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model for natural rubber tree
tapping surface detection and
tapping key point positioning
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Aiming at the problem that lightweight algorithm models are difficult to

accurately detect and locate tapping surfaces and tapping key points in

complex rubber forest environments, this paper proposes an improved

YOLOv8n-IRP model based on the YOLOv8n-Pose. First, the receptive field

attention mechanism is introduced into the backbone network to enhance the

feature extraction ability of the tapping surface. Secondly, the AFPN structure is

used to reduce the loss and degradation of the low-level and high-level feature

information. Finally, this paper designs a dual-branch key point detection head to

improve the screening ability of key point features in the tapping surface. In the

detection performance comparison experiment, the YOLOv8n-IRP improves the

D_mAP50 and P_mAP50 by 1.4% and 2.3%, respectively, over the original model

while achieving an average detection success rate of 87% in the variable

illumination test, which demonstrates enhanced robustness. In the positioning

performance comparison experiment, the YOLOv8n-IRP achieves an overall

better localization performance than YOLOv8n-Pose and YOLOv5n-Pose,

realizing an average Euclidean distance error of less than 40 pixels. In

summary, YOLOv8n-IRP shows excellent detection and positioning

performance, which not only provides a new method for the key point

localization of the rubber-tapping robot but also provides technical support for

the unmanned rubber-tapping operation of the intelligent rubber-tapping robot.
KEYWORDS

tapping surface detection, key point positioning, intelligent rubber-tapping robot,
receptive-field attention, AFPN
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1 Introduction

As the only renewable industrial raw material and strategic

resource, natural rubber is often categorized as one of the four

major industrial raw materials, along with steel, petroleum, and

coal. Due to the unique physical properties of natural rubber:

resilience, elasticity, abrasion resistance, impact resistance,

efficient heat dissipation, and flexibility at low temperatures that

cannot be replaced by synthetic alternatives, it is widely used in

more than 50,000 products, such as aircraft tires, sporting goods,

medical and scientific instruments, and insulated cables, which has

led to a significant increase in the annual demand for natural rubber

(Tan et al., 2023). According to the statistical report of the Rubber

Research Institute of the Chinese Academy of Tropical Agricultural

Sciences, the global natural rubber production in 2023 is 14.319

million tons, up 0.5%. The natural rubber consumption is 15.19

million tons, an increase of 0.8%. The global natural rubber

production is forecast to reach 14.542 million tons in 2024, up

1.6%. The consumption is predicted to reach 15.67 million tons, an

increase of 3.0%. At present, natural rubber tapping is mainly used

to tap rubber by hand, and the commonly used rubber tapping tools

are traditional tapping knives, handheld electric tapping knives, etc

(Arjun et al., 2016; Soumya et al., 2016; Zhou et al., 2021). A rubber-

tapping worker needs to tap more than 500 rubber trees per day,

which is labor-intensive and requires high skills. However, rubber

trees are mainly planted in the developing countries of Asia and

South America, affected by the economic situation, regional politics,

environmental climate, and many other factors, resulting in the

price of natural rubber never a steady increase and even some

decline. A severe blow to the motivation of workers resulted in the

loss of many skilled workers and large areas of rubber forests facing

abandonment, so the natural rubber industry is facing a labor

shortage and an aging bottleneck (Zhou et al., 2022). Therefore,

there is an urgent need to develop an intelligent rubber-tapping

machine to reduce the work intensity of rubber workers, increase

rubber-tapping yield, and solve the predicament of the natural

rubber industry (Zhou et al., 2022). Among them, using machine

vision to detect the tapping area and locate the starting and ending

point of tapping is the key to realizing intelligent tapping. The

rubber tapping area is composed of spiral lines tapped by rubber

workers. The starting and end points of rubber tapping are located

at the beginning and end of the spiral line. Whether the starting and

end points of rubber tapping can be accurately positioned affects the

quality and yield of rubber. However, during rubber tapping

operations in rubber forests, complex factors such as uneven light

exposure, different thicknesses of rubber trees of various ages, and

unclear tapping line features make it difficult to locate the starting

and ending points of tapping accurately.

In fact, the characteristics of the key points of tapping are small

features located on the tapping surface. Therefore, whether the key

points of tapping can be accurately located depends on whether the

detailed features of the tapping surface can be fully extracted and

whether the characteristics of the key points of tapping can be

screened out from the numerous detailed features. This is similar to

the problems encountered in most object detection tasks in the

agricultural field, namely, how to extract object features and filter
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out important features. In recent years, with the development of

machine vision and agricultural intelligence, machine vision has

been widely applied in the agricultural field (Rehman et al., 2019),

including the application of traditional machine learning methods

and deep learning methods. In traditional machine learning

methods, the object detection task is mainly performed by

manually designed classifiers using the object’s color, geometric,

and texture features to classify and detect the object. For example,

Tan et al. (2018) used the histogram of gradient direction and color

features to distinguish blueberry fruits of different maturity. Lin

et al. (2020) detected apricot varieties based on features of contour

information. Li et al. (2016) combined color, shape and texture

features to identify unripe green citrus fruits. The above methods

have achieved certain results, but at the same time, they have also

exposed some drawbacks. Traditional machine learning methods

require a lot of time to perform manual feature selection and have

limited adaptability in complex scenarios, which greatly hinders the

performance and robustness of traditional machine learning

methods for object detection in natural environments (Chen

et al., 2024). This is extremely disadvantageous for detecting the

tapping surface and locating the key points of rubber tapping in the

complex rubber forest environment.

Deep learning is a powerful subcategory of machine learning. It

can increase the depth and width of the entire large network

through the continuous stacking of small modules, thereby

improving the feature extraction capabilities of the network and

having stronger feature extraction ability than traditional machine

learning. At the same time, deep learning does not require manual

feature selection and is highly adaptable to complex scenarios.

Therefore, deep learning has become the preferred technology for

identification and detection in the agricultural field (Liu and Liu,

2024; Altalak et al., 2022). So far, deep learning has been widely

studied in many agrarian applications (Thakur et al., 2023),

including weed detection (Chen et al., 2022; Ortatas et al., 2024),

pest and disease detection (Kumar and Kukreja, 2022; Tang et al.,

2024), fruit detection (Wang et al., 2023c; Guan et al., 2023), grain

crop detection (Song et al., 2023; Wang et al., 2023b), and so on.

Among them, the YOLO model, as a representative of the one-stage

detection algorithm model, is slightly inferior to the two-stage

detection algorithm models, such as Faster-RCNN and Mask-

RCNN, in terms of detection accuracy, but its lightweight

network structure design enables it to have a faster detection

speed and a smaller model size. So, it has been widely used in

various fields (Bello and Oladipo, 2024; Wang et al., 2023a;

Mokayed et al., 2023). However, the two-stage detection

algorithm model has a large number of parameters and requires

greater computing power, which poses a challenge to the

deployment of the model on the mobile terminal. In fact, the

computing resources of the intelligent rubber-tapping robot are

limited, and the detection speed will be seriously affected compared

with the hardware configuration in the experimental environment.

Therefore, the YOLO series model is more suitable for deployment

in the rubber-tapping robot to realize intelligent rubber tapping.

At present, researchers have conducted little research on

intelligent rubber tapping. Sun et al. (2022) proposed a natural

rubber tree tapping trajectory detection method based on an
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improved YOLOv5 model, which realized the detection of the

tapping surface and achieved a mAP50 of 95.1%. Chen et al.

(2023) proposed a natural rubber tree tapping area detection and

new tapping line positioning method based on an improved mask

region convolutional neural network (Mask-RCNN), which realized

the segmentation and extraction of tapping lines and located new

tapping lines based on existing tapping lines, with the segmentation

accuracy of tapping lines reaching 99.78%. The above scholars

discussed the tapping surface and tapping line, respectively, but

lacked research on the positioning of the starting and end points of

tapping. Positioning the rubber-tapping starting point is the first

step of the whole process. Without determining the position of the

starting point of rubber tapping, the follow-up work of rubber

tapping cannot be carried out. The accuracy of the positioning of

the starting point of rubber tapping directly affects the quality of the

glue flow after tapping. Positioning the end point of rubber tapping

is the final step of the entire rubber tapping process, which involves

the length of the tapping line. Currently, the commonly used secant

lengths are 1/2 secant (the tapping surface is 1/2 of the rubber tree

surface) and 1/4 secant (the tapping surface is 1/4 of the rubber tree

surface). The efficiency of rubber flow is different for different

tapping line lengths. Therefore, the accurate positioning of the

starting and end points of tapping is of great significance in the

whole tapping process. To this end, this paper proposes an

improved YOLOv8n-IRP (Improved rubber tapping key point

positioning) model based on YOLOv8n-Pose, which is used to

detect the tapping surface of rubber trees and locate the starting and

end points of rubber tapping. YOLOv8n-Pose is an end-to-end

network that integrates object detection and key point detection. Its

lightweight network structure makes it difficult for its detection and

positioning accuracy in complex rubber forest environments to

meet the actual rubber tapping requirements. To address this

problem, this paper makes three improvements to the model. The

main work and contributions are as follows:
Fron
(1) A data set of natural rubber tree tapping surface detection

and starting point and end point positioning, including

tapping surfaces of different tapping ages and tapping

surfaces with different angles and light intensities, is

established. Methods such as noise addition and picture

splicing are used to preprocess the data set to improve the

generalization ability and robustness of the model.

(2) The Receptive-field attention mechanism is integrated into

the backbone network, which solves the problem of

parameter sharing of larger convolution kernels in

ordinary convolutions and calculates the importance of

all features in the receptive field, thus improving the

backbone network’s feature extraction capability.

(3) The Asymptotic Feature Pyramid Network (AFPN)

replaces the Path Aggregation Feature Pyramid Network

(PAFPN) of the neck network, reducing the loss or

degradation of high-level feature information in the top-

down enhancement process and the loss and degradation of

low-level feature information in the bottom-up

enhancement process.
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(4) A dual-branch key point detection head is designed based

on the residual module. The dual-branch structure uses the

sigmoid function as a gate to generate different weights for

the two branches to screen out important features, while the

residual structure makes up for important features lost

during the feature screening process, enabling important

features to be screened out as completely as possible.
2 Materials and methods

2.1 Data collection and annotation

The experiment is conducted on rubber trees tapped for one,

three, and five year(s). In the National Natural Rubber Forest in

Danzhou City, Hainan Province, China, 2029 photos are collected

using image acquisition equipment, a Sony Alpha 6000 camera with a

resolution of 4000×6000. In order to ensure the richness and diversity

of the samples, multi-angle shooting methods are used under

different lighting conditions, and photos of 9 scenes are collected. It

includes rubber trees with one, three, and five year(s) of tapping age.

The rubber trees of each tapping age also include rubber trees that

block the end point of tapping but not the starting point of tapping,

rubber trees that block the starting point of tapping but not the end

point of tapping, and rubber trees that both the starting point and end

point are blocked at the same time, as shown in Figure 1. Finally,

Labelme image annotation software is used to manually label the

rubber tree’s tapping area, tapping starting point, and tapping

endpoint to create a JSON format data set.
2.2 Data enhancement

In deep learning network model training, the richness, diversity,

and accuracy of the data set have a decisive impact on the final

training results of the network model. The singleness and deficiency

of the data set will lead to the model being overfitted. At the same

time, due to the complex environment of the rubber forest, the use

of machine vision to collect the tapping surface information of the

rubber tree will be affected by unfavorable factors such as light and

noise, which will lead to significant errors in the final identification

and positioning. Therefore, it is necessary to enhance further the

data set before network training to prevent over-fitting of the model

and improve the generalization ability of the network model to

adapt to the complex rubber forest environment. This study

performed various random enhancement operations on the

annotated original data set, including adding noise, changing

light, changing pixels, translation, stitching multiple pictures, and

flipping, as shown in Figure 2. In order to ensure the balance of the

proportions of various categories in the data set, a method of

different enhancement times for other categories is adopted.

Categories with a smaller proportion have an increase in times of

enhancement, while categories with a larger proportion have a

reduced number of improvements. Finally, it is divided into a
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training set, a verification set, and a test set in a ratio of 8:1:1. The

number of pictures is 5712, 715, and 715, respectively. Table 1

shows the change in the number of category labels before and after

the enhancement.
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2.3 Standard YOLOv8 network structure

YOLO (You Only Look Once) is the beginning of the One-Stage

detection algorithm. Compared with Two-Stage algorithms, YOLO
FIGURE 2

Sample data enhancement.
With starting point With end point Without key points

One 

year

Three 

years

Five 

years

FIGURE 1

Representative sample data set of different tapping ages.
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can greatly improve the detection speed while ensuring good

detection accuracy. According to the scale of the network, the

YOLOv8 model can be divided into five versions, namely

YOLOv8n, YOLOv8s, YOLOv8m, YOLOv8l, and YOLOv8x, and

each version includes three versions of object detection,

segmentation, and key point detection. Considering the actual

rubber-tapping situation, this article selected the lightweight

YOLOv8n key point detection algorithm for research. Compared

with the other four, YOLOv8n has a lightweight parameter

structure, which is more conducive to deployment in small

mobile devices.

The key point detection network structure of YOLOv8 is

composed of a backbone network, a neck network, and a head

network, as shown in Figure 3. First, the input image enters the

backbone network within which the CBS module, C2F module, and

SPPF module are used to extract features at various scales. Then, the

neck network uses the Path Aggregation Feature Pyramid Network

(PAFPN) structure to process further and fuse the extracted multi-

scale features. Finally, the head network processes the fused feature

maps at different levels to output the detection results.
3 Improved YOLOv8n-IRP
network structure

3.1 Enhancement of backbone network
feature extraction capabilities

Traditional convolution uses the same parameters in each

receptive field to extract feature information through the
Frontiers in Plant Science 05
convolution kernel without considering the different information

between different positions. This results in a large amount of

redundant information in the extracted data, which reduces the

extraction time. The efficiency of features greatly limits the

performance of the model. The emergence of the spatial attention

mechanism enables the model to focus on certain key features (Park

et al., 2020; Li et al., 2019; Luo et al., 2022), enhancing the network’s

ability to capture detailed feature information. However, it can only

be used to solve the identification of spatial features and does not

completely solve the parameter-sharing problem of larger

convolution kernels (such as 3×3 convolution). In addition, they

cannot judge the importance of each feature in the receptive field,

such as the existing Convolutional Block Attention Module

(CBAM) (Woo et al., 2018) and Coordinate Attention(CA) (Hou

et al., 2021).

The proposal of RFA solves the limitations of the existing

spatial attention mechanism and provides an innovative solution

for spatial processing. Among them, the Receptive-Field

Attention Convolution (RFAConv) (Zhang et al., 2023a)

designed based on RFA not only emphasizes the importance of

different features within the receptive field slider but also gives

priority to the receptive field space features, completely solving

the problem of convolution kernel parameter sharing, as shown

in Figure 4.

In RFA, the entire operation process can be divided into two

parts. The first part uses group convolution to extract receptive field

spatial features quickly. The second part learns the attention map by

interacting with the receptive field feature information to enhance

the network’s ability to extract features. However, allowing each

receptive field feature to interact will incur a large computational

cost. To reduce the computational cost and parameter amount as

much as possible, AvgPool is first used to fuse the global

information of each receptive field feature, followed by a 1×1

group convolution operation to interact with the information.

Finally, the Softmax function obtains the importance of each

feature in the receptive field feature. After both parts are

completed, the final feature information is obtained by

multiplication, as shown in Equation 1.

F = Softmax(gi�i(AvgPool(X)))� ReLU(Norm(gk�k(X)))

= Arf � Frf
(1)
FIGURE 3

The architecture of Standard YOLOv8 Key point detection model.
TABLE 1 The number of category labels before and after
data augmentation.

Category Original
Data

Enhancement

starting-point 1053 2106

ending-point 244 1220

non-point 732 2196

Mixed of three categories 0 1620
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where, Arf and Frf represent the attention map and the

transformed receptive field space feature map, respectively; gi�i

and gk�k are group convolutions of size i� i and k� k, respectively;

Norm and X are normalization and input features, respectively.

The feature map obtained through RFA will not overlap the

receptive fields after shape adjustment. Therefore, the learned

attention map not only contains all the feature information in

each receptive field but does not need to be shared in each receptive

field. Finally, a standard convolution with a convolution kernel of

k� k and a stride of k is used to extract feature information.

Consequently, in this paper, by replacing the standard

convolutional Conv in the CBS module of the backbone network

with RFAConv as depicted in Figure 5, the feature extraction

capability of the backbone network is improved, while the

increase in the computational cost and the number of parameters

are almost negligible.
Frontiers in Plant Science 06
3.2 Mitigation of neck network feature loss
and degradation

In YOLOv8, the main task of the backbone network is feature

extraction, but in detection and positioning tasks, the detected objects

are multi-scale, and single-scale features cannot be used to detect multi-

scale objects. Therefore, YOLOv8 uses the PAFPN structure in the neck

network to process the features extracted from the backbone. Initially,

the features are fused from top to bottom and then enhanced from

bottom to top before generating a multi-scale feature map. Nonetheless,

this approach encounters a new issue. In the process of top-down

fusion, the high-level feature informationmay be lost or degraded, while

in the bottom-up process, the low-level feature information may be lost

or degraded. To address this problem, this paper references the

Asymptotic Feature Pyramid Network (AFPN) (Yang et al., 2023) in

the neck network, as shown in Figure 6, to replace the original PAFPN.
FIGURE 5

Comparison chart before and after CBS module improvement.
FIGURE 4

The overall structure of RFAConv. S, Softmax.
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As seen in Figure 6, AFPN sequentially fuses the feature

information of the bottom, middle, and top layers. This process is

carried out gradually, which greatly alleviates the problem of poor

feature fusion effect caused by excessive feature differences between

non-adjacent layers. For example, feature fusion between the low

and middle layers reduces the feature difference between them.

Since the middle and high layers are adjacent layers, the feature

differences between the low and high layers are also reduced.

The main task of the ASFF module in Figure 6 is to assign

different spatial weights to features at various levels in the multi-

level feature fusion process, which enhances the importance of key

levels and reduces the impact of conflicting information between

different levels. In this article, the ASFF module is divided into two

modes, including ASFF2 and ASFF3. Among them, ASSF2_1 and

ASSF2_2 denote level 2 feature fusion with two different weights,

while ASSF3_1, ASSF3_2, and ASSF3_3 denote level 3 feature

fusion with three different weights. Taking level 3 feature fusion

as an example, the operation process is as follows:

ylij = a l
ij � x1→l

ij + b l
ij � x2→l

ij + g l
ij � x3→l

ij (2)

where, xn→l
ij represents the feature vector at position (i, j) from

level n to level l; a l
ij, b l

ij, and g l
ij are the three spatial weights at level l,

and the constraint is a l
ij + b l

ij + g l
ij = 1; ylij is the feature obtained

after the final fusion.
3.3 Improvement of head network

3.3.1 Design of key point detection module
Deep networks extract low-level, mid-level, and high-level

features of the input in an end-to-end manner. The richness of

feature extraction affects the detection and classification accuracy in

the later stages of the network. The network can learn richer

features through the number of stacked layers (He et al., 2016),

thereby improving detection and classification accuracy. However,

as the number of layers (depth) continues to increase, the

improvement of network detection and classification accuracy is

not absolute. Because each layer of the network also loses part of the

feature information while extracting features, the lost features may

include some important features, while the extracted features may
Frontiers in Plant Science 07
only be some secondary features and not important features. So,

although the number of layers has increased, and the extracted

features have become richer, they are likely to be some useless

features. Not only will the accuracy not be improved, but the

accuracy will be reduced. At the same time, new problems will

appear in the network; for example, the gradient may disappear or

explode, making the network unable to converge.

Therefore, based on the residual network (He et al., 2016), this

paper designs a dual-branch key point detection module, as shown

in Figure 7.

Compared with the standard key point detection head shown in

Figures 3, 7 consists of four standard points, and two of them are

connected in parallel to form a new structure, as shown in the red

box in Figure 7. In this new structure, a sigmoid function is added to

one of the columns to generate a weight value between (0-1). Two

identical new structures are connected in parallel, each extracting

different features. Then, the importance of the extracted features in

the entire module is determined by their respective weight values, w.

Finally, the original input X is added to compensate for losing

important feature information.
3.3.2 Elimination of redundant features
As the network structure becomes more and more complex,

some convolutional layers will extract redundant features, resulting

in a huge waste of computing resources. In order to reduce

redundant calculations and promote the learning of representative

features, this paper adds the Spatial and Channel reconstruction

Convolution (SCConv) (Li et al., 2023) to the designed dual-branch

key point detection module. SCConv consists of two units: spatial

reconstruction unit (SRU) and channel reconstruction unit (CRU),

as shown in Figure 8. The SRU uses a split-reconstruction method

to suppress spatial redundancy, while the CRU employs a split-

transform-fusion strategy to reduce channel redundancy.

The SRU consists of two parts: separation operation and

reconstruction operation. In the separation operation, the input

feature map X ∈ RN�C�H�W (N, C, H, and W are training batch,

number of channels, height, and width, respectively) is first

standardized to obtain the trainable parameter g ∈ RC , as shown in

Equation 3. Then, g is normalized to obtain the relevant weightWg ∈
RC and the weightWg is mapped to (0, 1) using the sigmoid function
FIGURE 6

The architecture of AFPN.
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to indicate the importance of different feature maps, as shown in

Equation 4. Finally, the threshold is used for gating to obtain weights

W1 and W2, while the input feature map X is multiplied with it to

obtain Xw
1 with rich information and Xw

2 with less information, thus

realizing the separation of feature maps with rich information and

feature maps with less spatial content, as shown in Equation 5.

Xout = GN(X) = g
X − mffiffiffiffiffiffiffiffiffiffiffiffiffi
s 2 + e

p + b (3)
Frontiers in Plant Science 08
Wg = wif g = gi

oC
j=1gj

, i, j = 1, 2, � � �,C,

Wsig = Sigmoid(Wg (GN(X))) :

8<
: (4)

W = Gate(Sigmoid(Wsig)),

Xw
1 = W1 ⊗X,

Xw
2 = W2 ⊗X :

8>><
>>:

(5)
FIGURE 8

The architecture of SCConv. GN: Group Normalization. N: wi =
gi

oj=0gj
. S, Sigmoid; C, Concatenation.
FIGURE 7

Improved key point detection head.
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where, m and s are the mean and standard deviation of X; e is a

small positive number added for division stability; g and b are

trainable affine transformations; ⊗ is an element-wise multiplication.

To maintain the information flow between feature information,

the reconstruction operation is used after the separation operation

to fully combine the two different information features, so as to

enhance the important features and suppress the redundant features

in the spatial dimension, and finally obtain the Spatial-Refined

Feature Maps Xw, as shown in Equation 6.

Xw
11 ⊕ Xw

22 = Xw1,

Xw
21 ⊕ Xw

12 = Xw2,

Xw1 ∪ XW2 = Xw :

8>><
>>:

(6)

where, ⊕ is an element-wise summation, and ∪ is the

Concatenation operation.

After applying SUR to the intermediate input feature X,

although the redundant features in the spatial dimension can be

suppressed, the redundancy in the channel dimension is still

maintained, which is caused by the repeated use of standard

convolution with a convolution kernel of k� k. Therefore, in

order to el iminate channel redundancy, the channel

reconstruction unit (CRU) is introduced to replace the

standard convolution.

The CRU cons i s t s o f three par t s : s egmenta t ion ,

transformation, and fusion. First, CRU performs channel

segmentation on Spatial-Refined Feature Maps Xw, and uses 1×1

convolution to compress the two feature maps obtained after

segmentation to improve computational efficiency, and obtains

the upper feature Xup and the lower feature Xlow respectively.

Then, Xup with rich features is sent to the upper transformer, as

shown in Equation 7, and Xlow with a large number of redundant

features is sent to the lower transformer, as shown in Equation 8.

Finally, the simplified SKNet method is used to adaptively merge

the output features Y1 and Y2 from the upper transformer and the

lower transformer, so that the redundancy in the channel

dimension is suppressed, and the channel-refined features Y is

obtained, as shown in Equation 9.

Y1 = MGXup +MP1Xup (7)

Y2 = MP2Xlow ∪ Xlow (8)

Sm = Pooling(Ym) =
1

H�Wo
H

i=1
o
W

j=1
Yc(i, j),m = 1, 2,

b1 = es1
es1 +es2 , b2 =

es2
es1 +es2 , b1 + b2 = 1,

Y = b1Y1 + b2Y2 :

8>>>>><
>>>>>:

(9)

where, MG ∈ Rac
gr�k�k�c and MP1 ∈ Rac

r �1�1�c are the learnable

weight matrices of GWC and PWC, respectively; Xup ∈ Rac
r �h�w

and Y1 ∈ Rc�h�w are the upper layer input and output feature

maps, respectively; MP2 ∈ R(1−a)c
r �1�1�(1−1−a

r )c is the learnable matrix

of PWC; ∪ is the Concatenation operation; Xlow ∈ R(1−a)c
r �h�w and

Y2 ∈ Rc�h�w are the lower layer input and output feature

maps, respectively.
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3.4 Model evaluation indicators

This paper evaluates the comprehensive performance of the

model through two parts of experiments. The first part of the

experiment: Rubber tree tapping surface detection and rubber

tapping key point detection accuracy experiments, using Precision

(P), Recall (R), Mean Average Precision (mAP), model parameters

(Params), Flops, and FPS as evaluation indicators. Among them, P

and R represent the proportion of the number of correctly predicted

positive samples to the total number of predicted positive samples

and the proportion of the number of correctly predicted positive

samples to all positive samples, respectively;mAP is the average area

under the P-R curve of all categories, which is used to measure the

quality of the model in each category, among which mAP50 is the

mAP value when the IOU threshold is set to 0.5; FLOPs and FPS

respectively show the computing power required for model training

and the inference speed of the model (the number of images

inferred in 1 second).

P = TP
TP+FP

R = TP
TP+FN

mAP = 1
No

N

i=1

Z 1

0
Pi(Ri)dRi

8>>>><
>>>>:

(10)

where, TP, FP, and FN represent the number of samples

correctly predicted by the model as positive (i.e., the target exists

and is predicted to exist), the number of samples incorrectly

predicted by the model as positive (i.e., the target does not exist

but is predicted to exist), and the number of samples incorrectly

predicted by the model as negative (i.e., the target exists but is

predicted to not exist); Pi, Ri and N show the precision, recall and

number of sample categories, respectively.

The second part of the experiment: Experiment on the

positioning accuracy of the starting point and end point of rubber

tapping, using x-axis offset distance (xOD), y-axis offset distance

(yOD), and xy-axis offset distance (xyOD) as the evaluation indexes.

xOD, yOD, and xyOD represent the pixel offset distances between

the predicted point and the truth point in the x-axis direction, the y-

axis direction, and the Euclidean direction, respectively. The

calculation formulas are as follows:

xOD = xP − xTj j
yOD = yP − yTj j
xyOD =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(xP − xT )

2 + (yP − yT )
2

p

8>><
>>:

(11)

where, xP , yP and xT , yT are the x-axis coordinates and y-axis

coordinates of the predicted point, and the x-axis coordinates and y-

axis coordinates of the truth point, respectively.
4 Results and discussion

4.1 Ablation experiment

The natural rubber tree tapping surface detection and tapping

key point positioning model has been improved in three parts
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compared to the original YOLOv8n-pose model. Part I A: The

convolution RFAConv with receptive field attention mechanism

replaces the ordinary convolution in the backbone network CBS

module; Part II B: Neck network uses AFPN structure; Part III C:

An improved key point detection head is adopted in the Head

network. To verify the contribution of each improvement to the

entire model, this study conducts an Ablation experiment on the

natural rubber tree tapping surface detection and tapping key point

positioning model. The results are shown in Table 2.

The integration of the receptive field attention mechanism has

comprehensively improved the P, R, and mAP50 of the object

detection and key point detection of the original model. As shown

in the experimental results of YOLOv8n-Pose+A, D_P, D_R, and

D_mAP50 are improved by 1.4%, 1.2%, and 0.9%, respectively,

while P_P, P_R, and P_mAP50 are improved by 1.6%, 2.1%, and

1.5%, respectively, indicating that the feature extraction capability

of the backbone network has been enhanced. Meanwhile, the

number of parameters and computing power cost has only

increased by 0.02M and 0.3G, respectively, further proving that

the receptive field attention mechanism has little impact on the size

and computing cost of the entire model. After replacing the original

PAFPN structure of the Neck network with AFPN, the problem of

loss and degradation of bottom-level feature information and top-

level feature information has been alleviated. Compared with the

original model, the D_P and P_P of the YOLOv8n-Pose+B model

are substantially improved by 1.9% and 2.9%, respectively.

However, due to the operation of progressive fusion, feature

fusion becomes more frequent, which in turn generates more

parameters and computing power, increasing by 0.13M and 1.3G,

respectively. After designing the original single-branch key point

detection head of the Head network into a dual-branch key point

detection head and introducing the residual structure, the detection

head’s ability to select important features of key points is effectively

enhanced. At the same time, the residual structure further

compensates for the loss of important features. The P_mAP50 is

improved by 2.1% compared with the original model. The

combination of RFAConv, AFPN, and enhanced key point

detection head showed the best detection performance, with

D_mAP50 and P_mAP50 increased by 1.4% and 2.3%,

respectively, compared with the original model. Still, it also

increased the model complexity, increasing model size and

computing power and a slower model inference speed. The

biggest impact is the inference speed of the model. Although the
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FPS dropped to 91, the actual tapping time is 45s, and the tapping

speed is about 0.8cm/s. Therefore, the detection speed of 91FPS

fully meets the requirements of real-time tapping. The number of

model parameters and computing power has only increased slightly,

with Params increased to 3.31M and GFlops increased to 10.1G. In

the current application of lightweight models in agricultural fields,

Sun et al. (2022) proposed a lightweight model with 6.84M Params

and 14.7G GFlops for rubber tapping, and Zhang et al. (2023b)

proposed a lightweight model with 4.78M Params and 12.3G

GFlops for animal recognition. In comparison, YOLOv8n-IRP is

much smaller than them in parameters and GFlops, which is very

beneficial for deployment on intelligent rubber-tapping machines.

Figure 9 shows the training results of the model more

intuitively. Before 30 epochs, the loss of the object and key points

decreases rapidly, while the mAP50 increases rapidly, indicating

that the model has a faster convergence rate both before and after

the improvement, and does not decrease due to the increase in

model complexity. Simultaneously, the improved YOLOv8n-IRP

has lower loss and higher mAP50 than the original model. This

observation shows that the combination of RFAConv, AFPN, and

the improved key point detection head enables the model to have

better detection performance.
4.2 Comparison of detection performance
between different models

To demonstrate the comprehensive performance of the

improved YOLOv8n-IRP model in rubber tree tapping surface

detection and rubber tapping key point detection, this experiment

uses three popular object detection and key point detection

algorithms for comparison, as shown in Table 3. In Table 3,

except for Faster_RCNN-RTMPose, the other three algorithms

are lightweight models. Among them, the improved lightweight

model YOLOv8-IRP has the highest D_P and D_R, P_P, P_R,

D_mAP50 and P_mAP50, which are second only to the

Faster_RCNN-RTMPose, reaching 98.5%, 88.9%, 99.2%,

89.8%, 98.3% and 86.4%, respectively. The reason why the

Faster_RCNN-RTMPose can show high detection accuracy in key

point detection is due to the detection mode of RTMPose. The

RTMPose is a top-down key point detection algorithm. It first

detects the object box and then predicts the key points in the object

box by generating a key point heat map. This makes detection
TABLE 2 Comparison results of ablation experiments.

A B C D_P/P_P (%) D_R/P_R (%)
D_mAP50/

P_mAP50 (%)
Params
(M)

GFlops
(G)

FPS
(f/s)

× × × 96.3/86.2 97.9/87.6 96.9/84.1 3.08 8.3 200

√ × × 97.7/87.8 99.1/89.7 97.8/85.6 3.10 8.6 167

× √ × 98.2/89.1 98.7/89.6 97.6/85.3 3.21 9.6 111

× × √ 96.4/87.3 97.9/88.4 96.8/86.2 3.16 8.6 143

√ √ √ 98.5/88.9 99.2/89.8 98.3/86.4 3.31 10.1 91
fr
1) D_P, D_R, D_mAP50 and P_P, P_R, P_mAP50 denote P, R, and mAP50 for object detection and key point detection, respectively.
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accuracy better than lightweight models that simultaneously predict

objects and key points through regression. However, it also exposes

its shortcomings. It needs to train two models: the object detection

model Faster_RCNN and the key point detection model RTMPose,

which makes its model size larger and requires higher computing

power to train the model. The increase in model size and the

cumbersome detection steps also greatly reduce the detection speed.

As shown in Table 3, the Faster_RCNN-RTMPose has the largest

Params and GFlops, reaching 54.42M and 199.5G, respectively, and

the smallest FPS, only 13f/s, which is extremely disadvantageous for

deployment on mobile devices. On the other hand, the Params and

GFlops of the YOLOv8n-IRP have only 3.31M and 10.1G, which are

dozens of times smaller than the Faster_RCNN-RTMPose. At the

same time, the FPS can reach 91f/s, which is several times faster

than the Faster_RCNN-RTMPose, so it is more suitable for

deployment on mobile devices.
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The rubber forest mainly includes rubber trees with one, three,

and five year(s) of tapping age. Therefore, this experiment visualizes

the detection results of four models for rubber trees with one, three,

and five years of harvesting age, as shown in Figure 10. Among

them, YOLOv8-IRP achieves more than 96% confidence in the

detection of tapping surfaces at one, three, and five year(s), which is

2-3% higher than YOLOv5n-Pose and YOLOv8n-Pose, and it can

accurately detect the presence of the starting and end point.

Although compared with the Faster_RCNN-RTMPose, it fails to

predict the occluded key points (the occluded key points predicted

by the Faster_RCNN-RTMPose are shown in the green dotted

circles in Figure 10), in actual rubber tapping, rubber tapping can

only be carried out if the tapping key points are revealed. The

occluded starting and ending points have no practical significance

for rubber tapping. Therefore, the detection accuracy of the

YOLOv8n-IRP meets the requirements of rubber tapping. In
TABLE 3 Comparison results of detection performance of different network models.

Model D_P/P_P (%) D_R/P_R (%) D_mAP50/P_mAP50 (%)
Params
(M)

GFlops
(G)

FPS
(f/s)

Faster_RCNN-RTMPose 96.5/96.6 99.7/97.9 98.7/93.0 54.42 199.5 13

YOLOv5n-Pose 97.1/86.7 98.2/87.8 96.4/83.6 2.58 7.3 167

YOLOv8n-Pose 96.3/86.2 97.9/87.6 96.9/84.1 3.08 8.3 200

YOLOv8n-IRP 98.5/88.9 99.2/89.8 98.3/86.4 3.31 10.1 91
FIGURE 9

Comparison of loss and mAP50 curves in ablation experiments. (A, B) The convergence of the object loss and the D_mAP50. (C, D) The
convergence of the key point loss and the P_mAP50.
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addition, The YOLOv5n-Pose and YOLOv8n-Pose have false

detection in key point detection, which is mainly manifested in

detecting key points from the tapping surface without key points, as

shown in the yellow dotted circle in Figure 10. This is because the
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tapping surfaces that expose key points have similar features to

those that do not, while the Neck network structure of both

YOLOv5n-Pose and YOLOv8n-Pose is PAFPN. The loss or

degradation of low-level and high-level features will occur during
TABLE 4 Detection results of different models under different lighting conditions.

Model Light intensity NSD NFD DSR (%) ADSR (%)

Faster_RCNN-RTMPose

overexposed 169 31 84.5

89.5underexposed 180 20 90

normal exposure 188 12 94

YOLOv5n-Pose

overexposed 147 53 73.5

79underexposed 160 40 80

normal exposure 167 33 83.5

YOLOv8n-Pose

overexposed 154 46 77

80underexposed 157 43 78.5

normal exposure 169 31 84.5

YOLOv8n-IRP

overexposed 168 32 84

87underexposed 171 29 85.5

normal exposure 182 18 91
1) NSD, Number of successful detections; NFD, Number of failed detections; DSR, Detection success rate; ADSR, Average detection success rate.
a1 b1 c1 d1

a2 b2 c2 d2

a3 b3 c3 d3

FIGURE 10

The detection results of different tapping ages trees. Letters (A–D) represent the detection results of the Faster_RCNN-RTMPose, YOLOv5n-Pose,
YOLOv8n-Pose, and YOLOv8n-IRP, respectively. Numbers 1, 2, and 3 denote rubber trees with one, three, and five year(s) of tapping age.
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the feature fusion process. Therefore, it is not possible to distinguish

such similar features well enough to make correct predictions. To

this end, this paper first uses the RFAConv in the YOLOv8n-IRP to

enhance the ability of feature extraction. Then, it uses the AFPN

structure to reduce the loss and degradation of low-level and high-

level features in the feature fusion process. Finally, the designed

dual-branch key point detection head is used to improve the feature

screening ability and solve the problem of low prediction accuracy

of similar features.

In addition to this, the uncertainty of weather and the shading

of light by rubber tree trunk foliage result in variable lighting, which

is one of the main challenges for vision applications in rubber

forests. Therefore, in order to further demonstrate the usefulness of

the improved YOLOv8n-IRP model in rubber forests, this

experiment is conducted to test the overexposed, underexposed

and normally exposed pictures using four models, respectively, and

the detection success rates of the four models in the face of different

lighting conditions are counted, as shown in Table 4. In Table 4, the

overexposed, underexposed and normal exposure images used for

testing are 200 images, respectively, in which the YOLOv8n-IRP

model achieves a detection success rate of 91% in the normal

exposure environment, which is more than 5% higher compared

to both YOLOv5n-Pose and YOLOv8n-Pose, achieving a higher

detection accuracy. For overexposure and underexposure, the

detection success rates of the four models have decreased to

different degrees, which is caused by 1) the insufficient number of

images of complex scenes in the training set and 2) the increased

difficulty of extracting important features in complex scenes, which

makes the models suffer from the phenomena of misdetection and

underdetection. Although the accuracy of YOLOv8n-IRP is reduced

by the influence of complex illumination conditions, it still

maintains an average detection success rate of 87%, which

significantly improves the detection accuracy compared with the

original model YOLOv8n-Pose. As shown in Figure 11, the

duplicate detection and misdetection that originally appeared in

overexposure and underexposure are improved, which indicates

that YOLOv8n-IRP has a more excellent feature extraction
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capability and enhanced robustness. While Faster_RCNN-

RTMPose has a slightly higher detection accuracy than

YOLOv8n-IRP in various exposure scenarios, YOLOv8n-IRP is

more suitable to be deployed in mobile devices for intelligent

rubber tapping use, considering the detection accuracy, model

size, detection speed and the actual situation of rubber tapping.
4.3 Key point positioning performance
comparison experiment

To demonstrate the positioning accuracy of the improved

YOLOv8n-IRP model at the starting and ending points of rubber

tapping, this experiment calculates the xOD, yOD, and xyOD of 550

key points predicted by the four models, and their average values

are shown in Table 5 and Figure 12. As can be seen from

Figure 12A, the average error of the YOLOv8n-IRP on the x-axis

and y-axis is lower than that of the YOLOv8n-Pose and YOLOv5n-

Pose, and the accuracy has been significantly improved. It can be

seen from Table 5 that the average offset error of the YOLOv8n-IRP

in the x-axis direction is only 23.05 pixels, which is the smallest

error among the four models; the average offset error in the y-axis
A1 A2 B1 B2 

FIGURE 11

Comparison of detection results under different exposure environments before and after model improvement. Letters (A, B) indicate overexposure
and underexposure environments, respectively. Numbers 1 and 2 denote the YOLOv8n-Pose and YOLOv8n-IRP models, respectively.
TABLE 5 Experimental results of comparing the positioning accuracy of
different models.

Model
X-axis
average

offset(pixel)

Y-axis
average

offset(pixel)

Average
Euclidean
distance
(pixel)

Faster_RCNN-
RTMPose

25.05 21.80 33.18

YOLOv5n-
Pose

31.81 36.56 53.53

YOLOv8n-
Pose

28.62 36.75 51.41

YOLOv8n-IRP 23.05 25.67 38.45
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and Euclidean directions is similar to that of the Faster_RCNN-

RTMPose and is reduced by more than 10 pixels compared to

YOLOv8n-Pose and YOLOv5n-Pose. From Figures 12B, C, it can be

seen that the stability of the localization error of YOLOv8n-IRP is

greatly improved compared with that of YOLOv8n-Pose, in which

the maximum error does not exceed 100 pixels, while YOLOv8n-

Pose shows an error of close to 180 pixels, further proving that the

positioning accuracy is improved after the model improvement.

Positioning accuracy and stability affects the regularity of the

tapping surface, which in turn affects the efficiency of glue flow.

Therefore, the improvement of YOLOv8n-IRP positioning

performance has improved the efficiency of glue flow, thereby

increasing the latex yield.

To further prove the feasibility of key point positioning of the

YOLOv8n-IRP model, this experiment visualizes four models’

key point positioning results for rubber trees of different tapping
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ages, as shown in Figures 13–15. Among them, the key points

predicted by the YOLOv8n-IRP on rubber trees with one, three,

and five year(s) of tapping age are close to the truth key points

and show high positioning stability, as shown in the red dotted

box in Figures 13–15. However, the positioning deviation of

YOLOv8n-Pose and YOLOv5n-Pose are obvious, with large

error fluctuations. The Faster_RCNN-RTMPose has the lowest

average offset error in the y-axis and Euclidean direction among

the four models. Still, it is only a few pixels lower than the

improved YOLOv8n-IRP, which is a small improvement for a

4000×6000 pixel photo. Nevertheless, in the visualization

experiment, although Faster_RCNN-RTMPose achieves the

highest positioning accuracy, as shown by the green dashed

box in Figures 13–15, there were also tapping surfaces with

poor positioning, as shown by the yellow dashed box in

Figures 13–15, indicating that the positioning error of
FIGURE 12

Error distribution scatterplot. (A) The average error of the 550 key points predicted by each model in the x-axis and y-axis directions. (B) The error
distribution of 550 key points predicted by the YOLOv8n-IRP. (C) The error distribution of 550 key points predicted by the YOLOv8n-Pose.
a1 b1 c1 d1

a2 b2 c2 d2

FIGURE 13

The positioning of key points on the tapping surface with one year of tapping age. Letters (A–D) represent the detection results of the
Faster_RCNN-RTMPose, YOLOv5n-Pose, YOLOv8n-Pose, and YOLOv8n-IRP, respectively. Numbers 1 and 2 denote tapping surfaces with starting
and end points. The red dot is the predicted starting point of tapping. The pink dot is the predicted end point of tapping. The green dot is the key
point of truth.
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Faster_RCNN-RTMPose fluctuates greatly. To sum up, the

YOLOv8n-IRP shows better performance in locating key

points on the tapping surface, which better meets the rubber

tapping requirements.
5 Conclusions and future work

In this paper, a rubber tree tapping surface detection and rubber

tapping key point localization model is proposed based on the

YOLOv8n-Pose. Firstly, the Receptive-field attention mechanism is
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integrated into the backbone network to solve the problem of sharing

common convolutional parameters with larger convolutional kernels,

thus improving the feature extraction capability of the backbone

network. Secondly, the AFPN is introduced to reduce the loss and

degradation of the underlying feature information and the higher-

level feature information in feature fusion and enhancement. Finally,

a dual-branch key point detection head is designed based on the

residual module to improve the feature screening capability. It

achieves detecting the tapping surface of different tapping ages and

locating the key points of rubber tapping in the complex rubber forest

environment, limited storage and computation capacity, with a view
a1 b1 c1 d1

a2 b2 c2 d2

FIGURE 14

The positioning of key points on the tapping surface with three years of tapping age. Part labels have the same meaning as Figure 13.
a1 b1 c1 d1

a2 b2 c2 d2

FIGURE 15

The positioning of key points on the tapping surface with five years of tapping age. Part labels have the same meaning as Figure 13.
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to providing a visual guarantee for intelligent rubber-tapping

equipment. The main conclusions are as follows:
Fron
(1) In the ablation experiment, compared with the YOLOv8n-

Pose, the YOLOv8n-IRP has been significantly improved in

all aspects of accuracy metrics, in which D_P, P_P, D_R,

P_R, D_mAP50, and P_mAP50 have been improved by

2.2%, 2.7%, 1.3%, 2.2%, 1.4%, and 2.3%, respectively. The

increase in Params and GFlops and the decrease in FPS are

inevitable because the AFPN structure performs feature

fusion multiple times in adjacent layers to reduce the loss

and degradation of low-level and high-level feature

information. Considering the actual tapping speed during

rubber tapping, 91f/s is sufficient to meet the rubber

tapping requirements. Therefore, it is meaningful to

significantly improve the detection accuracy of the rubber

tree tapping surface and key points while ensuring that the

detection speed meets the rubber tapping requirements.

(2) In the comparative experiment of the detection

performance of different models, the D_mAP50 and

P_mAP50 of YOLOv8n-IRP reach 98.3% and 86.4%,

respectively. The visualization results show that for

rubber trees of different tapping ages, the confidence of

the tapping surface detection is above 96%, and the

unobstructed tapping key points can be detected. The

overall detection performance is better than that of

YOLOv8n-Pose and YOLOv5n-Pose, which meet the

requirements of rubber tapping. Although the

Faster_RCNN-RTMPose showed the best detection

accuracy, it greatly lost model size and computing power,

which is not conducive to deployment in mobile rubber

tapping equipment, and the detection speed is not enough

to meet the requirements of rubber tapping. Therefore, it is

further proved that the YOLOv8n-IRP proposed in this

paper is more suitable for intelligent rubber tapping.

(3) In the comparative experiment of positioning performance

of different models, the average error between the predicted

points of the YOLOv8n-IRP and the corresponding truth

points in the Euclidean direction was kept within 40 pixels,

which was reduced by 12.96 pixels and 15.08 pixels

compared with the YOLOv8n-Pose and YOLOv5n-Pose

respectively. The visualization results show that for rubber

trees of different tapping ages, the predicted points are close

to the truth points, with small fluctuations and stable

positioning. The overall positioning performance is

similar to the Faster_RCNN-RTMPose, better than the

YOLOv8n-Pose and YOLOv5n-Pose, and meets the

requirements of rubber tapping.
At present, the method proposed in this paper can accurately

detect the tapping surface of natural rubber trees in Danzhou,

Hainan. Further research is needed to detect different varieties of

rubber trees in other regions, and the positioning accuracy needs to

be improved further. In future research, we will collect images of

rubber trees of different varieties in different regions, expand the
tiers in Plant Science 16
rubber tree data set under different environmental conditions, and

study methods to further optimize the network structure and

improve the positioning performance. In the entire rubber

tapping process, due to the uncertainty of the posture of the

rubber trunk, the uncertainty of the attitude of the rubber tree

trunk makes it difficult to adjust the end attitude of the robotic arm,

so the research on estimating the end attitude of the robotic arm

using machine vision is of great significance. Meanwhile, with the

integration of different algorithms, the deployment of algorithm

models will also bring new challenges, which have higher

requirements on the hardware of the rubber-tapping robot, so the

research on the lightweight of the model is also of great significance.
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