and SgINV,

were detected. For instance, SgBMY, SgGlGA, SgSUS, SgALDO,

SgGlGC, SgPFK9, SgGPI, and SgAGL genes exhibited the top

expression levels in mature leaves. In contrast, SgUGDH and

SgACS genes showed the peak expression levels in immature

leaves. Additionally, the SgT6PS gene demonstrated the maximum

expression levels in flowers, whereas the SgALDH gene had the

highest expression levels in flower buds. Moreover, SgBGL, SgINV,

SgHK, SgPYK, and SgFBP genes demonstrated the peak levels in

stems (Figure 5). Finally, SgPCKA, SgPYG, and SgGlGC genes were

found with the greatest levels in roots. Interestingly, the qPCR

analyses of these genes were in line with their expressions as

measured by Illumina HiSeq 2500 (Hussain et al., 2017; Darwish

et al., 2022; Ali et al., 2023b).
FIGURE 2

KEGG cellular processes pathways were classified into five largest categories; (A), environmental information processing (B), genetic information
processing (C), metabolism (D) and organismal systems (E).
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3.6 Phenotypic and functional
characterization of SgGPI, SgT6PS, and
SgSUS in A. thaliana

To further investigate the biological function of SgGPI, SgT6PS,

and SgSUS, we transferred the overexpression vector pB2GW7-

SgGPI, pB2GW7-SgT6PS and pB2GW7-SgSUS directed by 35S

promoter into A. thaliana. We obtained twelve homozygous

transgenic lines from each transformed gene and the successful

transformed lines was confirmed by PCR and semi-qRT-PCR

analysis (Figures 6A, B). Compared to the WT, a significant

difference in leaf development and plant growth were observed in

all lines overexpressing these genes (Figure 6A). Interestingly, the

flowering process of transgenic A. thaliana was accelerated earlier

than that of W.T plants (Figure 6A).
3.7 Overexpression of SgGPI, SgT6PS and
SgSUS alters various physiological and
biochemical attributes in transgenic plants

Sugars serve as the primary carbon source for synthesizing various

pathways involved in both primary and secondary metabolites. The

levels of soluble sugars were assessed in transgenic A. thaliana plants
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overexpressing SgGPI, SgT6PS, and SgSUS, revealing significant

increases compared to the wild-type (WT). Furthermore, starch,

total sugar, glucose, and fructose contents were quantified in these

transgenic plants. Results indicated higher levels of these components

in all transgenic lines compared to WT (Figure 7). Specifically, the

average starch content increased by approximately 5.033-fold (10.033/

5.0) for A. thaliana plants overexpressing SgGPI, 6.566-fold (11.866/

5.3) for A. thaliana plants overexpressing SgT6PS, and 7.133-fold

(11.700/4.6) for A. thaliana plants overexpressing SgSUS compared to

WT. Similarly, average sugar contents visually increased by 2.2-fold

(5.2/3) for A. thaliana plants overexpressing SgGPI, 3.766-fold (6.566/

2.8) for A. thaliana plants overexpressing SgT6PS, and 6.233-fold

(8.733/2.5) forA. thaliana plants overexpressing SgSUS. Glucose levels

showed respective increases of 0.87-fold (1.97/1.1), 1.2-fold (2.4/1.2),

and 1.04-fold (2.25/1.21), while fructose levels increased by 1.0-fold

(2.2/1.2), 0.94-fold (2.24/1.3), and 1.52-fold (2.733/1.25) for A.

thaliana plants overexpressing SgGPI, A. thaliana plants

overexpressing SgT6PS, and A. thaliana plants overexpressing

SgSUS compared to WT.

Additionally, the total chlorophyll, chlorophyll a, and

chlorophyll b contents were evaluated in these transgenic plants.

Results indicated higher levels of these chlorophyll components in all

transgenic lines compared to WT (Figure 7). For instance, the

average total chlorophyll content increased by 0.017-fold (0.0508/
FIGURE 3

A heatmap illustrating the transcript levels of genes regulating (A) Glycolysis/Gluconeogenesis pathways and (B) Starch and Sucrose pathways.
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0.033) for A. thaliana plants overexpressing SgGPI, 0.030-fold

(0.0640/0.034) for A. thaliana plants overexpressing SgT6PS, and

0.033-fold (0.067/0.034) for A. thaliana plants overexpressing SgSUS

compared to WT. Similarly, average chlorophyll a level increased by

0.009-fold (0.031/0.022) for A. thaliana plants overexpressing

SgGPI, 0.0131-fold (0.0351/0.022) for A. thaliana plants

overexpressing SgT6PS, and 0.016-fold (0.039/0.023) for

A. thaliana plants overexpressing SgSUS, while chlorophyll b

levels increased by 0.068-fold (0.0795/0.011) for A. thaliana plants
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overexpressing SgGPI, 0.0747-fold (0.0867/0.012) for A. thaliana

plants overexpressing SgT6PS, and 0.071-fold (0.082/0.011) for A.

thaliana plants overexpressing SgSUS compared to WT.
4 Discussion

Carbohydrate biosynthesis is the primary driver of plant growth

and development. Carbohydrates are highly susceptible to biotic and
FIGURE 4

Depicting the potential an ‘electronic fluorescent pictograph’ website for investigating A. thaliana orthologous genes’ potential tissue expression and
their proteins’ cellular localizations as retrieved from the eFPbrowsers (http://bar.utoronto.ca/efp/cgi-bin/efpWeb.cgi). Panels (A, D) demonstrate
where cells may express SgGPI (AT4G24620). Panels (B, E) indicate where cells may express SgT6PS (AT1G06410). Panels (C, F) demonstrate where cells
may express SgSUS (AT5G37180). The color box shows expression scale (greater red indicates more gene expression).
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abiotic stresses, which influence yield parameters. Therefore,

identifying genes that regulate carbohydrate production in

S. guaranitica will facilitate the development of targeted breeding

techniques to enhance desirable traits such as growth, stress

resilience, and medicinal properties. S. guaranitica is renowned for

its rich array of primary and secondary metabolites, including

disaccharides, starch, terpenoids, and flavonoids. Disaccharides,

found across various organisms, play diverse roles in plant growth,

development, and resistance to environmental stresses through

pathways like glycolysis/gluconeogenesis and starch/sucrose
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metabolism, which share common enzymes and substrates,

illustrating their interdependence. This study employed RNA-Seq

technology to identify key enzymes in these pathways from

S. guaranitica leaf transcriptomes, revealing over 75,100 unigenes

encompassing all metabolic pathways. Gene ontology analysis

highlighted 410 genes potentially involved in starch, sucrose, and

glycolysis metabolism, including 175 related to glycolysis/

gluconeogenesis and 235 to starch/sucrose biosynthesis, as

illustrated Figure 3 and detailed in Supplementary Tables S4 and

S5. These findings underscore RNA-Seq’s efficacy in elucidating
FIGURE 5

Quantitative RT-PCR of glycolysis/gluconeogenesis, starch and sucrose metabolism genes. The relative expressions of SgGPI, SgT6PS, SgSUS,
SgPFK9, SgALDH, SgALDO, SgPYK, SgFBP, SgACS, SgPCKA, SgGlGA, SgGlGC, SgBMY, SgGBE1, SgAGL, SgBGL, SgHK, SgPYG, SgUGDH, and SgINV
were calculated. The values are means ± SE of three biological replicates. Significance levels were indicated as (*) for P-values less than 5%, (**) for
P < 1%, and (***) for P < 0.1%.
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mechanisms underlying metabolite synthesis (Liu et al., 2020;

De Vega et al., 2021; Yang et al., 2023).

Functional characterization of SgGPI, SgT6PS, and SgSUS

through putative tissue expression patterns, subcellular localization,

and protein domain analysis using tools like eFP browsers, Cell-eFP

browsers, and InterPro database enhances our understanding of their

roles and expression levels see Figure 4. In silico analyses validate their

predicted functions, excluding irrelevant pathways, and affirm their

significance in plant biology. Furthermore, these previous tools were

used in various studies such as; (Ali et al., 2022a, 2022c, 2022b, 2023b,

2023a; Abdelhameed et al., 2024b, 2024a).

In general, the expression levels of multiple genes which

encoded glycolysis/gluconeogenesis, starch and sucrose enzymes

(e.g. SgGPI, SgT6PS, SgSUS, SgPFK9, SgALDH, SgALDO, SgPYK,

SgFBP, SgACS, SgPCKA, SgGlGA, SgGlGC, SgBMY, SgGBE1, SgAGL,

SgBGL, SgHK, SgPYG, SgUGDH and SgINV) were detected at

different tissues especially in leaves, and these previous genes may

effectively enhance the entire pathways Figure 5. Moreover, any

changes in the expression profiles of the aforementioned genes are

often bound to the accumulation levels of biochemical contents

from soluble sugar, starch, sugar, fructose, glucose, total

chlorophyll, chlorophyll a and chlorophyll b. Also, these changes

in the genes expression levels and their relationship to the

accumulation of previous compounds explain the extent of the

plant’s response to growth and the increase in the plant growth and
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plant biomass (Sung et al., 1988; Stein and Granot, 2019; Li et al.,

2020; Taujale et al., 2021).

In comparison to control plants (non-transgenic), overexpression

of SgGPI, SgT6PS and SgSUS controlled under 35S promoter caused

manifest difference in phenotypic traits such as; plant biomass, leaves

area, leaves number and early flowering (Figure 6). The results describe

that transformation of previous genes under 35S promoter is expressed

in whole transgenic A. thaliana plants as we confirmed by semi-qRT-

PCR data, and this expression is related with vegetative growth and

early flowering formation as well. The current findings and results are

in close agreement with previous investigations by (Zhang et al., 2016;

Ahmed et al., 2020; Liu et al., 2020; De Vega et al., 2021) which study

the roles of various glycolysis, starch and sucrose genes from different

plants (e.g., Allium cepa L., Sorghum, Taro Corm, Miscanthus hybrids

and Castanea henryi) in plant growth and increase of biomass yield.

Through our previous results, we can infer that SgGPI, SgT6PS and

SgSUS encode essential enzymes involved in S. guaranitica

development, as the activity of these enzymes are correlated with

plant growth and increase of biomass yield.

Furthermore, this study evaluated changes in physiological and

biochemical traits (soluble sugars, starch, sugars, fructose, glucose,

total chlorophyll, chlorophyll a, and chlorophyll b) in wild-type and

transgenic A. thaliana plants overexpressing SgGPI, SgT6PS, and

SgSUS, as shown in Figure 7. These traits directly influence

physiological and morphological variations that impact plant
FIGURE 6

Overexpression of the SgGPI, SgT6PS and SgSUS genes from S. guaranitica in transgenic A. thaliana. (A) Comparison of the phenotypes of the
transgenic A.. thaliana and wild type A. thaliana. (B) Semi-qRT-PCR of the genes regulating starch, sucrose, and glycolysis biosynthesis.
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growth, consistent with earlier findings by (Dian et al., 2003, 2005;

Akihiro et al., 2005; Wang and Ruan, 2013; Ahmed et al., 2018, 2020).

In conclusion, our study contributes valuable information to the

limited transcriptome resources of Salvia, one of the largest genera in

the Lamiaceae families, known for its diverse specialized secondary

and primary metabolites. The S. guaranitica transcriptome data we

provide here should be valuable for metabolic engineering,

fundamental biological research, and plant improvement programs.

Transgenic A. thaliana lines with high phenotypic traits and

biochemical contents generated in this study should serve as a

useful adjunct in enhancing the maximize the benefit of these

genes in improving plants and increasing production.
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5 Conclusions

In this study, we employed NGS technology to generate high-

quality transcriptome data from S. guaranitica leaves. Utilizing de

novo sequencing and analysis tools, we assembled data obtained from

the Illumina HiSeq 2500 system to characterize and identify genes

associated with starch, sucrose, and glycolysis biosynthesis pathways.

The transcriptome analysis revealed numerous genes encoding

enzymes pivotal to these metabolic pathways in S. guaranitica.

Specifically, we conducted cloning and bioinformatics analyses of S.

guaranitica. SgGPI, SgT6PS, and SgSUS. Our findings confirm that

these genes encode prototypical GPI, T6PS, and SUS proteins.
FIGURE 7

Analysis of physiological and biochemical parameters from wild and transgenic A thaliana under the effects of overexpression of SgGPI, SgT6PS and
SgSUS separately. (A) soluble sugar; (B) starch; (C) sugar; (D) fructose; (E) glucose; (F) total chlorophyll; (G) chlorophyll a; (H) chlorophyll (b)
Significance levels were indicated as (*) for P-values less than 0.05, (**) for P < 0.01, and (***) for P < 0.001.
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Overexpression of SgGPI, SgT6PS, and SgSUS in A. thaliana resulted

in enhanced leaf growth, plant development, and accelerated

flowering. Furthermore, these genes significantly increased soluble

sugar, starch, sugars (glucose and fructose), total chlorophyll,

chlorophyll a, and chlorophyll b contents in transgenic tobacco

lines compared to wild-type (WT). Overall, our study provides

insights into the regulatory mechanisms of SgGPI, SgT6PS, and

SgSUS and their roles in starch, sucrose, and glycolysis metabolism

pathways. These findings open new avenues for biotechnological

applications utilizing these genes.
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