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Discovery of genes that
positively affect biomass and
stress associated traits in poplar
Tatyana Georgieva1, Yordan Yordanov2, Elena Yordanova1,
Md Rezaul Islam Khan1, Kaiwen Lyu1 and Victor Busov1*

1College of Forest Resources and Environmental Science, Michigan Technological University,
Houghton, MI, United States, 2Department of Biological Sciences, Eastern Illinois University,
Charleston, IL, United States
Woody biomass serves as a renewable resource for various industries, including

pulp and paper production, construction, biofuels, and electricity generation.

However, the molecular mechanisms behind biomass traits are poorly

understood, which significantly curtails the speed and efficiency of their

improvement. We used activation tagging to discover genes that can positively

affect tree biomass-associated traits. We generated and screened under

greenhouse conditions a population of 2,700 independent activation tagging

lines. A total of 761 lines, which had significantly and positively affected at least

one biomass-associated trait, were discovered. The tag was positioned in the

genome for forty lines which were affected in multiple traits and activation of

proximal genes validated for a subset. For two lines we fully recapitulated the

phenotype of the original lines through overexpression. Moreover, the

overexpression led to more pronounced and additional improvements, not

observed in the original lines. Importantly, the overexpression of a Fasciclin-

like gene (PtaFLA10) and a Patatin-like gene (PtaPAT) was found to substantially

improve biomass, with a 40% increase in dry-stem weight, and enhance drought

tolerance, respectively. Additionally, PtaPAT overexpression increased cellulose

content, which is crucial for biofuel production. Our work shows that the

activation tagging approach applied even on a non-genome saturation scale in

a poplar tree can be successfully used for the discovery of genes positively

modify biomass productivity. Such dominant forward genetics approaches can

aid in biotechnological manipulation of woody biomass traits and help unravel

the functions and mechanisms of individual genes, gene families, and

regulatory modules.
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Introduction

Dedicated bioenergy crops like poplar, willow, and others are

projected to displace 30 % of current US petroleum consumption

(Perlack et al., 2005). In addition, woody biomass provides a

renewable resource for production of pulp and paper, structural

construction timber and multiple other products (de Vries et al.,

2021; Skog, 2008). Despite the economic and ecological importance

of woody biomass, the underlying molecular mechanisms of

biomass-related traits remain poorly understood, and this

significantly curtails the speed and efficiency of their improvement.

Biomass is a complex trait resulting from the integration of

numerous processes, encompassing molecular, cellular,

developmental, physiological, and metabolic levels (Carpita and

McCann, 2020; Li et al., 2024; Zhu and Li, 2023). There has been

substantial and long-standing interest in understanding biomass-

related traits from both improvement and fundamental perspective

(Groover, 2005; Li et al., 2024; Zhu and Li, 2023). However,

dissecting these traits is challenging due to their complexity and

the long generation cycle of trees, which makes traditional genetic,

and mutagenesis approaches impractical (Busov et al., 2005a).

The value of forward genetics approaches involving insertional

and other forms of mutagenesis is well established (Alonso et al.,

2003). However, these methods are difficult to use in trees, largely

because of their long generation cycles. Only dominant approaches

like activation tagging and full-length overexpression (FOX)

approaches are feasible because they can generate mutations in

the first generation (Busov et al., 2005a; Rauschendorfer et al.,

2020). Activation tagging uses a T-DNA vector with strong

constitutive enhancer elements positioned near its left or right

border. Insertion of the T-DNA into the genome typically leads

to the up-regulation of a proximal flanking gene, resulting in a gain-

of-function, dominant mutation (Deng et al., 2020). Dissecting gene

functions through loss-of-function mutations is challenging

because many genes exist in multiple copies, often organized in

large gene families with partially redundant functions. Activation

tagging, which creates gain-of-function mutations, offers an

alternative for functional characterization of gene families (Deng

et al., 2020; Nakazawa et al., 2003). The presence of such gene

families is a particular problem in poplar, which has undergone

whole-genome duplication events (Tuskan et al., 2006). Indeed,

many of the genes we identified through activation tagging in

Populus belong to large gene families such as Gibberellin (GA) 2-

oxidase, AP2/ERF transcription factor (TF), AT-hook domain TF,

and Lateral Organ Boundary (LBD) TF (Azeez et al., 2021; Busov

et al., 2003; Trupiano et al., 2013; Yordanov et al., 2010, Yordanov

et al., 2014). Activation tagging also offers several other advantages:

easy characterization of the insertion site using the tag sequence

(Liu et al., 1995); preferential insertion in gene-rich genomic

regions (Kim and Veena, 2007); and discovery of poorly

annotated or non-protein coding loci (Palatnik et al., 2003).

Here, we demonstrate the successful application of activation

tagging in poplar to identify genes that affect biomass traits.

Notably, we were able to identify a large number of mutations

that positively affect one or several biomass-associated traits. For a

subset of these mutants, we mapped the tag within the genome,
Frontiers in Plant Science 02
identified the proximal genes, confirmed their upregulation, and

recapitulated the mutant phenotypes via overexpression of the

putative causative genes. Our findings demonstrate the efficacy of

a dominant forward tagging approach applied on a non-genome

saturation scale for uncovering genes that positively impact biomass

traits in a tree.
Results

Phenotypic screens for mutations affecting
biomass-associated traits

To identify genes influencing traits linked to biomass growth in

Populus, we generated and screened under controlled greenhouse

conditions a population of 2,700 activation-tagged lines (see

Material and Methods). We focused on traits that are linked to

biomass growth (Figure 1A). A total of 761 lines exhibited

significant effect on at least one trait, categorized as phenotypic

mutant (Figure 1B). The various mutations had an approximately

evenly distributed impact over the 10 studied traits. The number of

internodes showing the greatest impact among all traits (Figure 1A).

In contrast, traits such as diameter at leaf plastochron index (LPI)

20, green density, dry weight at the base and dry leaf weight were

least affected (Figure 1A). More than half of the mutants (402) were

affected in only one trait (Figure 1B). In many cases, mutations

impacted simultaneously as many as 5-8 traits (Figure 1B).
Correlations between affected
phenotypic traits

To explore potential correlation between traits, pair-wise

phenotypic correlations were calculated across the entire

experiment (Table 1). As expected, strong correlations were evident

between closely related traits, such as green and dry density, and

between total dry biomass of the whole stem and the stem base.

Interestingly, less intuitive correlations were also observed. For

instance, dry leaf biomass showed significant and positive

correlation with the stem base diameter and dry stem biomass.

Additionally, dry stem biomass correlated positively with internode

number and the stem base diameter. These correlations may suggest

underlaying morphological or physiological connections that are not

apparent and require further investigations.
The tag insertions are proximal to genes

We characterized T-DNA insertions (Supplementary Table S1)

in 40 mutant lines (Table 2). Chromosome 1 had the highest

number of insertions (7), followed by 6 insertions on

chromosome 6, and 5 insertions on each chromosome 10 and 14

(Figure 2A). A significant correlation between chromosome size

and the number of insertions suggests random insertion of the tag

(Figure 2B). Most (37.5%/15) of the insertions were located within

the 10 Kbp 5′/3′ regions proximal to genes, while 17.5 % (7) in
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TABLE 1 Correlation between different phenotypic traits.

Height Int # Dia stb Dia
LPI20

DW
stb

MC Den-g Den-d DW st DW
leaves

Height 1

Int # 0.40 1

Dia stb 0.50* 0.60** 1

Dia LPI20 -0.17 0.09 0.15 1

DW stb 0.19 0.35 0.56** 0.28 1

MC 0.12 0.14 0.23 0.13 0.33 1

Den-g 0.01 0.34 0.20 0.28 0.34 0.55** 1

Den-d 0.08 0.25 0.24 0.12 0.32 0.55** 0.86*** 1

DW st 0.38 0.54** 0.61*** 0.19 0.70*** 0.32 0.41 0.37 1

DW leaves 0.14 0.41 0.59** 0.16 0.58** 0.31 0.17 0.26 0.51** 1
F
rontiers in Pla
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 03
Regression analysis was used to test the significance in the correlation between pair-wise traits. “*”, “**” and “***”marked in bold denote significant correlation at p ≤ 0.05, p ≤ 0.01 and p ≤ 0.001,
respectively. int # - internode number, dia – diameter, stb - stem base, st – stem, LPI20 – leaf plastochron index 20, dw – dry weight, mc – moisture content, den-g – density green, den-d –

density dry.
FIGURE 1

Summary of mutants and biomass traits affected in the poplar activation tagging screen. (A) Number of mutants identified to be positively and
significantly affected in the various measured biomass-associated traits. Different letters indicate significance as determined by a one-way ANOVA
followed by Fisher’s test (p < 0.05). (B) Illustrate the number of mutants affected in single versus multiple biomass traits.
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TABLE 2 Growth and biomass yield are significantly increased in poplar activation tagging lines.

Line ID

Trait significantly affected

Total
#

* (p < 0.05) ** (p < 0.01) *** (p < 0.001)

A634-2 8 Internode #; DW stem base, stem
Height; Dia stem base; MC;

Den-d
Den-g

826L-3 8
Height; Internode #; Dia stem base;

DW leaves MC
DW stem base; Den-d; DW stem

A771-3 6 MC
Dia stem base; Den-d; DW stem base,
stem, leaves

n.a.

A885-1 6 Height; DW stem base; Den-g Den-d; DW stem MC

A943-1 6 Dia LPI20; DW stem, leaves Dia stem base; DW stem base; MC n.a.

A630-7 5 DW stem base, stem, leaves; Height; Internode # n.a.

A726-3 5 Internode #; DW stem Height; Dia stem base n.a.

A857-2 5 Dia LPI20 Internode #; DW stem Height; DW leaves

A934-2 5 Height; MC; DW stem, leaves n.a. Internode #

B21-1 5 MC; DW stem Den-d
DW stem base;
Den-g

B0-4 5
Height; Internode #; Dia LPI20;

n.a. Den-g
DW stem

795L-6 5
Height; Internode #; Dia base;

n.a. n.a.
DW stem base; Den-d

A975-4 5 Height; Dia stem base; Den-d; DW stem n.a Den-g

A689-4 4 Dia LPI20; DW stem, leaves Dia stem base n.a.

A835-3 4 Internode #; Dia stem base; MC Den-d n.a.

A927-3 4 MC; Den-g; Den-d; DW leaves n.a. n.a.

A635-1 4 Dia stem base; Den-g n.a.
DW stem base;
Den-d

A822-3 4 Height; Internode #; DW stem base n.a. DW stem

A863-3 4 MC; Den-g DW stem base; Den-d n.a.

A836-1 4 DW leaves DW stem base, stem Internode #

A955-2 4 Dia stem base; DW stem DW stem base MC

A991-1 4 Den-g; Den-d; DW stem, leaves n.a. n.a.

501L-5 4
Height; Dia stem base; DW stem base,
DW stem

n.a. n.a.

A541-1 3 Dia stem base, LPI20 n.a. Internode #

A826-3 3 Height; DW stem, leaves n.a. n.a.

345L-1 3 DW stem base; Den-d Dia stem base n.a.

A613-2 3 MC Den-g; Den-d n.a.

575L-1 3 Den-d n.a. Height; Internode #

A979-4 3 MC; DW leaves Dia LPI20 n.a.

707L-1 3 MC; Den-d Den-g n.a.

994L-1 3 MC; Den-d n.a. Den-g

(Continued)
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exons and 12.5 % (5) in introns (Figure 2C). Additionally, 22.5 %

(9) were positioned in the 5’- or 3’-untranslated gene regions

(UTR) (Figure 2C).
Tagged genes are activated

For nine mutants, we proceeded with further characterization of

the expression of the genes near to the insertion sites (Table 3).

These mutants were selected based on the magnitude of their

impact on the affected trait, the number of traits affected, and the

novelty of the gene function (Table 3). Since the tag is often inserted

near multiple genes, and thus potentially impacts more than one, we

studied the expression of all potential candidates. In most cases (8

out of 9 lines), we found only one of the nearby genes activated

(Table 3). However, in only one line (A630-7), both genes proximal

to the tag showed activation.
Tagged genes show diverse and tissue-
specific native expression patterns

We characterized the expression of the activated genes in

various organs, including the apex, leaf, stem, and root of wild

type (WT-717) plants (Figure 3). These genes exhibited diverse

tissue specific expression patterns, suggesting varied influence on

b iomass t ra i t s . For example , PtXaTreH.14G052500 ,

PtXaTreH.14G052600 and PtXaAlbH.08G010800 were

predominantly expressed in the apex. PtXaAlbH.10G086200 and

PtXaTreH.15G090200 were abundant in the root, whereas

PtXaAlbH.05G161200 was mainly expressed in both the apex and

roots. PtXaTreH.06G072700 was expressed in all studied tissues.
Frontiers in Plant Science 05
Fasciclin-like gene enhances multiple
biomass traits

One of the lines selected for recapitulation experiments was

A630-7, chosen for its simultaneous impacts on multiple traits (five

in total, as shown in Table 2). Most importantly, the mutation

significantly enhanced stem dry weight, a crucial aspect of biomass

production. Additionally, the line exhibited increased leaf dry

biomass, which, as previously mentioned, is positively correlated

with stem dry weight (Table 1). This prompted our interest in

identifying the gene responsible for these changes. Position and

expression analyses indicated the upregulation of two genes near

the tag insertion site (Table 3). One gene showed the highest

homology to Arabidopsis's Fasciclin 10 (FLA10), which we named

PtaFLA10. The other gene exhibited the highest sequence homology

to Growth Regulating Factor 9 (GRF9) transcription factor from

Arabidopsis, which was called PtaGRF9. It was unclear which of the

two genes was responsible for the phenotypic changes. We thus

produced overexpression constructs for both genes and

transformed them into transgenic plants. Numerous independent

events were regenerated with the PtaFLA overexpression construct

(oe-PtaFLA10). However, despite several transformations attempts,

we could only recover four transgenic plants with PtaGRF9

overexpression construct (oe-PtaGRF9), suggesting that PtaGRF

interferes with the regeneration process.

PtaFLA10 overexpression positively affected several phenotypic

traits linked to biomass growth compared to WT-717 plants

(Figure 4). For instance, both the original mutant A630-7 line

and oe-PtaFLA lines were about 9 % taller than the wild type.

Additionally, the number of internodes increased by 15% in the

A630-7, while the oe-PtaFLA lines exhibited an average increase of

20 % (Figure 4). The oe-PtaFLA lines also displayed changes not
TABLE 2 Continued

Line ID

Trait significantly affected

Total
#

* (p < 0.05) ** (p < 0.01) *** (p < 0.001)

659L-1 3 Internode #s; Den-d n.a. Den-g

A901-5 2 n.a. n.a. Dia LPI20; DW stem

A842-3 2 Dia stem base DW leaves n.a.

A82-2 2 Height; Dia stem base n.a. n.a.

A862-1 2 Dia stem base; Den-d n.a. n.a.

199p-5 2 Internode #; Dia LPI20 n.a. n.a.

A915-2 2 n.a. n.a.
Internode #;
DW stem

A874-9 2 n.a. n.a. Internode #; Den-g

A955-1 1 Dia LPI20 n.a. n.a.
Various phenotypic traits were positively impacted in the lines selected for the analysis of the insertion of the tag. Within the subset each individual line was compared to the entire subset by trait
and significant differences were determined by Student’s t-test (“*”, “**” and “***” denoting p < 0.05, p < 0.01 and p < 0.001, respectively). n.a. – not available, Total # ‘Total trait(s) number’.
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observed in the original mutant, likely due to the strong

overexpression. For example, there was a significant increase in

the diameter at the 20th internode and at the stem base (Figure 4).

Most notably, a 40 % increase in the dry stem biomass was observed

in both the original A630-7 mutant line and oe-PtaFLA transgenics.

Consistent with the strong correlation between leaf and stem dry

weight (Table 1), leaf dry weight was also increased in both the

mutant and recapitulation transgenics.

In addition to enhanced biomass growth, both the original line

and the overexpression transgenics showed a significant decrease in

lignin content (Table 4). The overexpression transgenics also

exhibited a reduced S/G ratio, a change not observed on original
Frontiers in Plant Science 06
line (Table 4). No significant changes were measured in cell

wall carbohydrates.

Overexpression of the other gene, PtaGRF9, did not result in

significant phenotypic changes, suggesting that the observed

mutant phenotypic characteristics are due to the upregulation of

PtaFLA10 gene.

A patatin-like gene affects biomass growth,
leaf development and response to drought

We also further characterized the A541-1 mutant line through

recapitulation experiments. The activated gene in this line encoded
FIGURE 2

Characterization of the activation tag integration in the Populus genome. (A) Distribution of the insertions within the chromosomes. (B) Correlation
between chromosome size and number of insertions per chromosome. (C) Predominant identification of T-DNA insertions upstream from the gene
coding region.
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a protein with high similarity to patatin, and thus named PtaPAT.

PtaPAT overexpression led to an increase in stem diameter, but

only in stems undergoing primary growth, specifically 5th and 10th

internodes (Figures 5A, B; Table 2). Consistent with the original

A541-1 mutant line, the oe-PtaPAT lines also exhibited an increased

number of internodes (Figure 5C; Table 2). Additionally,

overexpression of PtaPAT resulted in leaves with an uneven

adaxial leaf surface, reminiscent of potato leaves (Figures 6A–C).

Given the distinct leaf surface observed in the oe-PtaPAT lines,

we performed histological analysis (Figures 6 D, E). The oe-PtaPAT
Frontiers in Plant Science 07
lines displayed a much denser palisade mesophyll cell layer, with a

larger number of closely spaced cells compared to the WT plants

(Figures 6 D, E).

Because of these unique changes in leaf structure, we wanted to

study the performance of the oe-PtaPAT lines under drought

conditions (Figures 6A, F, G). Wild-type and oe-PtaPAT lines

were subjected to drought stress for 3 days and CO2 assimilation

and stomatal conductance were monitored during this period. On

the 2nd day of the stress treatment oe-PtaPAT lines were not wilted

(Figure 6A) and showed higher photosynthetic activity (Figure 6F)

and stomatal conductance (Figure 6G) compared to the wild-type

plants. These results indicate a possible and yet unknown role of the

patatin gene in the response to the drought and create new

opportunities for further gene manipulations to improve drought

tolerance in plants.

The oe-PtaPAT lines also showed increases in lignin, cellulose, and

S/G ratio, changes not observed in the original mutant line and likely

attributable to the much higher level of overexpression (Table 4).
Discussion

In this study, we applied a moderate, non-genome saturation

size of poplar activation tagging population to discover genes that

positively affect biomass. Despite the moderate population size and

apparent randomness of the tag insertion, we identified a significant

number of ‘productive’ mutations. Several pieces of evidence

suggest that these mutations result from genuine activation

tagging. These include the tag’s insertion near genes, the

upregulation of the adjacent genes, and the successful

recapitulation of the phenotypic changes through overexpression.

The high success of activation tagging in poplar is attributed to the

preferential insertion of the T-DNA near genes, likely due to

Agrobacterium's tendency to target transcriptionally active, open

chromatin regions, a phenomenon also observed in Arabidopsis

and rice (Alonso et al., 2003; An et al., 2003; Chen et al., 2003;

Forsbach et al., 2003; Rosso et al., 2003; Sallaud et al., 2004;

Szabados et al., 2002). The bias toward open chromatin enhances

the likelihood of successful activation and productive mutation,

while our analysis revealed a random insertion pattern correlated

with chromosomal size. Majority (37.5%) of the positioned tags

were found with the 10 kb upstream or downstream of the genes,

confirming our previous finding (Busov et al., 2010) with a much

smaller population. Finally, the large size of poplar also facilitates

the detection of the phenotypic changes. As a perennial species,

these phenotypic changes could be further accentuated if the

screening were performed under multi-year field conditions,

where the changes would accumulate over time. Unfortunately,

due to stringent regulatory regimes, conducting such field trials

remains logistically challenging.

There is substantial evidence indicating significant

interdependence between the regulators of biomass production

and cell wall thickening (Maleki et al., 2020). Similar findings

were observed in Arabidopsis (Hu et al., 2018). For instances,

enzymes involved in cell wall loosening result significant increases

in biomass accumulation (Park et al., 2003; Shani et al., 2004),
TABLE 3 Real-time quantitative RT-PCR analysis of proximal genes
flanking the T-DNA insertion site.

Genotype Relative expression

Left flanking gene Right flanking gene

PtXaTreH.14G052500 PtXaTreH.14G052600

WT-717 84.02 ± 3.9 0.01 ± 0.0

A630-7 271.27 ± 22.9* 0.83 ± 0.1*

PtXaAlbH.08G010800 PtXaAlbH.08G010900

WT-717 0.15 ± 0.01 n.d.

A771-3 0.71 ± 0.00** n.d.

PtXaAlbH.05G161200 PtXaAlbH.05G161300

WT-717 0.05 ± 0.01 0.03 ± 0.02

A541-1 0.46 ± 0.02* 0.02 ± 0.01

PtXaAlbH.10G146600 PtXaAlbH.10G146700

WT-717 1.44 ± 0.10 0.12 ± 0.00

A689-4 0.24 ± 0.01 2.28 ± 0.14**

PtXaAlbH.10G086100 PtXaAlbH.10G086200

WT-717 43.61 ± 3.2 n.d.

A842-3 51.70 ± 2.2 499.36 ± 18.6***

PtXaTreH.15G090100 PtXaTreH.15G090200

WT-717 0.62 ± 0.04 0.03 ± 0.0

A835-3 0.71 ± 0.03 0.06 ± 0.0*

PtXaTreH.14G114800 PtXaTreH.14G114900

WT-717 0.03 ± 0.001 n.d.

A726-3 0.20 ± 0.001*** n.d.

PtXaTreH.01G014500 PtXaTreH.01G014600

WT-717 12.06 ± 0.8 n.d.

A826-3 42.96 ± 4.9* n.d.

PtXaTreH.06G072700 PtXaTreH.06G072800

WT-717 7.72 ± 0.2 0.55 ± 0.01

A927-3 12.85 ± 0.9* 0.65 ± 0.05
Values represent relative expression (mean ± standard error) of three biological replicates.
Ubiquitin (Ubq) was amplified as a normalization control. Asterisks “*”, “**” and “***”
indicate significance compared to the wild type as determined by Student’s t-test at p < 0.05, p
< 0.01 and p < 0.001, respectively. n.d. – not detected.
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highlighting the intricate link between cell wall biology and growth

processes in plants. Overexpression of a cellulose synthase led to

increased biomass production in poplar (Maleki et al., 2020).

Therefore, it is not surprising that both genes we recapitulated

(e.g., patatin and fasciclin) are associated with cell wall metabolism.

Fasciclins have long been known to be involved in secondary

wall thickening, though their exact role remains elusive

(Dharmawardhana et al., 2010; Huang et al., 2013; Janz et al.,

2012; Lafarguette et al., 2004; Ma et al., 2022, Ma et al., 2023;

MacMillan et al., 2010; Wang et al., 2015a, Wang et al., 2017, Wang

et al., 2015a). Fasciclin-like arabinogalactan proteins (FLAs) contain

a characteristic fasciclin-like domain, which plays a crucial role in
Frontiers in Plant Science 08
cell-cell and cell-matrix interactions, as well as in cell expansion, in

animal cells. Recent studies have identified approximately 50 FLA

proteins in Populus trichocarpa (poplar), with most of these

proteins being highly expressed in developing xylem. Notably,

group A FLAs are specifically associated with lignified internodes,

highlighting their potential role in wood formation and structural

integrity (Zhen et al., 2023). Indeed, the PtrFLA40/45 mutant

exhibited a significant increase in lignin content, which was

accompanied by the upregulation of six lignin biosynthetic genes

(Zhen et al., 2023). Interestingly, several other FLA genes in poplar

have been implicated in the formation of tension wood, operating

through a pathway associated with Gibberellin A3 signaling (Wang
FIGURE 3

Expression of the tagged genes in different organs/tissues. Bars represent means of four biological replicates ± standard error. Different letters
indicate significant differences as determined by a one-way ANOVA followed by Fisher’s test (p < 0.05).
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et al., 2017; Lafarguette et al., 2004). Since secondary cell wall

constitutes the bulk of lignocellulosic biomass, it is not surprising

that the modification in fasciclin expression leads to changes in

biomass yield and properties. The fasciclin family is large and

complex with a significant variation in the number and types of

domains (Dharmawardhana et al., 2010). The gene identified in our

study is of particular interest for several reasons, First, it increases

biomass by 40 % on a dry biomass basis. Additionally, the cell wall

shows a significant decrease in lignin content. These changes are

highly consistent with the effects observed with other members of

the fasciclin family (Ma et al., 2022, Ma et al., 2023; Wang

et al., 2015a).

Patatins, a nonspecific lipid acyl hydrolase reported to play a

role in plant signaling were only recently linked to cell wall

metabolism, specifically lignin and cellulose biosynthesis (Huang

et al., 2001; Jang and Lee, 2020; Li et al., 2011; Simiyu et al., 2023).

These lipolytic enzymes, primarily known for their role in lipid

metabolism, have an yet unclear link to lignin biosynthesis.
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However, substantial experimental evidence, including in poplar

(Jang and Lee, 2020), is pointing to a connection between lipid

metabolism and lignin biosynthesis pathway (Huang et al., 2001;

Jang and Lee, 2020; Li et al., 2011; Simiyu et al., 2023). One

compelling explanation presented by Ali et al. is that patatins play

a pivotal role in regulating central carbon flux during cell wall

biosynthesis (Ali et al., 2022). Interestingly, one of the first patatins

identified was through activation tagging in Arabidopsis (Huang

et al., 2001). The patatin gene was named STURDY, after the

mutant’s tougher stems, resulting from changes in lignin

biosynthesis (Huang et al., 2001).The mutant also displayed

increased stem girth due to enhanced cell proliferation.

Additionally, our study uncovered a fascinating link between

patatins and drought stress response, which was not observed in the

original mutant but only when the gene was highly overexpressed. It

is unclear if this is a pleiotropic effect of the ectopic expression or a

result of the much higher expression levels than in the WT plants.

Nevertheless, the evidence is pointing to a highly positive effect of
FIGURE 4

Recapitulation of A630-7 phenotype. (A–H) Changes of traits in mutant and oe-PtaFLA lines. Values are reported as mean ± SE (n = 4). White bars
represent wild type and black bars – PtaFLA OE=overexpression lines. Asterisks indicate significant differences between transgenics and wild type
plants as determined by Student’s t-test (*, ** and *** denoting p < 0.05, p < 0.01 and p < 0.001, respectively). Red line corresponds to the wild
types’ threshold.
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TABLE 4 Cell wall characteristics are altered in the mutants and recapitulated lines.

Genotype Lignin
(µg mg-1 DW)

S/G ratio Hemicellulose (C5)
(µg mg-1 DW)

Cellulose (C6)
(µg mg-1 DW)

WT-717 238.44 ± 2.6 1.55 ± 0.04 280.36 ± 1.5 333.23 ± 4.7

A630-7 225.12 ± 2.9* 1.58 ± 0.01 282.40 ± 0.8 344.95 ± 0.2

oe-PtaFLA 229.59 ± 0.9* 1.44 ± 0.02* 277.38 ± 3.5 341.88 ± 3.6

WT-717 232.82 ± 1.4 1.55 ± 0.05 266.13 ± 3.1 318.14 ± 2.5

A541-1 238.77 ± 3.4 1.65 ± 0.05 271.20 ± 3.6 317.08 ± 1.2

oe-PtaPAT 243.75 ± 1.4*** 1.41 ± 0.01* 265.84 ± 2.3 327.64 ± 2.0*
F
rontiers in Plant Science
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Changes in the lignin, S/G ratio, hemicellulose and cellulose content were determined by using PyMBMS analysis. Values are presented as mean ± SE (n = 4). For OE lines the data are presented
as mean of at least five individual lines. Asterisks indicate significant differences from the wild type (WT-717) as determined by Student’s t-test (* and *** denoting p < 0.05 and p < 0.001,
respectively). Significant changes are highlighted in bold.
FIGURE 5

Recapitulation of A541-1 phenotype. (A–C) Changes in traits of oe-PtaPAT lines. Bars represent mean of four biological replicates ± SE (n = 4). White
bars represent wild type and black bars represent Patatin OE lines. Asterisks indicate significant differences between transgenic and WT plants as
determined by Student’s t-test (‘*’, ‘**’ and ‘***’ denoting p < 0.05, p < 0.01 and p < 0.001, respectively).
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patatin overexpression on drought resistance. We are still unclear of

the underpinnings of this phenotype. One potential factor is the

denser leaf structure, which may reduce transpiration levels, as

suggested by our measurements of photosynthesis and stomatal

conductance. Given that the patatins are lipolytic enzymes, their

role in drought resistance might involve a wide array of changes,

such as membrane organization, mobilization of storage reserves,

and modification of the cell’s osmotic potential (Li et al., 2020;

Scherer et al., 2010). Patatins are also induced by abiotic stress,

suggesting they likely play a significant yet unknown role in stress

responses (Li et al., 2020; Matos et al., 2001, Matos et al., 2008).

Further investigations into this underlying mechanism could lead to

new strategies for engineering stress response. Most excitingly, our

work indicates a simultaneous increase in biomass yield and

drought resistance, unlike many other strategies for engineering
Frontiers in Plant Science 11
drought resistance that often result in growth penalties (Hwang

et al., 2010; Schluepmann et al., 2012; Sreenivasulu et al., 2012).

Fascinatingly, the leaf surface of the patatin overexpression

transgenics resembles the leaf morphology of potato leaves, where

patatin is highly expressed, particularly in the tubers (Andrews

et al., 1988; Rosahl et al., 1986). The change in leaf morphology and

tissue organization are reminiscent of the mutant phenotypes

associated with disruption in hormone metabolism and/or

signaling, leading to imbalances in cell division, proliferation and

differentiation. Some studies linked patatins to auxin, which could

explain the significant growth/developmental phenotypes observed

in our study (Dong et al., 2014; Labusch et al., 2013).

Our work demonstrates the feasibility and efficacy of activation

tagging for discovering genes that positively influence biomass-

associated traits in poplar. Recapitulation experiments indicate that
FIGURE 6

Poplar patatin OE lines showed better performance under drought conditions. (A) Drought experiment including wild type (WT-717) and oe-PtaPAT
lines. Plants were maintained without water for 3 days. Pictures were taken daily and show representative appearance of multiple ramets and lines.
Leaf texture and cross-section of WT-717 (B, D) and oe-PtaPAT (C, E) control plants (n=3 lines with 4 ramets per line). Analysis of photosynthetic
activity and (F) stomatal conductance (G) during drought stress. Data were collected every day during the treatment period. Asterisks indicate
significant differences between transgenic and WT-717 plants as determined by Student’s t-test (n=4, * and *** denoting p< 0.05 and p < 0.001,
respectively). Scale bars (A) = 5 cm, (B, C) = 2 cm, (D, E) = 50 µm.
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greater improvements can be achieved through overexpression,

with additional enhancements such as drought resistance

identified, suggesting potential for simultaneously improving

plant growth and resilience.
Methods

Plant transformation and validation

A hybrid aspen clone, Populus tremula x Populus alba INRA

717-IB4 (referred to as WT or 717), was used in all experiments,

including the transgenic manipulations. The activation tagging

population was generated using a binary vector pSKI074 via an

Agrobacterium-mediated procedure (Han et al., 2000). All putative

transformants were PCR verified for the presence of neomycin

phosphotransferase II (NPT), as a selectable marker (Yordanov

et al., 2010). Only the NPT-positive transformant were used in

further experiments. These verified transformant were propagated

and maintained in vitro on ½ MS media with 20 g/l sucrose

(Caisson), 0.1mg/l IBA (Sigma-Aldrich), vitamins (Han et al.,

2000) solidified with 2.5 g/l Gelrite (Sigma) and 4 g/l Phytablend

agar (Caisson), at 16/8 h day/night photoperiod (20 µmol m-2s-1).
Plant growth conditions

For the greenhouse experiments, plants were first propagated

and grown in vitro for four weeks on ½ MS solid media (as describe

above). The rooted plantlets were then transferred to soil and

gradually acclimated to greenhouse conditions. Once acclimated,

uniformly developed plants were transplanted and grown in

greenhouse for approximately 3 months as previously described

(Rauschendorfer et al., 2020). The experiment was conducted in a

completely randomized design with three replications.
Biometric measurements and harvesting

Measurements of the height and basal diameter of the stem,

counting of the internodes of each plant were performed regularly to

analyze the growth characteristics of poplar plants. A slide digital caliper

was used to determine the basal diameter of each plant above the pot

surface. For harvest the above-ground part of each plant was separated

into leaves and stems. The fifth leaf from the top of the plant was used to

determine the leaf area. Digital images were taken with Nicon Coolpix

camera. Leaves and stems were air dried, and their dry weight was

measured until was unchanged. We measured green wood density

(Den-g, g/cm3), basic/dry wood density (Den-d, g/cm3), and moisture

content (MC, %) of wood samples collected at the base (15 cm from the

soil surface) of the stem. For each sample, we determine the green disc

mass and green volume, using water displacement. The stem sections

were kiln-dried at 105°C and again weighed. Den-g and Den-d were

estimated for each tree as sample mass (g) / disc green volume

(cm3).MC will be estimated as [(Den-g – Den-d) / Den-g] x 100.
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Measurements of photosynthesis

Two-month-old greenhouse-grown plants subjected to drought

stress, were used to measure photosynthesis. Net photosynthetic

rate was measured using LI-6400XT portable photosynthesis system

(Li-Cor Inc., Lincoln, NE, USA). The measurements were

conducted during mid- and late- morning (usually 09:00 –

11:30am) on uniformly sunny days. Leaves of each genotype (four

biological replicates/genotype) were measured under the following

conditions: 400 mmol s -1
flow rate, 400 mmol mol -1 reference CO 2

concentration and photosynthetic photon flux density (PPFD) of

1500 mmol m -2 s -1, provided by a red–blue light source (6400-02B).

Relative humidity was maintained between 50 % and 75 % inside

the chamber (RH_S_%). The control temperature was set at 30°C.
Tag mapping and validation of
gene activation

Recovery of sequence flanking the insertion site of the activation

tag was performed as previously described (Yordanov et al., 2010).

The isolated DNA fragments were positioned in the poplar 717

genome using BLAST searches in the Phythozome v13 (http://

www.phythozome.net/poplar.php) database and proximal genes to

the insertion site identified. Expression of the flanking genes was

studied using RT-PCR with gene specific primers (Supplementary

Table S2) and Ubiquitin (Ubq) gene (Wei et al., 2013) as a

loading control.
Generation of constructs
and transformation

The open reading frame of candidate genes were amplified

using the following primers (Supplementary Table S3). The

amplified product was then cloned into pDONR221 vector

(ThermoFisher Scientific) using the BP Gateway system

(Invitrogen), sequence validated and transferred into the

overexpression pK7WG2 vector (Karimi et al., 2002) using the LR

Gateway system (Invitrogen). The binary vectors were transformed

into Agrobacterium strain AGL1 (Lazo et al., 1991) and

transformed into the hybrid aspen clone, Populus tremula x

Populus alba INRA 717-IB4 as previously described (Han

et al., 2000).
Real time RT-PCR

Total RNA was extracted as previously described (Busov et al.,

2003). Reverse transcription was performed on 1 mg of DNAase I-

treated total RNA in a final reaction volume of 20 ml using an

MMuLV (Moloney Murine Leukemia Virus) reverse transcriptase

(ThermoFisher Scientific) following the manufacturer's protocol.

Quantitative RT-PCR (qRT-PCR) was performed using the

StepOnePlus Real Time System (Applied Biosystems) with the
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Maxima SYBR Green detection system (Thermo Fisher). Each PCR

reaction contained 1× Maxima SYBR Green qPCR master mix, 0.1

mM of each forward and reverse primer (Eurofins MWGOperon), 1

ml of 10 × diluted cDNA solution and nuclease-free water. The final

volume of each PCR reaction was 20 ml. The qRT-PCR cycling

stages consisted of initial denaturation at 95°C for 10 min, followed

by 40 cycles of 95°C for 15 s and 60°C for 1 min, and a final melting

curve stage of 95°C for 15 s, 60°C for 1 min and 95°C for 15 s. qRT-

PCR was performed with three biological and two technical

replicates for each sample. Relative gene expression was calculated

as previously described (Livak and Schmittgen, 2001; Schmittgen

and Livak, 2008; Tsai et al., 2006; Yordanov et al., 2017). The Ubq

gene expression was used as a loading control (Yordanov et al.,

2010). All primers used in the gene expression analyses are shown

in Supplementary Table S2. Primers were designed using the

Primer-BLAST web resource at NCBI (National Center for

Biotechnology Information; http://www.ncbi.nlm.nih.gov/BLAST).
Cell wall analyses

Wood samples were milled to a 20-mesh using a Wiley mill.

Approximately 4 mg of milled wood sample was measured and

loaded into metal cups, which were then placed into an auto-

sampler tray. The cell wall composition was analyzed by studying

pyrolysis vapors produced using a commercially available molecular

beam mass spectrometer (PyMBMS) designed specifically for

biomass analysis as previously described (Sykes et al., 2009).
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