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Fruits and vegetables are among the most nutrient-dense cash crops worldwide.

Diagnosing diseases in fruits and vegetables is a key challenge in maintaining

agricultural products. Due to the similarity in disease colour, texture, and shape, it

is difficult to recognize manually. Also, this process is time-consuming and

requires an expert person. We proposed a novel deep learning and

optimization framework for apple and cucumber leaf disease classification to

consider the above challenges. In the proposed framework, a hybrid contrast

enhancement technique is proposed based on the Bi-LSTM and Haze reduction

to highlight the diseased part in the image. After that, two custommodels named

Bottleneck Residual with Self-Attention (BRwSA) and Inverted Bottleneck

Residual with Self-Attention (IBRwSA) are proposed and trained on the

selected datasets. After the training, testing images are employed, and deep

features are extracted from the self-attention layer. Deep extracted features are

fused using a concatenation approach that is further optimized in the next step

using an improved human learning optimization algorithm. The purpose of this

algorithmwas to improve the classification accuracy and reduce the testing time.

The selected features are finally classified using a shallow wide neural network

(SWNN) classifier. In addition to that, both trainedmodels are interpreted using an

explainable AI technique such as LIME. Based on this approach, it is easy to

interpret the inside strength of both models for apple and cucumber leaf disease

classification and identification. A detailed experimental process was conducted

on both datasets, Apple and Cucumber. On both datasets, the proposed

framework obtained an accuracy of 94.8% and 94.9%, respectively. A

comparison was also conducted using a few state-of-the-art techniques, and

the proposed framework showed improved performance.
KEYWORDS

cucumber crop, apple fruit, deep learning, information fusion, optimization, explainable
deep learning, shallow classifier
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1 Introduction

Identifying plant diseases has been a major problem in the

agricultural sector in recent years (Tekkeşin, 2019). It is critical to

accurately diagnose and recognize the disease at early stages (Rumpf

et al., 2010; Gavhale and Gawande, 2014). Unnecessary substantial

economic losses can be avoided due to the early detection of diseases

in agricultural production (Savary et al., 2019). The quantity and

quality of agricultural products are greatly affected by diseased crops,

which destroy the natural condition of the crop by altering and

stopping critical activities, including transpiration, germination,

pollination, fertilization, and photosynthesis (Wang X. et al., 2015).

Moreover, plant disease symptoms typically manifest as visual

abnormalities on leaves at a certain development stage. Therefore,

using machine learning algorithms to evaluate plant and crop leaf

images makes it feasible to identify leaf illnesses automatically (Ngugi

et al., 2021; Haridasan et al., 2023; Ngongoma et al., 2023).

The manual diagnosis of leaf disease is a difficult and hectic

process (Ngugi et al., 2021). In addition, an expert is required,

which is not an easy task (Haridasan et al., 2023). Therefore,

agriculture’s computerized technique is widely needed to diagnose

and classify diseases in leaf images at the early stages Early diagnosis

not only improves food quality but also increases food quantity,

which can benefit the national economy (Ngongoma et al., 2023).

The proficiency to identify plant disease at an early stage allows us

to diagnose and eradicate infectious diseases in plants before

apparent symptoms arise, reducing the massive economic losses

that would otherwise occur and leading the ton of food to be

safeguarded from the impending outbreak (Sharon et al., 2010). The

traditional computerized techniques are usually based on machine

learning models such as support vector machine (SVM) (Bonkra

et al., 2024) and decision trees (DT) (Sajitha et al., 2024). These

models accept input as a feature vector extracted through a

handcrafted approach, such as shape, color, and texture (Al-Hiary

et al., 2011; Gulhane and Gurjar, 2011; Patil and Kumar, 2011). In

several works, feature selection techniques are introduced to select

the best features for the classification and reduce the computational

time. However, it isn’t easy when a large dimensional vector is

passed as an input (Amiriebrahimabadi et al., 2024). There are a few

well-known feature selection techniques, such as principle

component analysis (PCA), Genetic Algorithm (GA) (Khan et al.,

2019), particle swarm optimization (PSO), and a few more (Jain and

Dharavath, 2023; Jena et al., 2024; Vijay and Pushpalatha, 2024).

The more recent development in artificial intelligence is deep

learning (DL), employed for disease detection and classification

(Nawaz et al., 2024). Convolutional neural network (CNN) is a

specialized type of deep learning (DL) that is utilized to extract the

features of an object or image from several hidden layers (Joseph

et al., 2024). Recently, many techniques have been introduced for

detecting and classifying plant diseases based on transfer learning

(TL) and custom CNN. Several pre-trained models were opted for

in the TL phase, and deep features were extracted (Ritharson et al.,

2024). In a few techniques, models are trained from scratch due to

the complex nature of selected datasets (Jha et al., 2024). A few well-

known pre-trained models that are used in the literature for plant

diseases are AlexNet (Krizhevsky et al., 2017), VGG16 and Vgg19
Frontiers in Plant Science 02
(Simonyan and Zisserman, 2014), ResNet (He et al., 2016), and

EfficientNet (Tan and Le, 2019). These models work better for the

balanced and easy nature of plant datasets; however, for complex,

imbalanced, and small datasets, these pre-trained models do not

perform well (Ganatra and Patel, 2021). Therefore, a custom model

can be designed based on the literature review knowledge and the

number of learnable. There are a few recent works that used deep

learning architectures for the effective classification of plant diseases

(Saleem et al., 2019; Duong et al., 2020).

Several deep-learning techniques have been introduced in the

literature to classify plant diseases (Pradhan et al., 2024; Xu and

Zhang, 2024). Recent works have been based on pre-trained

networks and the fusion of different networks (Ma et al., 2018).

Fang et al (2024). presented a lightweight bilinear CNN architecture

for apple leaf disease detection and classification. The focus was on

the small infected regions of the apple leaf images. For this purpose,

the presented CNN architecture consists of two subnetworks. They

used the bilinear concat function for feature extraction, which was

further employed for classification through classification

techniques. The presented method obtained improved accuracy

than the unimproved LeNet-5. Haiping et al (Si et al., 2024).

presented a dual-brach model for apple leaf disease classification.

The presented model integrates two separate networks, CNN and

Swin Transformer. The purpose of CNN in this work is to extract

the local information, whereas the global information is computed

through the Swin Transformer. In addition, the information of

these models is fused using a fusion module based on the residual,

sqeeze, and excitation mechanisms. The experimental process of the

presented model is performed on publically available dataset and

obtianed recall rate of 97.33% that is improved than the recent

methods. Wang et al (Wang et al., 2021). proposed a two-stage

recognition model for cucumber leaf diseases. The proposed model

was based on U-Net and DeepLabV3+ that later passed to the

severity recognition module. The presented method obtaiend the

classification accuracy of 92.85% that is improved than the recent

works. There are several more recent works that performed

classification of plant diseases using deep learning techniques.

Saleem et al (Saleem et al., 2020). presented a plant leaf disease

detection and classification framework based on TensorFlow and

custom deep learning architecture. The presented model is tested on

real-time acquired data and obtained an accuracy of 73.07%.

Chowdhury et al (2021). described an EfficientNet architecture

based on the better performance. They considered EfficientNet-B7

for the classification and obtained an accuracy of 99.89%. Ahmed

et al (Ahmed and Reddy, 2021). presented a CNN architecture for

diagnosing plant diseases and obtained an accuracy of 94%.

Harakannanavar et al (2022). employed machine learning and

image processing to identify leaf diseases in tomato plants,

achieving high accuracy rates of 88% for SVM, 97% for K-NN,

and 99.6% for CNN on disease samples. Jadhav et al (2021).

presented a framework for soybean disease identification methods

using pre-trained models such as AlexNet and GoogleNet. On these

models, they achieved an accuracy rate of 98.75 and 96.25%,

respectively. Abbas et al (2021). employed a pre-trained

DenseNet121 deep-learning architecture to detect tomato diseases

and obtained an average accuracy of 97.11% on the Plant Village
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dataset. Several Deep-learning techniques have been used to classify

plant diseases, with recent works focusing on pre-trained networks

and the fusion of different networks. Recent works have improved

accuracy rates but all these methods are based on fine-tuning the

previously trained models, modifying them, or fusing them to make

improvements in the results while they do improve the results they

have a major limitation of high parameters and increased

computation time.

Problem Statement: In this work, we considered the following

major challenges that impact the performance of the proposed

method for Apple and Cucumber leaf disease recognition. The

major challenges are as follows: i) low contrast disease symptoms

are not accurately considered in the deep learning models for the

features extraction that, in return, classify as healthy regions; ii) pre-

trained models have a large number of parameters such as VGG16

and VGG19 models total learnable is above 140 million; hence,

models that have higher number of learnable consumed more time in

training and reduced the correct precision rate; iii) fusion of features

from the impact of the different sources on the classification accuracy

(false positive rate) due to redundant and irrelevant information.

Hence, proposing an efficient solution that consumes minimum

resources and returns improved accuracy and precision rate is

important. Our major contributions to this work are as follows:

▪We proposed a novel Custom CNN architecture with a shallow

neural network and explainable AI (XAI) for the classification of

Cucumber (powdery mildew, anthracnose, blight, downy mild, and

angular leaf spot) and apple leaf diseases (Apple Scab, Apple Cedar

Rust, Black Rot and healthy). Figure 1 shows the disease images.

▪ A hybrid disease contrast enhancement technique is proposed

based on the Bi-LSTM and Haze reduction for the better

feature learning.

▪ We proposed two custom models named lightweight

Bottleneck Residual with Self-Attention (BRwSA) and Inverted
Frontiers in Plant Science 03
Bottleneck Residual with Self-Attention (IBRwSA) in order to

increase the precision rate.

▪ Features are extracted from the self-attention layer and fused

using a concatenation formula later optimized using an improved

human learning optimization algorithm.
2 Proposed methodology

The proposed methodology of the presented work is discussed in

this section with detailed mathematical formulation, theoretical

aspects, and visual graphs. A hybrid disease contrast enhancement

technique is proposed based on the Bi-LSTM and Haze reduction

techniques at the initial stage. After that, we proposed two custom

models named Bottleneck Residual with Self-Attention (BRwSA) and

Inverted Bottleneck Residual with Self-Attention (IBRwSA) to extract

deep learning features. Deep features are extracted from the self-

attention layer from both models and fused using a concatenation

approach. The concatenation vector is optimized in the next step

using an improved human learning optimization algorithm that is

finally classified using a shallow wide neural network (SWNN)

classifier. In addition to that, both trained models are interpreted

using an explainable AI technique such as LIME. Based on this

approach, it is easy to interpret the inside strength of both models for

apple and cucumber leaf disease classification and identification.

Figure 2 shows the detailed architecture of proposed apple and

cucumber leaf disease recognition.
2.1 Datasets

In this work, we utilized two datasets for the classification of

apple and cucumber leaf disease recognition. For apple leaf disease
FIGURE 1

Sample images of selected datasets.
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recognition, we utilized the Plant Village dataset (Mohameth et al.,

2020); however, for cucumber disease, a private dataset has been

employed (Zhang et al., 2017). We only included apple leaf classes

from the 39 fruits and vegetables in the Plant Village dataset. The

nature of each image of this dataset is RGB, and the total number of

images (apple disease) is 3,171. Four classes were included in this

dataset: Apple Scab, Apple Cedar Rust, Black Rot, and Healthy

(sample images can be seen in Figure 1).

There are 407 total images in the Cucumber collection, all of

which have RGB nature. This dataset has five classes: powdery

mildew, anthracnose, blight, downy mild, and angular leaf spot

(sample images can be seen in Figure 1). A summary of images in

each class is presented in Table 1. This table shows that the images

are not enough for training purposes; therefore, a data

augmentation process is essential.

2.2 Contrast enhancement and
datasets augmentation

2.2.1 Enhancement
Enhancing the quality of original images by adjusting the

intensity value, adding missing information, and rearranging the

data more effectively and organized is known as enhancement. The

primary advantage of enhancing datasets is increased accuracy. In

the case of images, our major aim is to increase the contrast of the

disease region and make it visually more apparent. In this work, we

proposed a hybrid contrast enhancement technique based on the

haze reduction and Bi-histogram equalization techniques. A noise is

included and removed in the selected datasets through the haze

reduction technique, whereas Bi-Histogram Equalization improves

the contrast. Mathematically, this process is defined as follows:
Frontiers in Plant Science 04
The following mathematical equation can represent the hazed

image:

I(X)   =   J(X)t(X)   +   L(1 − t(X)) (1)

Where the observed intensity is   I, the scene of radiance is

denoted with J , atmospheric light is defined by L, and a

transmission map   t describes the portion of light that reaches

the camera. Hence, to recover the scene of radiance J from an

estimation of transmission map and atmospheric light, the dazed

algorithm is used, which is defined as follows:
FIGURE 2

Proposed architecture of apple and cucumber leaf disease recognition.
TABLE 1 Summary of datasets employed for the validation of the
proposed architecture.

Apple Dataset

Class name No. of Images After Augmentation

Apple_Healthy 1645 1000

Apple_Cedar Rust 275 1000

Apple_Black Rot 621 1000

Apple_Scab 630 1000

Cucumber Dataset

Class Name No. of Images After Augmentation

Angular_Leaf_Spot 64 1000

Anthracnose 93 1000

Blight 66 1000

Downy_Mildew 97 1000

Powdery_Mildew 87 1000
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J(X)   =   (I(X) − a)=(max(T(X),T0))   +   a       (2)

This technique followed the five steps that started from

atmospheric light L using a dark channel before restoring the

image and performing optional contrast enhancement. The a

denotes an static parameter that value is 0.2. More information

on this method can be read from this work (Park et al., 2014). The

output image of this method is passed to Bi-Histogram Equalization

(BiHE) to further increase the contrast of the infected regions. The

BiHE method is based on five steps such as i) Gaussian filter

smoothing of the histogram; ii) Using this smoothed histogram to

find local maximums; iii) Designate and map each component to a

sophisticated dynamic range; iv) Equalize each histogram

independently, and v) Normalization of image brightness. More

details on the mathematical form of this method can be seen here

(Tang and Isa, 2017). A few sample images after the hybrid contrast

enhancement technique are shown in Figure 3. In this figure, it is

observed that the results enhanced images are clearer than the

original images. The resultant enhanced images are later employed

for the augmentation process. Like the traditional geometric

transformation methods in recent studies, we consider the auto-

encoder for generating new images (Kingma and Welling, 2013).

Using this technique, we generated 1000 images of each class. In

the generation of images, each image is passed minimum 2 times

and few of the images iterated in 3 times. A summary of generated

images is presented in Table 1.
2.3 Proposed bottleneck residual self-
attention CNN

Two new deep-learning architectures have been designed in this

work for the deep feature extraction of apple and cucumber leaf
Frontiers in Plant Science 05
disease recognition. The pre-trained deep learning models gained a

lot of knowledge but did not return enough accuracy (Aggarwal

et al., 2023). Therefore, we designed two architectures: Bottleneck

Residual with Self-Attention (BRwSA) and Inverted Bottleneck

Residual with Self-Attention (IBRwSA).

BRwSA model consists of a bottleneck residual mechanism

whose main objective is to reduce the dimensionality of the feature

map while preserving important data, perhaps leading to more

efficient and less computationally expensive models. A bottleneck

block is a specific type of neural network building block. Each residual

function is represented by a stack of three levels- 1×1, 3×3, and 1×1

convolutions. Dimensions are decreased and subsequently increased

(restored) by the 1×1 layer. This layer is like a little filter, only

examining a small amount of the input data. It makes use of tiny

filters with a 1×1 pixel size. The 3×3 convolutional layer uses the

larger 3×3 filters to identify complex patterns and features in the data.

It operates using the fewer channels produced by the previous 1×1

filter. The third 1×1 convolutional layer performs a second round of

1×1 convolution following the 3×3 convolution. This extra step

contributes to the data representation by increasing its feature

count, making it more appealing and richer. Figure 4 illustrates the

proposed BRwSA architecture. This figure shows that four blocks are

added, and in each block, several layers are added in a parallel fashion

using a bottleneck sequence.
2.3.1 Block 1
The first block in this figure consists of five paths, and each path

follows the sequence of several layers, such as convolutional, ReLu,

batch normalization, max pooling, and addition layer. In addition, a

skip connection is also added to overcome the problem of

overfitting. The input layer of this model accepts images of

dimensions 224×224×3, followed by a convolutional layer of
FIGURE 3

Sample contrast-enhanced images using a hybrid approach.
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depth size 32, stride of 2×2, filter size of 3×3, and ReLU

activation layer.

Subsequently, five bottleneck blocks—consisting of a 32-depth

convolutional layer, a 1-by-1 filter with a stride of one, an activation

layer for ReLU, and a batch normalization layer—are added in

parallel. After that, the 128-depth convolutional layer with a 3×3

filter size, an activation layer of ReLU, and a batch normalization

layer comprise the bottleneck structure’s second section. In the last

part, a convolutional layer with a depth size of 32 and a filter size of

1×1 has been added. The additional layer is added to connect these

parallel blocks with another set of layers. Then, a convolutional
Frontiers in Plant Science 06
layer was added with a ReLU activation layer with a depth size of 64,

filter size of 3×3 and stride 2.

2.3.2 Block 2
After that, five parallel residual blocks have been added following

the bottleneck pattern. In the first block, a convolutional layer was

inserted with a depth size of 128, filter size of 1×1, and stride value of 1,

followed by a ReLU activation layer. Then, a batch normalization layer

was added. Again, a convolutional layer with a depth size of 256, filter

size of 3×3, and stride of 1 with ReLU activation has been added. After

this, another batch normalization layer was added to the architecture.
FIGURE 4

Proposed Bottleneck Residual with Self-Attention (BRwSA) architecture.
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Next comes the attachment of the last part of the block, which

comprises a 64-depth convolution layer with a 1×1 filter size and

one stride. These five bottleneck blocks are concatenated together using

an addition layer and a skip connection. After this block, a

convolutional layer of depth size 128, stride value of two.

2.3.3 Block 3
The subsequent residual block follows the same structure as the

preceding block, which had five bottleneck paths added in parallel,

each consisting of 256, 512, and 128 as depth for the convolution

layer in the bottleneck structure. The filter size of each block is 1×1,

3×3, and 1×1, respectively. An addition layer concatenates all five

blocks of the bottleneck. Later, a convolution layer of 256 depth size,

3×3 filter size, and 2×2 stride with a ReLU activation layer is inserted.

2.3.4 Block 4
In the fourth block, three bottleneck residual paths have been

included along with a skip connection. Each bottleneck block has a

512-depth convolution layer with a filter size of 1×1, a stride of 1×1,

a ReLU activation layer, and a batch normalization layer. The same

depth is opted for the second convolutional layer; however, the filter

size of 3×3 has been opted. The last convolutional layer has a 256-

depth size, 1×1 filter size, and one stride. Finally, these three

bottleneck blocks and a skip connection are concatenated to each

other using an addition layer.

2.3.5 Block 4
A convolutional layer has been added after the fourth block. The

depth size of this layer is 512, with a filter size of 3×3 and stride 2. A

ReLu activation layer has been added to each convolutional layer. After

that, a max-pooling layer of filter size 3×3 and stride two is included.

Subsequently, a convolutional layer of depth size 1024 is added, and the

filter and stride values are the same as the previous convolutional layer.

A global average pool layer is added after the convolutional layer to

control the number of parameters and weights, followed by a flattened

layer. The output channel of the flattened layer is passed to the self-

attention layer. This layer extracts more informative and in-depth

information about the disease leaf region. Finally, a fully connected

softmax and classification output layers have been added that complete

this network. Figure 5 illustrates the proposed layers’ weights and

activation. There are 149 layers overall and 23.6 M training parameters

in total.
2.4 Proposed inverted bottleneck residual
with self-attention CNN

The proposed Inverted Bottleneck Residual with Self-Attention

(IBRwSA) architecture is based on inverted bottleneck blocks, in which

the channels are expanded first and then squeezed. The inverted

bottleneck block with depthwise separable convolution is more

efficient than the original. Moreover, the grouped convolutions allow

us to build wider networks by replicating the modular blocks of filter

groups. Hence, by using this structure, we can increase the network

capacity without compromising computation efficiency. In the inverted
Frontiers in Plant Science 07
bottleneck, we follow the filter size in the sequence: 1×1, 3×3 for 2-D

grouped convolution layer, and 1×1. For channel-wise separable

convolution, the grouped convolutional layer is employed. The final

1×1 layer increases the feature count, which makes it more enticing

and richer.

2.4.1 Block 1
Figure 6 illustrates the proposed IBRwSA architecture. This figure

includes four parallel residual blocks that follow the mechanism of the

inverted bottleneck. In each block, a skip connection is also included

that is concatenated at an additional layer with other paths. An input

size of 227×227 with a depth size of 3 is considered in the first layer.

After that, a convolutional layer has been added of depth size 32, filter

size 3×3 and stride 2. The ReLu activation layer is included after each

convolutional layer in the entire network.

The first parallel residual inverted bottleneck block consists of five

paths and one skip connection. In each path, seven layers have been

included, such as two convolutional, two ReLu, 2 batch normalizations,

and one group convolutional. The first convolutional layer depth size is

64, whereas the filter size is 1×1, and stride 1. This layer follows the

ReLU activation and batch normalization layers, respectively. After

that, a 2-D grouped convolution layer was added using a channel-wise

approach. The filter size of this layer is 3×3 and stride 1. The ReLu

activation is added, followed by a batch normalization layer. Another

convolutional layer has been inserted with a depth size of 32 and a filter

size of 1×1. The remaining paths in this block are considered the same

pattern, including depth size, filter size, and stride value. Finally, all

paths of this block are added into an additional layer with a

skip connection.

2.4.2 Block 2
In this block, a convolutional layer is added before the start of

the parallel paths. The depth size of the convolutional layer is 64,

with a filter size of 3×3 and stride 2. A ReLu activation layer is

included after the convolutional layer. After that, a new block is

added that includes five parallel paths, and a sequence of layers is

added in each path. The first convolutional layer of this block has a

depth value of 128, a filter size of 1×1, and a stride one. After this,

the ReLU activation and batch normalization layers are added,

which is further followed by a grouped convolutional layer in

channel-wise 3×3 and stride 1. The ReLU activation and batch

normalization layers are added after the grouped convolutional

layer. Finally, the last convolutional layer is added 64-depth, with a

filter size 1×1 and a single stride. These five paths and one skip

connection are connected in an additional layer. Subsequently, a

convolutional layer is added with a depth of 128, stride value of 2×2,

and filter size of 3, followed by a ReLU activation layer.

2.4.3 Block 3
The third block follows the same pattern as the previous block,

containing five inverted bottleneck blocks appended in parallel, each

consisting of Convolution 1×1 with a depth of 256, 2-D Grouped

convolution with channel 3×3, and Convolution 1×1 with a depth of

128. All five parallel paths are connected with a skip connection in the

addition layer. Later, a convolution layer is added consisting of 256
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depth size, 3×3 filter size, and stride 2. A ReLU activation layer is also

included after this layer.

2.4.4 Block 3
This block follows a similar pattern, like several layers, except

for depth size. Five inverted bottleneck paths are included, where
Frontiers in Plant Science 08
each path consists of a convolutional layer of depth value 512, filter

size 1×1, and single stride. The grouped convolutional layer with

channel-wise added filter size is 3×3, which finally ended with

another convolutional layer of depth size 256. These five inverted

bottleneck paths and a skip connection are concatenated using an

addition layer.
FIGURE 5

Tabular architecture of proposed Bottleneck Residual with Self-Attention (BRwSA).
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Subsequently, a 512-depth convolution layer with 3×3 filter size

and stride two is incorporated, followed by a ReLU activation layer

and batch normalization layer. The global average pool layer is

added, followed by flattened, self-attention, fully connected, and

Softmax layers. The proposed model is also presented in the tabular

form in Figure 7. This network consists of 161 layers and the 3.9M

total learnable.
2.5 Models training

The training process of the proposed model is presented in this

subsection. In the training process, a 60:10:30 strategy was
Frontiers in Plant Science 09
conducted, which means 60% of the images of the selected

datasets were employed for the training, 10% of data were used

for the validation during the learning process and the remaining

images were utilized for testing the proposed models. Several

hyperparameters have been employed in the training, such as

learning rate, momentum, optimizer, mini-batch size, and

regularization factor. These values are initialized using a human

learning optimization algorithm (algorithm explained in the testing

section). The best-selected value of the initial learning rate of

0.0002, the momentum of 0.702, the mini-batch size value of 64,

stochastic gradient descent used as an optimizer, and 100 epochs.

After that, the trained models are employed in the feature extraction

and classification testing phase.
FIGURE 6

Proposed Inverted Bottleneck Residual with Self-Attention (IBRwSA) architecture.
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2.6 Proposed framework testing

In the testing phase of the proposed framework, the following

steps are considered: i) employing a trained model and extracting

deep features from the testing data; ii) testing features are passed to

the fusion function for features concatenation; iii) features are

selected using improved human learning algorithm, and iv)

selected features are classified using machine learning algorithms.

As shown in Figure 2, the testing process is based on the steps

mentioned above. In the first step, features are extracted from the

trained models (Cucumber and Apple datasets separately) and
Frontiers in Plant Science 10
fused using a concatenation approach. The self-attention layer is

employed for the feature extraction for both models and obtained a

feature vector of N × 1024 and N × 512, respectively. After the

concatenation, the size of the fused vector is N × 1536, where N

denotes the number of testing samples in each dataset. Fused

features are optimized using an improved human learning

algorithm following the final classification process.

2.6.1 Features fusion and optimization
Features extracted from the self-attention layer of both proposed

models are fused using a concatenation function. Considering we
FIGURE 7

Detail description four-block inverted bottleneck layered model.
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have two feature vectors of dimensional N × 1024 and N × 512, the

fused vector size will be N × 1536. However, a thorough analysis was

conducted, and it was observed that a few features are not required

for the classification process. Also, there are several redundant

features; therefore, we implemented an improved human learning

optimization algorithm for the best feature selection.

2.6.1.1 Human Learning Optimization (HLO)

Human learning, by nature, is a repetitious optimization

process (Wang L. et al., 2015). Activities such as playing baseball

or learning to dance are improved and mastered by repeatedly

learning, similar to the global optima iteration of meta-heuristics

searching (Wang L. et al., 2015). In this work, the improved HLO is

used based on the four learning operators: the individual learning

(IL) operator, social learning (SL) operator, random exploration

learning (REL) operator, and relearning (RL) operator.

Mathematically, the algorithm is defined in the following steps.

2.6.1.2 Initialization

HLO uses a binary coding system to solve problems, each bit

resembling the fundamental piece of information. Thus, in Equation

3, a candidate solution is initialized with “0” or “1,” also known as

binary strings, while randomly assuming that there was no prior

knowledge of the issue.

XI = ½XI1    XI2  …    XIJ  …    XIm�,
    1 ≤ I ≤ n,   1 ≤ J ≤ m

(3)

Where Ith individual is XI , the number of individuals in the

population is denoted by n, and the number of components

contained in the knowledge m can also be known as the

dimensions of solutions used to initialize each person. (Equations

4, 5) presents the HLO population upon initialization.

x =

X1

X2

⋮

XI

⋮

Xn

2
66666666664

3
77777777775
=

X11 X12 ⋯

X21 X22 ⋯

⋮ ⋮  

     

X1J ⋯ X1m

X2J ⋯ X2m

⋮   ⋮

XI1 XI2 ⋯

⋮ ⋮  

Xn1 Xn2 ⋯

   

XIJ ⋯ XIm

⋮   ⋮

XnJ ⋯ Xnm

2
666666666664

3
777777777775

(4)

XIJ ∈ 0, 1f g,     1 ≤ I ≤ n,     1 ≤ J ≤ m (5)
2.6.1.3 Learning Operators

There are four learning operators for HLO. Each one is

described below:

2.6.1.4 Individual learning (IL) operator

The ability to construct knowledge about external influences

and sources by personal reflection can be defined as individual

learning. Through HLO, an individual learns how to solve problems

by using their own experiences, which are stored in the Individual

Knowledge Database (IKD), represented by (Equations 6–8).

XIJ = IKIPJ (6)
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IKDI =

ikdI1

ikdI2

⋮

ikdIp

⋮

ikdIg

2
666666666664

3
777777777775
=

ikI1 1 ikI1 2 ⋯  ikI1 J ⋯ ikI1 m

ikI2 1 ikI2 2 ⋯  ikI2 J ⋯ ikI2 m

  ⋮   ⋮    ⋮     ⋮ 

ikIP 1 ikIP 2 ⋯  ikIP J ⋯ ikIP m

  ⋮   ⋮    ⋮     ⋮ 

ikIg 1 ikIg 2 ⋯  ikIg  j ⋯ ikIg m

2
666666666664

3
777777777775

(7)

1 ≤ I ≤ n,     1 ≤ P ≤ g ,     1 ≤ J ≤ m (8)

Where the IDK of person I is represented by   IKDI , the best

answer for each person I is represented by ikdIP , and a random

number P decides which individual in the IKD is chosen for IL. The

size of the   IKDS is represented by g.

2.6.1.5 Social learning (SL) operator

The transfer of skills and knowledge among individuals through

direct or indirect interaction is called social learning. In order to

have an effective search function, HLO mimics the SL mechanism.

Each HLO researcher examines the social knowledge included in

the Social Knowledge Database (SKD) with a certain degree of

probability. Similar to how human learning produces new solutions

as presented in (Equations 9–11).

XIJ = SKQJ (9)

SKD =

skd1

skd2

⋮

skdp

⋮

skdh

2
66666666664

3
77777777775
=

sk1 1 sk1 2 ⋯ sk1 J ⋯ sk1 m

sk2 1 sk2 2 ⋯ sk2 J ⋯ sk2 m

  ⋮   ⋮     ⋮      ⋮ 

skQ 1 skQ 2 ⋯ skQ J ⋯ skQ m

  ⋮   ⋮     ⋮      ⋮ 

skh 1 skh 2 ⋯ skh J ⋯ skh m

2
666666666664

3
777777777775

(10)

1 ≤ Q ≤ h,     1 ≤ J ≤ m (11)

Where the size of SKD is h and the Qth social knowledge in SKD

is represented by SKDQ, that is, the newly created candidate XI

duplicates the relevant bit after selecting at random one of the better

solutions kept in the SKD.

2.6.1.6 Random exploration learning (REL) operator

The exploratory processes are characterized by unpredictability

since the novel challenge is typically unknown beforehand. By using

(Equation 12) with a specific probability to conduct out REL, HLO

simulates these occurrences.

XIJ = RE(0, 1) =
0,     rand < 0:5

1,     else

(
(12)

Where the random number rand value is between 0 and 1.

2.6.1.7 Relearning operator

This could potentially assist HLO in breaking free from local

optima and achieving improved performance, similar to individuals

relearning using a novel strategy to get past the bottleneck.
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2.6.1.8 Updating the IKD and SKD

After people complete learning in each generation, the fitness of

a new alternating solution is determined using a pre-established

fitness function, which is presented in (Equation 13).

COST = r ∗ ERROR

+ ς ∗ (number   of   selected   features=max of   features)

(13)

Where   r is initialized as 0.82,   ς is initialized as 0.02, and the

error is defined in (Equation 14).

ERROR = 1 − ACCURACY (14)

(Equation 15) states the specific rates at which REL, SL, and IL

are performed to produce new solutions.

XIJ =

RE(0, 1), 0 ≤ rand < PR

IKIPJ ,     PR ≤ rand < PI

SKQJ ,                               else

8>><
>>: (15)

The rate of SL and IL is represented by (1 − PI) and (PI − PR)

respectively, here PR stands for the likelihood of REL. The

information included in the IKD is removed using the

relearning operator if a person’s learning gets caught in a

bottleneck. This allows the individual to resume learning

without being influenced by prior experiences. Until the

termination requirements are satisfied, the HLO update

operation and learning operators are repeatedly performed. The

Algorithm 1 is updated with the Bayesian inference learning for

the final selection (Zhang et al., 2023).
Algorithm 1. Proposed feature selection algorithm.

Input: Feature Vector ← FVi

Output: Optimal vector ← ~FK

Where (i = 1  ;N)

Step:1 Initialize Parameters
Number of Solution ←10
Interaction ← 100
Number of ‘ k‘ in K-Nearest Neighbor ← 10
Ratio of validation data (ho) ← 0.3 pi← 0.85 pr← 0.1

Step:2 Compute Fitness and generate initial IKD and SKD using Eq. (6)
to (11).

Step:3 If (N completed):

{← ~FK }
Else:
Generate new solution
Computer fitness using eq. (12)
Update IKD and SKD using eq. (13) and (14)

Step:4 If (rewrite required):
{Clear IKD using eq. (15) and reach step 3}
Else: Step 3 for terminations
F
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2.7 Shallow neural network classifier

The shallow wide neural network [SWN (Gavhale and

Gawande, 2014)] classifier is utilized in this work to classify

selected features. The SWNN classifier consists of one fully

connected layer with ten neurons in the input layer. The

architecture of SWNN is shown in Figure 8. Followed by the next

classifier, the medium neural network (MN2) is composed of one

fully connected layer, with the layer size being 25. Next comes the

Narrow Neural Network (N3), Bilayered Neural Network (BiN2),

and Trilayered Neural Network (TiN2); that input layer size was 100

and included two hidden layers (fully connected). These classifiers

are employed for the classification comparison with SWN2.
3 Results and discussion

The results of this work’s experiment are explained using tables

and confusion matrices in the following section.
3.1 Experimental environment

The datasets used for this experiment are the apple and cumber,

as discussed in section 2.1. 70% of the images were used for the

training procedure, and the remaining 30% were employed for the

testing. The classifiers are applied after extracting features of both

models, after the fusion of the feature, and after the optimization is

applied to both datasets. A 10-fold cross-validation approach has

been utilized in the entire experimental process. Several neural

network classifiers and performance metrics were used throughout

the validation phase, including accuracy, processing time, f1 score,

tpr, PPV, FPR, and area under the curve. The framework was

simulated on MATLAB 2023b using a Personal Computer with

128GB RAM and 12GB Graphics Card RTX 3060.
3.2 Apple dataset results

This subsection presents the Apple dataset results as numerical

and confusion matrices. Table 2 presents the proposed classification

results. The first part (a) presents the results of proposed Bottleneck

Residual with Self-Attention (BRwSA) architecture in this table.

The SWN2 classifier obtained the best accuracy of 94.2%, whereas

the execution time was 24.745 (sec). The TPR value of this classifier

is 94.2, the PPV value is 94.175, the F1-Score value is 94.187, and

AUC is 0.99175, respectively. The other shallow classifiers, such as

SN3 and SMN2, achieved 93.8 and 93.8% accuracy, respectively. A

small decline of 0.4% is noted in the performance of these classifiers

compared to SWN2. The confusion matrix of this experiment is

illustrated in Figure 9A, which can be employed to verify SWN2
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TABLE 2 Classification results of the proposed framework on Apple Dataset.

(a) Classification results of proposed Bottleneck Residual with Self-Attention (BRwSA) architecture

Classifiers TPR (%) PPV (%) F1 Score (%) FPR AUC ACC (%) Time (Sec)

N3 93.75 93.75 93.75 0.0208 0.9767 93.8 34.048

MN2 93.85 93.85 93.85 0.0204 0.9888 93.8 21.118

SWN2 94.2 94.17 94.18 0.0193 0.99175 94.2 24.745

BiN2 93.75 93.75 93.75 0.0208 0.9675 93.8 37.666

TiN2 93.7 93.675 93.687 0.02097 0.9755 93.7 44.681

(b) Classification results of proposed Inverted Bottleneck Residual with Self-Attention (IBRwSA) architecture

N3 91.90 91.85 91.8749 0.02699 0.9615 91.9 48.148

MN2 92.05 92.025 92.0374 0.0265 0.983 92.0 40.226

SWN2 92.55 92.55 92.55 0.0248 0.98515 92.5 55.245

BiN2 91.6 91.6 91.6 0.0279 0.9678 91.6 54.529

TiN2 91.35 91.35 91.35 0.02883 0.9607 91.3 66.428

(c) Classification results of fused features

N3 94 94 94 0.01995 0.9809 94 56.359

MN2 94.1 94.1 94.1 0.01966 0.9909 94.1 51.867

SWN2 94.55 94.55 94.55 0.01813 0.9926 94.5 57.711

BiN2 93.8 93.8 93.8 0.02065 0.9798 93.8 44.631

TiN2 94.25 94.25 94.25 0.01914 0.97735 94.2 53.681

(d) Classification results of proposed optimization algorithm

N3 94.175 94.25 94.212 0.0194825 0.9754 94.2 21.401

MN2 94.55 94.55 94.55 0.018125 0.99177 94.5 17.503

SWN2 94.75 94.75 94.755 0.01748 0.9928 94.8 16.859

BiN2 93.9 94.05 93.974 0.0198 0.9803 94.0 13.208

TiN2 93.85 93.85 93.85 0.02048 0.97765 93.8 17.917
F
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Bold denotes the best accuracy values.
FIGURE 8

Shallow wide neural network classifier for the classification.
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results. In this figure, the correct prediction rate of each class is 90.2,

97.0, 97.8, and 91.7%, respectively. The testing time of the

classification process is also noted, and the lowest recorded

computational time is 21.118 sec for the SMN2 classifier.

The second part of this table presents the classification results of

proposed Inverted Bottleneck Residual with Self-Attention

(IBRwSA) architecture. The SWN2 classifier obtained the highest

accuracy of 92.5%, with an execution time of 55.245 sec. The TPR

value of this classifier is 92.55, a PPV value of 92.55, an F1-Score

value of 92.55, and an AUC of 0.98515, respectively. The rest of the

classifiers obtained an accuracy of 92.0, 91.9, 91.3, and 91.6%,

respectively. The confusion matrix of the SWN2 classifier is

illustrated in Figure 9B, which can be utilized to verify the

computed TPR value. The correct prediction rates for each class

in this figure are 89.4, 96.4, 95.8, and 88.6%, respectively. Also, the

computational time of each classifier is noted, and SMN2 has the

lowest reported time of 40.226 sec.

Compared to the results of both proposed architectures, it is

noted that the BRwSA model shows an improvement in accuracy

of 1.7%. Moreover, the TPR and PPV of this model are better than

those of IBRwSA. In addition, the proposed BRwSA architecture

executed faster than the IBRwSA. Features fusion of both models,

the accuracy and TPR rates are improved. In the third part of this

table, the fusion results are presented. After the fusion, the

maximum obtained accuracy was 94.5%, whereas the execution
Frontiers in Plant Science 14
time was 57.711 sec. This classifier’s TPR, PPV, F1-Score, and

AUC values are 94.55, 94.55, 94.55, and 0.9926, respectively. A

confusion matrix is also illustrated in Figure 9C, representing that

each class’s correct prediction rate is 91.4, 98.2, 97.6, and 91.0%.

The computational time of the fusion process is increased;

however, the minimum noted time is 44.631 sec using the BN2

classifier. Compared to the fusion results with individual deep

learning models, it is observed that the accuracy is improved;

however, the time is also increased.

The proposed optimization algorithm has been performed to

improve the accuracy further and reduce the computational time

in the testing process. The results are noted in the last part of

Table 2. The SWN2 shows an improved accuracy of 94.8%,

whereas the execution time is 13.208 sec. There are a few other

performance measures, such as TPR value of 94.75, PPV value of

94.75, F1-Score of 94.755, and 0.99.28 AUC value. The accuracy of

the other shallow classifiers is 94.2, 94.5, 94.0, and 93.8%,

respectively. Based on these values, accuracy improves after the

optimization process. Figure 9D shows the confusion matrix for

the shallow wide classifier, which may be used to confirm the TPR

value. The image displays the accurate prediction rate of each class

as follows: 91.6, 98.2, 98.0, and 91.2%. Compared with previous

experiments, the optimization process shows better performance.

In addition, the minimum computational time is 13.208 (sec),

which is significantly reduced.
FIGURE 9

Confusion matrix of SWNN classifier for each performed experiment using Apple dataset. (A) Confusion matrix of proposed BRwSA architecture,
(B) confusion matrix of proposed IBRwSA architecture, (C) confusion matrix of fused features, and (D) confusion matrix of proposed selected features.
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3.3 Cucumber dataset results

Cucumber dataset results are presented in this subsection.

Table 3 presents the detailed numerical results of the proposed

framework using the cucumber dataset. In the first part of this table,

the proposed BRwSA architecture results show the maximum

obtained accuracy of 86.3% for the SWN2 classifier, whereas the

execution time is 47.699 sec. The TPR value of this classifier is 86.28,

the PPV value is 86.28, the F1-Score value is 86.392, and AUC is

0.95402, respectively. The other shallow classifiers obtained 82.6,

85.7, 83.7, and 81.47% accuracy, respectively. Figure 10A illustrates

the confusion matrix of SWN2 for this experiment that can be

utilized to verify the TPR value of SWN2. When computational time

is noted, the SMN2 required a minimum time of 15.501 sec.

In the second part of this table, IBRwSA architecture results are

presented. The SWN2 classifier obtained the highest accuracy of
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87.5%, with an execution time of 105.96 sec. The TPR value of this

classifier is 87.52, a PPV value of 87.5, an F1-Score value of 87.51,

and an AUC value of 0.87054, respectively. The rest of the classifiers

mentioned in this table obtained 85.6, 84.0, 83.4, and 84.2%

accuracy, respectively. The confusion matrix is also presented in

Figure 10, which can be used to verify the TPR rate of this classifier.

Compared to the performance of this architecture with the

proposed BRwSA, there is a slight reduction in accuracy, and an

increase in time is noted.

To improve the performance of this dataset, we performed

feature fusion. Results are discussed in Table 3(c), which shows

the improvement in accuracy. The obtained accuracy after the

fusion process is 88.0%, whereas the time is increased to 125.2

sec. To reduce the time and maintain the classification accuracy,

we performed an optimization algorithm and obtained the

maximum accuracy of 94.9% on the SWN2 classifier. The
TABLE 3 Proposed framework classification results using the Cucumber dataset.

Classification results of proposed Bottleneck Residual with Self-Attention (BRwSA) architecture

Classifiers TPR PPV F1 Score FPR AUC ACC Time

N3 82.64 82.58 82.6099 0.0434 0.90642 82.6 96.49

MN2 85.62 85.66 85.639 0.03585 0.94302 85.7 15.501

SWN2 86.28 86.2 86.239 0.0343 0.95402 86.3 47.699

BiN2 83.72 83.6 83.6599 0.0407 0.91952 83.7 80.36

TiN2 81.36 81.26 81.309 0.0566 0.91064 81.47 61.3

(b) Classification results of proposed Inverted Bottleneck Residual with Self-Attention (IBRwSA) architecture

N3 84.02 84 84.01 0.0399 0.92196 84.0 241.93

MN2 85.58 85.6 85.899 0.03605 0.9617 85.6 60.799

SWN2 87.52 87.5 87.51 0.0312 0.97054 87.5 105.96

BiN2 84.24 84.26 84.25 0.0394 0.9299 84.2 196.58

TiN2 83.38 83.32 83.349 0.04155 0.9249 83.4 203.98

(c) Classification results of fused features

N3 84.08 83.98 84.02 0.0398 0.92166 84.1 157.99

MN2 86.4 86.4 86.4 0.034002 0.9657 86.4 72.057

SWN2 87.96 87.98 87.97 0.0301 0.9726 88.0 125.2

BiN2 83.34 83.26 83.299 0.04165 0.91624 83.3 248.66

TiN2 83.76 83.7 83.73 0.0406 0.92694 83.8 293.38

(d) Classification results of proposed feature selection algorithm for Cucumber dataset

N3 90.74 90.7 90.72 0.02315 0.96058 90.7 53.91

MN2 93.02 93.02 93.02 0.01745 0.97874 93.0 31.962

SWN2 94.92 94.92 94.92 0.0127 0.98672 94.9 37.925

BiN2 90.94 90.9 90.92 0.02265 0.9587 90.9 74.79

TiN2 90.84 90.78 90.80 0.0229 0.9621 90.8 105.84
Bold denotes the best accuracy values.
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FIGURE 10

Confusion matrix of SWNN classifier for each performed experiment using Cucumber dataset. (A) Confusion matrix of proposed BRwSA
architecture; (B) confusion matrix of proposed IBRwSA architecture; (C) confusion matrix of fused features, and (D) confusion matrix of proposed
selected features.
FIGURE 11

Analysis of proposed models and entire framework based on accuracy and testing time.
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computational time of this classifier is 37.925 sec, which is

significantly reduced. The TPR value of this classifier is 94.92,

the PPV value is 94.92, the F1-Score is 94.92, and 0.98672 is the

AUC value. The accuracy of the other shallow classifier is 90.7,

93.0, 90.9, and 90.8%, respectively. Figure 10D illustrates the

confusion matrix of the SWN2 classifier that can be utilized to

verify the TPR value. The correct prediction value of each class

after the optimization process reaches 96.9, 91.3, 98.9, 90.6, and

96.9%, respectively. Overall, the optimization step improved the

accuracy and reduced the computational time.
Frontiers in Plant Science 17
3.4 Ablation studies

Detailed ablation studies of the proposed framework are

described here based on the following points: performance of pre-

trained models and proposed networks, time comparison, and

comparison with recent SOTA techniques. The proposed

framework consists of four important steps: BRwSA architecture,

IBRwSA architecture, a fusion of features of both architectures and

the selection of best features using an improved HLO algorithm.

Results are discussed in Tables 2, 3, showing the accuracy
FIGURE 12

LIME based visualization results of the proposed IBRwSA and BRwSA architecture.
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improvement after the fusion and optimization process. Confusion

matrices are also illustrated in Figures 9, 10 are utilized to verify the

TPR value of SWN2 for each experiment conducted for validation.

From the results, we concluded that the proposed BRwSA

architecture yielded better results than the IBRwSA architecture. In

addition, this architecture contains fewer learning parameters and

performs better than the pre-trained deep learning architecture (a

comparison is conducted in Figure 11). In this figure, the upper part

shows the accuracy of pre-trained and proposed architectures on the

selected datasets separately. For the Apple dataset, the AlexNet model

obtained an accuracy of 85.8%, and GoogleNet achieved 86.3%.

The recent models, such as InceptionV3, DenseNet201, and

MobileNetV2, obtained improved accuracies of 90.1, 91.6, and 92%,

respectively. The proposed architectures obtained 94.2 and 92.5%

accuracy, which is improved than the compared models. Similarly for

the Cucumber dataset, the proposed architectures obtained 86.3 and

87.5% accuracy, whereas the pre-trained models obtained accuracy of

80.1, 80.6, 82.3, 82, 83.5, 84.2, and 84.8%, respectively. In the second

part of this figure, testing time is plotted for each classifier. Four

experiments are performed, and it is noted that the time is increased

after the fusion process; however, this time is optimized using an

improved HLO algorithm. Hence, time is significantly reduced after

the optimization algorithm, which is this work’s strength.

As shown in Figure 11, the proposed BRwSA architecture

achieved better accuracy on the selected datasets than the

proposed IBRwSA and pre-trained models; therefore, we

employed the LIME technique as an explainable AI for the

interpretation. The inside information of proposed IBRwSA

BRwSA architecture is highlighted through LIME, as shown in

Figure 12. The disease spots are highlighted with different colours

based on the LIME interpretation. Except for all, the blue colour

presents the healthy part in the image, which is wrongly identified

as a diseased part.

Table 4 summarises the proposed framework accuracy

comparison with state-of-the-art (SOTA) techniques. In this table,

a comparison is conducted based on datasets such as Apple and

Cucumber. Authors (Zhong and Zhao, 2020) used an apple

leaf image dataset and obtained a maximum accuracy of 93.71%.

In (Bi et al., 2022), the ResNet152 model achieved the highest

accuracy of 77.65%. Authors in (Khan et al., 2022) (Yu and Son,

2019), and (Kodors et al., 2021) used the Apple Leaf Image dataset

and obtained an accuracy of 88.0, 84.3, and 87.0%, respectively.

The proposed framework obtained an accuracy of 94.8%, which is

better than the SOTA methods. Similarly, a comparison is

conducted for the Cucumber dataset, and it is noted that the

previous best reported accuracy was 94.7% by (Li et al., 2020)

on cucumber leaf image dataset. The proposed framework obtained

better accuracy of 94.9% using the Cucumber Private Dataset.
4 Conclusion

This work proposes a novel deep-learning framework with an

improved HLO algorithm for apple and cucumber leaf disease

classification. A contrast enhancement technique is proposed that

increases the contrast of infected spots to help better feature
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extraction. Two novel deep learning architectures, BRwSA and

IBRwSA, are proposed. Both architectures are trained on the

selected datasets employed in the testing phase. Features are

extracted from the self-attention layer and fused using a

concatenation approach. Further, the fused features are optimized

using an improved HLO algorithm. The selected features are finally

classified using a shallow neural network classifier. The

experimental process was conducted on two datasets and

obtained improved 94.8 and 94.9% accuracy, respectively. Based

on the detailed experiments, the following points are concluded:

▪ The contrast enhancement technique improved the contrast

of the disease spot region, further helping to learn useful features.

▪ The inverted bottleneck model reduced a few important

features in the convolutional layers compared to BRwSA; hence,

the accuracy declined little and increased the number of

learning parameters.
TABLE 4 Proposed framework comparison with recent state-of-the-art
techniques on selected datasets.

Serial
No.

Paper Dataset Accuracy

1
(Zhong and
Zhao, 2020)

Apple Leaf Images Dataset
93.51, 93.31,
and 93.71%

2
(Bi
et al., 2022)

Apple Leaf Images Dataset
based on shape, color, and

disease count.

Mobile Net: 73.50
InceptionV3:75.59

ResNet
152: 77.65%

3
(Khan
et al., 2022)

Apple Leaf Images Dataset 88%

4
(Yu and
Son, 2019)

Apple Leaf Images Dataset 84.3%.

5
(Kodors
et al., 2021)

Apple Leaf Images Dataset 87%

6
Proposed
Methodology

Source: Plant village
Dataset description: Apple
Dataset: Apple Scab, Apple

Cedar Rust, Black Rot
and healthy

94.8%

(a) Cucumber Dataset

1
(Kianat
et al., 2021)

Cucumber Private Dataset 93.50%

2
(Li
et al., 2020)

Cucumber Private Dataset 94.7%

3
(Mia
et al., 2021)

Cucumber Private Dataset

Random Forest:
89.93%,

MobileNetV2:
93.23%.

4
(Uoc
et al., 2022)

Cucumber Private Dataset 80%

5
Proposed
Methodology

Source: Privately Collected
Dataset
Dataset description:
Cucumber Dataset: powdery
mildew, anthracnose, blight,
downy mild, and angular
leaf spot

94.9%
Bold denotes the best accuracy values.
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▪ Features are extracted from the self-attention layer and fused

using a concatenation layer. The fusion process improved the

accuracy, but computational time also jumped, which is the dark

side of this step.

▪ Selection of best features using an improved HLO algorithm

improved the accuracy and precision rate; however, another strong

point was decreased computational time.

The limitation of proposed framework is the fusion process

which increase the overall computation of the method. In future, we

will propose activation based fusion and also will employ a light

weight vision transformer for better learning. In addition to this,

combine the selected datasets into a single dataset and then utilized

for the training and testing. Based on this strategy, it can be easy to

analyze the robustness and generalizability of the presented work.
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