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and Hasan Şahin 2†
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Tomato (Solanum lycopersicum L.) cultivation is crucial globally due to its

nutritional and economic value. However, the crop faces significant threats

from various pests, including Tuta absoluta, Helicoverpa armigera, and

Leptinotarsa decemlineata, among others. These pests not only reduce yield

but also increase production costs due to the heavy reliance on pesticides.

Traditional pest detection methods are labor-intensive and prone to errors,

necessitating the exploration of advanced techniques. This study aims to

enhance pest detection in tomato cultivation using AI-based detection and

language models. Specifically, it integrates YOLOv8 for detection and

segmentation tasks and ChatGPT-4 for generating detailed, actionable insights

on the detected pests. YOLOv8 was chosen for its superior performance in

agricultural pest detection, capable of processing large volumes of data in real-

time with high accuracy. The methodology involved training the YOLOv8 model

with images of various pests and plant damage. The model achieved a precision

of 98.91%, recall of 98.98%, mAP50 of 98.75%, and mAP50-95 of 97.72% for

detection tasks. For segmentation tasks, precision was 97.47%, recall 98.81%,

mAP50 99.38%, and mAP50-95 95.99%. These metrics demonstrate significant

improvements over traditional methods, indicating the model’s effectiveness.

The integration of ChatGPT-4 further enhances the system by providing detailed

explanations and recommendations based on detected pests. This approach

facilitates real-time expert consultation, making pest management accessible to

untrained producers, especially in remote areas. The study’s results underscore

the potential of combining AI-based detection and language models to

revolutionize agricultural practices. Future research should focus on training

these models with domain-specific data to improve accuracy and reliability.

Additionally, addressing the computational limitations of personal devices will be

crucial for broader adoption. This integration promises to democratize

information access, promoting a more resilient, informed, and environmentally

conscious approach to farming.
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Introduction

Tomato (Solanum lycopersicum L.) is a globally significant vegetable

crop, essential for both nutritional value and economic stability.

However, tomato cultivation faces substantial threats from various

pests. Key pests include Tuta absoluta (Lepidoptera: Gelechiidae),

which has a significant socioeconomic impact in Eastern Africa due

to its widespread distribution and increased costs and pesticide use

among farmers (Pereyra and Sánchez, 2006; Shaltiel-Harpaz et al., 2015;

Aigbedion-Atalor et al., 2019). Helicoverpa armigera (Lepidoptera:

Noctuidae) is another critical pest, highlighting the low adoption of

biological control measures and underscoring the need for improved

farmer knowledge and extension programs (Balipoor and Ommani,

2014). Leptinotarsa decemlineata (Coleoptera: Chrysomelidae) and

Bemisia tabaci (Hemiptera: Aleyrodidae) also pose substantial threats.

Myzus persicae (Hemiptera: Aphididae), along with Dolycoris baccarum

(Hemiptera: Pentatomidae), Phyllotreta spp. (Coleoptera:

Chrysomelidae), and Nezara viridula (Hemiptera: Pentatomidae),

further complicate tomato cultivation. Additionally, Tetranychus

urticae (Trombidiformes: Tetranychidae) is a significant allergen,

particularly among greenhouse workers and asthmatics living near

orchards (Jee et al., 2000). Frankliniella occidentalis (Thysanoptera:

Thripidae) is another pest impacting tomato crops. Insecticide use

patterns among tomato farmers in Ghana reveal a mix of recommended

and non-recommended, persistent insecticides, highlighting the need

for better regulation and education (Danquah et al., 2010).

Efficient and timely identification of pests is essential for

maintaining crop health and optimizing yield. Traditionally, this

process has relied heavily on human observation, which is labor-

intensive, time-consuming, and susceptible to errors (Danquah

et al., 2010). Artificial Intelligence (AI) models, which use

algorithms and computational power to simulate human

intelligence, offer a promising alternative. There are various types

of AI models for data processing: some models process images by

converting them into matrices (detection models), while others

process text by converting characters or tokens into vectors

(language models) (Vaswani et al., 2017). Detection models, such

as Mask R-CNN, Faster R-CNN, SSD, and YOLO (You Only Look

Once), provide rapid and accurate pest detection, significantly

reducing the need for manual labor and enhancing precision.

They are capable of processing large volumes of data in real-time,

thereby greatly improving agricultural efficiency and sustainability

(Liu and Wang, 2020; Swinburne et al., 2022; Jin et al., 2022; Wen et

al., 2022; Rajamohanan and Latha, 2023).

YOLO excels due to its real-time processing, high detection

accuracy, and versatility in both detection and segmentation tasks.

Unlike traditional AI-based pest management systems, this study

introduces a novel integration of real-time detection with YOLOv8

and language-based decision support via ChatGPT-4, offering both

precision in pest detection and actionable, context-specific

recommendations for farmers. This combination allows not only

for accurate detection but also for informed decision-making,

making the system accessible and practical for real-world

agricultural applications. By reducing the reliance on manual

expertise and providing timely insights, this system improves
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both the efficiency and sustainability of pest management

practices. It is particularly effective for detecting small, densely

packed objects like agricultural pests, making it ideal for real-time

applications (Redmon et al., 2016). Its adaptability to various scales

and high mean Average Precision (mAP) scores further justify its

use in training and detecting agricultural pests, effectively managing

multiple pest species with diverse morphologies (Yang et al., 2020;

Hashimoto et al., 2020). These features make YOLO an excellent

choice for pest detection and segmentation in this study.

However, while detection models like YOLO have the potential

to analyze pests more accurately and quickly than humans, they

lack the capability to interpret the findings and provide actionable

recommendations to farmers (Swinburne et al., 2022; Jin et al.,

2022). This gap, which requires knowledge and experience, can be

filled by language models. Language models, like ChatGPT, are a

type of AI designed to understand and generate human language.

They process data by converting characters into vectors, which

allows the model to recognize and predict patterns in text (Vaswani

et al., 2017). ChatGPT-4, developed by OpenAI, was trained on

approximately 1.3 trillion tokens, providing it with a vast knowledge

base (Rao et al., 2023). Therefore, while YOLO is used for accurate

and real-time pest detection, ChatGPT was chosen as the language

model for this study due to its extensive training and ability to

generate relevant, insightful responses to interpret the detected

tomato pests.

Accurate and real-time identification of agricultural pests

necessitates education, knowledge, and experience (Swinburne

et al., 2022; Danquah et al., 2010). Once pests are detected, it is

essential to have detailed information about them to devise effective

management strategies (Balipoor and Ommani, 2014; Aigbedion-

Atalor et al., 2019). Accessing this information can be time-

consuming and costly. However, language models can provide

detailed commentary on detected pests in agricultural

applications, thus informing farmers who may lack expertise. By

facilitating access to accurate information and analyzing large

datasets more quickly than humans, these models can save time

and costs while enhancing the quality of education. In this study,

detection models and language models are integrated through an

API (Application Programming Interface, a set of rules and

protocols for building and interacting with software applications,

allowing different systems to communicate and share data) to

analyze and interpret pest data, providing a valuable guide for

future similar research endeavors.
Materials and methods

Definition of the research area and dataset

Turkey is one of the top five tomato-producing countries in the

world. About 10% of Turkey’s tomato production occurs in Bursa,

where tomatoes were the most produced vegetable in 2020, with

13.2 million tons (Kumbasaroğlu et al., 2021). This study was

conducted from March 2022 to September 2023 in Bakirköy

village, located in the Karacabey district of Bursa province in the
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Şahin et al. 10.3389/fpls.2024.1468676
northwest of Turkey, lying between latitudes 40°7’17.53”N and 40°

10’40.36”N and longitudes 28°21’14.12”E and 28°26’2.37”E. Field

campaigns were conducted from June to July 2023. The site covers

an area of 47.16 km², and a total of 96 tomato fields were

investigated. The identification of pests observed in the field

photographs was carried out according to the morphological

diagnostic keys available in the literature (Blackman and Eastop,

2000; Hoebeke and Carter, 2003; Desneux et al., 2010; Ashbrook

et al., 2022; Li et al., 2023).

Detection models excel in identifying the presence and location

of pests quickly and efficiently (Barbedo, 2016). However,

segmentation models are more suitable when detailed

morphological features or comprehensive damage maps are

necessary (Arockia et al., 2023). The YOLOv8 model integrates

both detection and segmentation capabilities. In this study, the

yolov8s.pt model was employed for detection tasks, while the

yolov8n-seg.pt model was utilized for segmentation tasks.

The images used for detection and segmentation in this

study encompass various pests and damage types affecting

tomato crops. These include Dolycoris baccarum (Hemiptera:

Pentatomidae), Phyllotreta spp. (Coleoptera: Chrysomelidae),

Nezara viridula (Hemiptera: Pentatomidae), Myzus persicae

(Hemiptera: Aphididae), Bemisia tabaci (Hemiptera: Aleyrodidae),

Leptinotarsa decemlineata (Coleoptera: Chrysomelidae), Tuta

absoluta (Lepidoptera: Gelechiidae), Helicoverpa armigera

(Lepidoptera: Noctuidae), Liriomyza bryoniae (Diptera:

Agromyzidae) damage, Frankliniella occidentalis (Thysanoptera:

Thripidae) damage, and Tetranychus urticae (Trombidiformes:

Tetranychidae) damage. These pests and damage types were

systematically photographed and used to train the YOLOv8

model for accurate detection and segmentation tasks, aiming to

enhance the model’s ability to identify and manage multiple pest

species effectively.

FromMarch 2023 to September 2024, high-resolution images of

tomato plant diseases and pests were captured using a Canon EOS

700D camera with a resolution of 768 × 1024 pixels. To ensure

consistency in image quality, all photographs were taken using

cameras set to identical resolution settings. Images were taken at

distances of 1 meter and 0.2 meters from the leaves, from various

angles (Yong et al., 2020). A comprehensive dataset of over 1,000

images was compiled for each pest, documenting different angles

and features. These images were then divided into three subsets:
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80% for training, 18% for validation, and 2% for testing, as outlined

in Table 1.
Data preprocessing techniques
and applications

Data preprocessing refers to a series of steps undertaken to

prepare raw data for analysis or modeling. It is commonly used in

data mining, machine learning, statistics, and data analysis to

address data deficiencies, noise, and inconsistencies, thereby

enabling more effective analysis (Şahin and Topal, 2016; Atalan

et al., 2022; Bas ̧türk and Şahin, 2022). For image processing models,

preprocessing the dataset involves three steps: image labeling,

resizing, and augmentation. Augmentation provides a large

amount of training data to learn features and achieve accurate

classification on unseen data, preventing issues like overfitting and

poor generalization (Redmon and Farhadi, 2018; Rubanga et al.,

2020; Güven and Şahin, 2022).

In this study, Python (version 3.11.8) was used for data

preprocessing due to its extensive library ecosystem. To enhance

the quality of model training, the original images taken under field

conditions were augmented using the OpenCV library. During

augmentation, transformations were applied to each image,

including rotation, cropping, flipping, adding noise, adjusting

lighting, and zooming out (Shorten and Khoshgoftaar, 2019). All

images were resized to 600 × 600 pixels as required for model

training (He et al., 2017). The analyses were conducted in the

Spyder IDE, part of the Anaconda distribution, which offers various

libraries for scientific computing and data science (Şahin et al.,

2020; Yılmaz et al., 2021). Prior to any augmentation, the dataset

was divided into training, validation, and test sets (80%, 18%, and

2%, respectively) to ensure that no data leakage occurred during

the augmentation process. Augmentation was only applied to the

training set to avoid introducing artificial examples into the

validation and test sets, which could result in overly optimistic

performance estimates (Shorten & Khoshgoftaar, 2019).

Specifically, transformations such as rotation, cropping, flipping,

adding noise, adjusting lighting, and zooming out were applied only

to the training data after the initial dataset split. Labeling was

performed using the LabelMe tool (https://github.com/wkentaro/

labelme), with two main approaches: pixel-based segmentation for
TABLE 1 Distribution of the image dataset for model training.

Method Image Type Total Images Training %80 Validation %18 Test %2

Detection Pest adult images 7000 5600 1260 140

Pest nymph images 2000 1600 360 40

Pest larva images 2000 1600 360 40

Total Images 11000 8800 1980 220

Segmentation Tomato leaf images 5000 4000 900 100

Tomato fruit images 4000 3200 720 80

Total Images 9000 7200 1620 180
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precise boundary definitions and rectangular bounding for

approximate location and size.
Model setup and training

YOLOv8 was selected for this study due to its superior speed

and efficiency compared to slower yet more accurate models like

Faster R-CNN, making it particularly well-suited for real-time

agricultural pest detection, where timely decisions are essential for

effective pest management (Tang et al., 2021). The YOLOv8 models

were trained using the ultralytics library for model loading and

training, and the google.colab library for accessing the dataset via

Google Drive. Training parameters included over 100,000 epochs

(with patience set to 50 to prevent overfitting), a batch size of 16,

and an image size of 640 (Table 2). The model’s hyperparameters,

including the number of epochs, batch size, and learning rate, were

optimized through an iterative process. Early stopping (patience)

was employed to prevent overfitting, while cross-validation was

used to fine-tune the learning rate and batch size. The optimal

values for these parameters were selected based on the model’s

performance on the validation set, ensuring robustness and

preventing overfitting. Training was conducted on Google

Colaboratory, utilizing an Intel Xeon CPU, 12.68 GB RAM, and a

Tesla K80 GPU. Both detection and segmentation models were

trained in Python on a custom dataset. Instance segmentation

models were chosen to precisely identify damage caused by

multiple pest species on tomato plants, which is crucial for

accurately identifying specific damages on leaves and fruits

(Mirhaji et al., 2021; Zhang et al., 2023a, 2023). The YOLO

framework used in this study is illustrated in Figure 1.
Model evaluation methodology and
testing process

The model’s generalization capability was assessed using a pre-

allocated dataset: 80% for training, 18% for validation, and 2% for

testing. Key performance metrics, including precision, recall,

mAP50, and mAP50-95, were calculated during training on both

training and validation datasets. Detection and segmentation

performances were evaluated at various IOU thresholds using

precision (P), recall (R), and mean average precision (mAP). The

mAP50 metric refers to the mean average precision at a 50% IOU

threshold, indicating the accuracy of the model in identifying

objects with at least 50% overlap with ground truth labels. On the

other hand, mAP50-95 averages precision over IOU thresholds

from 50% to 95%, offering a more comprehensive view of the
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particularly important in agricultural contexts where pests may be

occluded or vary in size (Li et al., 2023). These metrics provide

insights into the model’s ability to handle various sizes and overlaps

in real-world agricultural environments. Loss metrics—box_loss,

cls_loss, and dfl_loss—were analyzed to identify areas for

improvement. The confusion matrix summarized predictions

across classes, highlighting correct and incorrect classifications.

This comprehensive analysis provided a clear understanding of

the model’s strengths and weaknesses. Metrics P, R, mAP50, and

mAP50-95 are defined by Table 3.
Prompt creation and OpenAI GPT-
4 integration

The study used Python and open-source libraries to integrate

detection models with OpenAI’s GPT-4 via an API key. Initially,

models identified trained objects, which were then linked to GPT-4.

A good prompt should be clear, specific, and provide context to

guide the AI’s response. Labels were defined as ‘det_labels_str’ and

‘seg_labels_str’. The prompt used in the study was: prompt_str =

f”Could you provide a detailed explanation, in academic English, on

the methods for controlling {det_labels_str} or {seg_labels_str} and

the potential damage they can inflict on related plants, including

preventative measures and integrated pest management strategies?”.

Text outputs, limited to 250-400 tokens, were visualized with

detection results. A ten-step coding sequence enabled the

simultaneous operation of segmentation and detection models

(Table 4). The workflow, from image capture to ChatGPT-4

output, is depicted in Figure 2.
Results

Training and validation loss graphs

In this study, significant improvements were observed during

YOLOv8 model training for pest detection. For training metrics, the

box_loss decreased from 1.84 to 0.54, cls_loss from 3.48 to 0.37, and

dfl_loss from 1.54 to 0.86. Similarly, validation metrics showed a

decline: val/box_loss reduced from 1.38 to 0.53, val/cls_loss from

3.45 to 0.31, and val/dfl_loss from 1.30 to 0.90. Training was halted

at 749 epochs to prevent overfitting, demonstrating effective

learning and performance. For segmentation, the train/box_loss

decreased from 1.97 to 0.57, train/cls_loss from 4.04 to 0.37, and

train/dfl_loss from 1.56 to 0.86, while validation metrics also

improved, with val/box_loss reducing from 1.99 to 0.74, val/
TABLE 2 Key parameters were set in Google Colab for the training of the Ultralytics YOLOv8.

Task Mode model epochs batch imgsz patience

segment train yolov8s.pt 10000 16 640 50

detect train yolov8n-seg.pt 10000 16 640 50
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cls_loss from 2.65 to 0.37, and val/dfl_loss from 1.45 to 0.92.

Training stopped at 372 epochs to avoid overfitting, indicating

robust model performance (Figure 3).
Performance evaluation metrics

During YOLOv8 model training, significant improvements

were noted across key metrics: precision increased from 0% to

98.91%, recall from 0% to 98.98%, mAP50 from 0% to 98.75%, and

mAP50-95 from 0% to 97.72%. Training was halted at 749 epochs to

prevent overfitting, demonstrating enhanced accuracy and

reliability in object detection (Figure 4A). For segmentation,

precision improved from 0% to 97.47%, recall from 0% to
Frontiers in Plant Science 05
98.81%, mAP50 from 0% to 99.38%, and mAP50-95 from 0% to

95.99%, with training stopping at 372 epochs to avoid

overfitting (Figure 4B).
Confusion matrix analysis

A confusion matrix, essential for evaluating a model’s

performance, pinpoints misclassifications and highlights areas for

potential improvement. The test set, comprising images of adult

insects, nymphs, and larvae across 11 classes, facilitated the

computation of the confusion matrix. The YOLOv8 model

exhibited high accuracy in detection tasks. Specifically, D.

baccarum adults were correctly classified 890 times with 15

misclassifications, N. viridula adults were accurately identified 695

times with 15 errors, andM. persicae adults were correctly classified

998 times. Additionally, B. tabaci adults achieved 1025 correct

identifications, and L. decemlineata adults were correctly

identified 666 times with no errors (Figure 5). The model’s

performance for segmentation on the test set revealed notable

outcomes across 8 classes: 550 correct detections of L. bryoniae

damage, 345 accurate detections of T. absoluta damage on fruit, 450

precise detections of T. urticae damage on leaves, and 565 correct

identifications of healthy tomato leaves (Figure 6).
Prompt creation and real-time textual
response to visual data

The integration of YOLOv8 and ChatGPT-4 showcases the

powerful combination of computer vision and natural language
TABLE 3 Formulas of key performance metrics for evaluating YOLO
models in object detection.

Performance metrics Formula

Precision (P) TP
(TP + FP)

Recall (R) TP
(TP + FN)

mAP50 1
Qo

Q
q−1P(Rq)

mAP50-95 1
Qo

95
i−5P(Rq)

1
Qio

Qi
q−1P(Rq, i)
TP (True Positives): The count of correct positive predictions. FP (False Positives): The count
of incorrect positive predictions (actual negatives predicted as positives). FN (False Negatives):
The count of incorrect negative predictions (actual positives predicted as negatives). Q:
Number of query points. P(Rq): Interpolated precision at recall level Rq.
FIGURE 1

YOLO Framework used in this study. Input: Raw images fed into the model. Backbone: Extracts features from images. Neck: Combines and
enhances features. Prediction: Predicts pests’ presence and location. Output: Provides detection and segmentation results.
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processing, enabling expert feedback on visual data. This

integration was tested on five pictures from the test set, which

were not included during the training phase. The responses to the

crafted prompt, [prompt_str = f”Could you provide a detailed

explanation, in academic English, on the methods for controlling

{det_labels_str} or {seg_labels_str} and the potential damage they
Frontiers in Plant Science 06
can inflict on related plants, including preventative measures and

integrated pest management strategies?”] are presented in Figure 7.

The trained detection and segmentation models processed the test

images in approximately 0.10 seconds, while the integration with

ChatGPT-4 provided textual responses within 3.5 seconds via the

API. Despite being limited to 250-400 tokens, the ChatGPT-4

responses, while not always fully comprehensive, demonstrated

the potential to offer key information.
Discussion

In the literature, numerous detection models such as Mask R-CNN,

SSD, Detectron, and MobileNet are capable of identifying objects in

photographs using image processing techniques (He et al., 2017; Liu

et al., 2016; Girshick et al., 2014; Howard, 2017). However, among these

models, YOLOv8 is preferred in this study due to its superior

performance in agricultural pest detection (Redmon et al., 2016;

Bochkovskiy et al., 2020). These superior results can be attributed to

several factors, including the large and diverse dataset used for training,

YOLOv8’s advanced architecture which allows for real-time processing

with high accuracy, and the application of optimized hyperparameters

specific to agricultural pest detection. For the detection task of the

YOLOv8, precision increased to 98.91%, recall to 98.98%, mAP50 to

98.75%, and mAP50-95 to 97.72%. For segmentation tasks, precision

increased to 97.47%, recall to 98.81%, mAP50 to 99.38%, and mAP50-

95 to 95.99%. These results are consistent with other studies, such as the

Pest-YOLO model achieving 69.59% mAP and 77.71% recall, and

another study using YOLOv8 for small pest detection in field crops

reporting an mAP of 84.7% (Khalid et al., 2023). Additionally, a study

on pest detection in strawberries using segmented image datasets

achieved a pest detection rate of 91.93% and detection reliability of

83.41% (Choi et al., 2022).

The integration of AI-based detectionmodels with language models

like ChatGPT offers significant benefits in pest detection and

environmentally friendly pest control (Gu et al., 2021). Traditional

methods, such as literature reviews, are resource-intensive, whereas
TABLE 4 Integration of Ultralytics YOLO and OpenAI GPT-4 using
API key.

Steps Description

1 Model Loading Pre-trained segmentation and detection models
are loaded using the YOLO framework.

2 Image Loading The image to be analysed has been uploaded.

3 Segmentation The segmentation model is run on the image, and
the predicted masks are obtained.

4 Application of Masks The predicted masks are applied to the original
image to identify specific areas.

5 Detection The detection model is executed on the combined
image, predicting bounding boxes and class names
for objects.

6 Visualization
of Results

Both segmentation and detection outcomes are
visualized and saved for further analysis.

7 Labelling The segmentation and detection results are
converted into labels and formatted as strings.

8 Integration with
Natural

Language Processing

By connecting to OpenAI’s GPT-4 through its
API, a question is formulated regarding the
detected labels, and a response is
subsequently obtained.

9 Prompt Creation for
GPT-4

prompt_str = f”Could you provide a detailed
explanation, in academic English, on the methods
for controlling {det_labels_str} or {seg_labels_str}
and the potential damage they can inflict on
related plants, including preventative measures
and integrated pest management strategies?”

10 Combination and
Visualization
of Results

The detection results and the text response from
GPT-4 are visualized and saved.
FIGURE 2

ChatGPT-4 integration process.
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language models provide rapid interpretations within 3.5 seconds, as

demonstrated in this research. Researchers emphasize ChatGPT’s

potential to train producers and improve information access (Ray,

2023; Siche and Siche, 2023). However, challenges exist regarding

output accuracy, which depends on the training data (Gaddikeri et al.,
Frontiers in Plant Science 07
2023). Inaccurate training data can compromise response precision,

highlighting the need for training with credible sources.

Open-source language models like LLAMA (Meta) (Touvron

et al., 2023), GPT-Neo and GPT-J (EleutherAI) (Black et al., 2022),

BERT (Hugging Face) (Devlin et al., 2019), and GPT-2 (OpenAI)
FIGURE 4

Improvements in performance metrics during YOLOv8 model training for object detection (A) and object segmentation (B).
FIGURE 3

Changes in training and validation loss values over epochs for the YOLOv8 model trained for pest detection and segmentation.
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(Radford et al., 2019) allow for training on local computers with

specific, reliable, and targeted datasets. Nevertheless, even with

these advanced models, their effectiveness is contingent upon the

quality of the input data and their ability to generalize across diverse

agricultural environments. Furthermore, the computational power

of personal computers may be insufficient for effectively using these
Frontiers in Plant Science 08
models (Brown et al., 2020). While this study employed the

YOLOv8 model integrated with the broadly-informed GPT-4 via

an API, utilizing models trained with domain-specific, reliable data

could enhance the accuracy and reliability of outputs. Future work

should focus on training with domain-specific, trustworthy sources

to improve accuracy and applicability across various sectors.
FIGURE 6

Confusion matrix illustrating YOLOv8 model’s performance in pest segmentation across eight classes.
FIGURE 5

Confusion matrix illustrating YOLOv8 model’s performance in pest detection across 11 classes.
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Conclusion

The integration of AI-based detection and language models in this

study demonstrates a significant advancement in agricultural practices.

By embedding these models into common devices like smartphones,

even untrained producers can access real-time expert consultation,

enabling immediate pest detection and sustainable pest control. This

technology holds the potential to revolutionize agriculture, particularly

in remote areas, by reducing costs and facilitating integration with

unmanned vehicles for continuous monitoring.

The study’s results, showing substantial improvements in

detection and segmentation precision, recall, and mAP metrics,

underscore the efficacy of YOLOv8 in agricultural applications.

Additionally, integrating language models like ChatGPT enhances

the system’s capability by providing detailed explanations and

recommendations based on detected pests. This combination
Frontiers in Plant Science 09
allows for rapid, informed decision-making, improving pest

management strategies.

Future work should focus on training these models with

domain-specific, reliable data to further enhance their accuracy

and applicability. Moreover, addressing the computational

limitations of personal devices for running advanced models will

be crucial for broader adoption. To fully realize the potential of this

technology in low-income and remote agricultural settings, future

work should focus on the development of energy-efficient models

that can run on low-power devices and operate under limited

connectivity conditions. Additionally, partnerships with local

agricultural cooperatives could facilitate the dissemination and

training required for widespread adoption. Ultimately, this

integration promises to democratize information access,

promoting a more resilient, informed, and environmentally

conscious approach to farming.
FIGURE 7

Feedback from ChatGPT-4 based on object labels detected by YOLOv8.
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