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The soil ecosystem has been severely damaged because of the increasingly severe

environmental problems caused by excessive application of phosphorus (P) fertilizer,

which seriously hinders soil fertility restoration and sustainable farmland

development. Shoot P uptake (SPU) is an important parameter for monitoring

crop growth and health and for improving field nutrition management and

fertilization strategies. Achieving on-site measurement of large-scale data is

difficult, and effective nondestructive prediction methods are lacking. Improving

spatiotemporal SPU estimation at the regional scale still poses challenges. In this

study, we proposed a combination prediction model based on some representative

samples. Furthermore, using the experimental area of Henan Province, as an

example, we explored the potential of the hyperspectral prediction of maize SPU

at the canopy scale. The combinationmodel comprises predicted P uptake bymaize

leaves, stems, and grains. Results show that (1) the prediction accuracy of the

combined prediction model has been greatly improved compared with simple

empirical prediction models, with accuracy test results of R2 = 0.87, root mean

square error = 2.39 kg/ha, and relative percentage difference = 2.71. (2) In

performance tests with different sample sizes, two-dimensional correlation

spectroscopy i.e., first-order differentially enhanced two-dimensional correlation

spectroscopy (1Der-2DCOS) and two-trace 2DCOS of enhanced filling and milk

stages (filling-milk-2T2DCOS)) can effectively and robustly extract spectral trait

relationships, with good robustness, and can achieve efficient prediction based on

small samples. (3) The hybrid model constrained by the Newton-Raphson-based

optimizer’s active learning method can effectively filter localized simulation data and

achieve localization of simulation data in different regions when solving practical

problems, improving the hybrid model’s prediction accuracy. The practice has

shown that with a small number of representative samples, this method can fully

utilize remote sensing technology to predict SPU, providing an evaluation tool for the

sustainable use of agricultural P. Therefore, this method has good application

prospects and is expected to become an important means of monitoring global

soil P surplus, promoting sustainable agricultural development.
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1 Introduction

One important means of increasing crop yield and ensuring

global food security is the rational application of phosphorus (P)

fertilizer (Mogollón et al., 2021; Langhans et al., 2022; McDowell

et al., 2024). However, in the past four decades, the application of P

fertilizer has exceeded the global sustainable development’s

“planetary boundary” because of the increasing demand for P in

agricultural production (Steffen et al., 2015; Springmann et al.,

2018). The excessive application of P fertilizer in global farmland

increases agricultural production costs (Hu et al., 2020), intensifies

the crisis of P resources (Cooper et al., 2011), and causes nutritional

pollution because of the excessive leaching of P into adjacent water

bodies (Zou et al., 2022). This poses a severe threat to the water

environment, which seriously hinders the achievement of

sustainable development goals. Therefore, there is an urgent need

for large-scale, long-term, and reliable monitoring of shoot P uptake

(SPU) to meet the growing demand for food (Mueller et al., 2012)

and address the dual challenges of intensified P pollution and

reduced P reserves (Mew, 2016).

Many studies have been conducted on estimating SPU, and

three commonly used methods exist. First, some literature multiply

statistical yearbook data at the regional scale with crop nutrient

concentrations to obtain nutrient uptake (Yin et al., 2021; Zou et al.,

2022). Although this method is easier to implement on a regional

scale, the data in statistical yearbooks usually have substantial

spatial errors and may have substantial statistical errors with

measurement data, resulting in low accuracy. Second, some

literature directly uses nutrient uptake efficiency to calculate

nutrient uptake (Jiao et al., 2015; Zhu et al., 2022). Third,

multiply the fixed nutrient concentration with biomass to obtain

the nutrient uptake (Wen et al., 2017). Although these two methods

are simple, they lack flexibility, require collecting a large number of

ground measurement samples to compensate for the loss of

accuracy, and have poor universality because nutrient uptake

efficiency and concentration are often variable in different

environments, species, or regions (He et al., 2020). Distinct

sampling methods based on limited sample sizes are insufficient

to monitor SPU spatial distribution (Marshall and Thenkabail,

2015). It is difficult to achieve large-scale routine field

investigations because of time and manpower limitations

(Mahajan et al., 2017; Abdel-Rahman et al., 2017; Wu et al.,

2022). Recently, various crop canopy information with spatial full

coverage and temporal continuity can be obtained (Gracia-Romero

et al., 2017; Gao et al., 2019; Belgiu et al., 2023) because of the

development of hyperspectral remote sensing technology (Pang

et al., 2022), providing the possibility for predicting SPU.

Previous studies have mostly focused on leaf P concentration

(LPC) (Pandey et al., 2017; Ge et al., 2019), Aboveground biomass

except for grains (AGB) (Zhang et al., 2021b; Wocher et al., 2022),

and grain yield (Yang et al., 2021; Yue et al., 2023) in maize. There

has been relatively little quantitative analysis of P uptake in maize

aboveground tissues (i.e., leaves, stems, and grains) under field

conditions. However, problems still exist even if the predictive

models for these three factors are relatively mature. First, the

extracted features lack good representativeness (Pandey et al.,
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2017; Yang et al., 2021; Zhang et al., 2021b), resulting in a lack of

universality in the wavelength selection of prediction models under

different environments and conditions. Second, for feature selection

methods, the contradiction between the computational intensity

and accuracy of optimal band selection is always an issue that

cannot be ignored (Yang et al., 2021; Sun et al., 2021). To address

the aforementioned issues, we must strongly conduct sufficient data

mining with less computational complexity on hyperspectral

datasets to extract complete sensitive bands. In addition, there

was a strong correlation between AGB and canopy spectra at

different growth stages. Considering hyperspectral data at

different growth stages, two-trace two-dimensional correlation

spectroscopy (2T2DCOS) (Noda, 2018, 2022) will provide the

potential to extract important spectral information by fully

exploring the information contained in spectra at different

growth stages.

Moreover, because of the occlusion of crop canopies,

particularly under dense canopy conditions such as corn, optical

sensors cannot receive most of the spectral information of the

obstructed organs (Li et al., 2023), making it difficult to directly

predict P concentration and P uptake at the canopy scale. Therefore,

exploring the uptake relationship of P among different organs (e.g.,

corn leaves, stems, and grains) has high scientific significance and

practical value. Thus, this study’s focus and challenge is overcoming

these limiting factors and improve the accuracy and reliability of

hyperspectral data to predict crop SPU. There are currently three

main prediction models: data-driven methods (Atzberger et al.,

2015), physical methods (Féret et al., 2017), and hybrid methods

(Kayad et al., 2022). Data-driven methods are relatively easy to

implement but cannot meet large-scale monitoring requirements.

Physical model requires a large number of input parameters

(Atzberger et al., 2010), and the model structure is complex;

therefore, the application of this method is still quite limited.

Thus, among them, hybrid models are increasingly favored by

researchers. The hybrid method combines the advantages of these

two methods (Verrelst et al., 2019), alleviating the limitations of

data-driven and physical models (Berger et al., 2020a). However,

the performance of hybrid methods is limited by the quality of the

simulated datasets during the training process. If there is a

substantial difference between the simulated and measured

datasets, it may not be possible to effectively quantify leaf biomass

from canopy reflectance. Previous studies have attempted to update

simulated datasets using real ground samples and successfully

applied hybrid methods to real-world scenarios (Féret et al.,

2019). However, they mainly used random selection to obtain

new samples, which may not be representative and may even

harm model performance (Wan et al., 2023). Compared with

random selection, active learning methods can select

representative samples (Berger et al., 2020b) and establish robust

models with small datasets (Verrelst et al., 2016), which will be

beneficial for developing effective hybrid methods for estimating

leaf biomass. Furthermore, SPU combination prediction models

suitable for different environments, conditions, and scales can be

developed by combining empirical models to provide more accurate

and reliable decision support for agricultural production and

promote sustainable agricultural development.
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In this study, we used the Gaolong Town Experimental Zone in

Yanshi District, Luoyang City, Henan Province, as an example.

Moreover, we used two-dimensional correlation spectra and active

learning algorithms to construct a combination model to address

the following core issues: (i) explore the effectiveness and robustness

of extracting spectral trait relationships from two-dimensional

correlation spectra, with the expectation of establishing robust

prediction models based on a small number of representative

samples; (ii) explore the effectiveness of using active learning to

optimize simulated data, with the expectation of obtaining more

localized training data; (iii) explore how to use canopy reflectance

spectroscopy to achieve nondestructive prediction of P uptake in

maize stems and grains; and (iv) establish and evaluate corn SPU

combination prediction models. By predicting maize SPU based on

remote sensing data, we can provide a basis for studying soil P

surplus, guiding local fertilization strategies, and providing a

scientific basis for improving P utilization efficiency and

achieving sustainable agricultural development.
2 Materials and methods

2.1 Research material

2.1.1 Study area and experimental design
The research area is located in Gaolong Town, Yanshi District,

Luoyang City, Henan Province (112°41′49″E, 34°36′6″). The annual
average temperature and precipitation are 14.2°C and 579.7 mm,

respectively. Annual precipitation’s spatial and temporal

distribution is uneven, with rainfall concentrated from June to

July each year. The basic physicochemical properties of the

experimental area are as follows: soil pH, organic matter, total N,

total P, available N, and available P were 7.8, 17.1 g·kg-1, 0.67 g·kg-1,

0.31 g·kg-1, 29.8 mg·kg-1, and 8.9 mg·kg-1, respectively. We selected
Frontiers in Plant Science 03
the Zhengdan 958 variety, where continuous positioning

fertilization treatment has been implemented for many years. The

experimental area was designed as a randomized block experiment,

with a size of 10 m × 7.2 m. Nitrogen fertilizer (urea, N 45%) and

potassium fertilizer (potassium chloride, K2O 50%) were applied as

base fertilizers at 90 and 60 kg/ha, respectively.

As shown in Figure 1, we set up experiment 1 with seven P

treatments using calcium superphosphate (P2O5 12%) and

polyphosphate (H12N3O4P 40%) as P fertilizers, with P

application rates of F: 90 kg (P2O5)/ha; C: 65 kg (P2O5)/ha; P1:

45 kg (P2O5)/ha; P2: 32.5 kg (P2O5)/ha; P2T: 9 kg (P2O5)/ha; P2TS:

9 kg (P2O5)/ha; and P2M: 9 kg (H12N3O4P)/ha. We performed four

replicates per treatment. Urea (N 45%) was applied at 135 g/ha

during the six-leaf stage, and P2T, P2TS, and P2M treatments added

23.5 kg/ha of calcium superphosphate (P2O5 12%).

We set up experiment 2 with six P treatments using calcium

superphosphate (P2O5 12%) as the P fertilizer. The P application

treatments were P0: 0 kg (P2O5)/ha; P1: 15 kg (P2O5)/ha; P2: 30 kg

(P2O5)/ha; P3: 60 kg (P2O5)/ha; P4: 90 kg (P2O5)/ha; and P5: 120 kg

(P2O5)/ha. We repeated this procedure four times for

each treatment.

2.1.2 Field observation
To measure the leaves of different layers during the jointing,

filling, and milk stages of summer maize in 2021, we used a PSR

+3500 spectrophotometer (Spectral Evolution Inc., Lawrence, MA,

USA). We selected three representative samples from each

experimental area, with upper, middle, and lower leaves taken

from three different layers. We also selected two leaves from each

layer for measurement, and a standard reference whiteboard was

used for calibration before measurement. The blade is equipped

with an active light source while ensuring its stability. The handle

blade should be clamped in the middle of the blade, avoiding the

leaf vein. At the same time, the blade clamp should be kept
FIGURE 1

Experimental setup in the research area.
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perpendicular to the blade. Finally, the spectral data should be

obtained and stored in PAD. We took the leaves measured in the

experimental area back to the laboratory for drying, where they

were ground into powder using a grinder. Finally, to determine the

P concentration in corn leaves, we used the sulfuric acid hydrogen

peroxide digestion vanadium molybdenum yellow colorimetric

method. We used the upper and middle leaves during the jointing

stage and the upper, middle, and lower leaves during the filling stage

as mature maize leaves. To simulate the P concentration in the plant

canopy, we calculated the average P concentration in different

leaf layers.

At the end of the growth cycle, we measured the biomass and P

concentration of different aboveground maize tissues in experiment 1.

We also measured AGB of maize in experiment 2.
2.2 Model modification

In real-world application scenarios, training an effective

prediction model relies on a large number of measured samples,

whereas accurately measuring large-scale data is often time-

consuming, labor-intensive, and costly. Active learning is one of

the main ways to reduce the cost of sample collection. Therefore, we

applied an active learning method, namely the sampling strategy of

NRBO-AL. We iteratively selected the most valuable simulation

data and enhanced the generalization ability of the training model

based on the simulation dataset to actual scenarios to improve the

performance of the prediction model with minimum cost.

The specific implementation steps are as follows.
Fron
1. We used the measured samples as the measurement dataset

Xn, n = 1,⋯,N . By considering representativeness, we

selected K   (K < N) measurement datasets as representative

samples Xm,m = 1,⋯,K .

2. Based on the NRBO algorithm (Sowmya et al., 2024)

(see Appendix S2.2 for details), we obtained a simulated

dataset Xt , t = 1,⋯,T , that is closer to the centroid of

representative samples.
The shortest distance from Xt to Xm is represented as follows:

dxt = jjxt − xmjj < e,   xt ∈ Xt ,   xm ∈ Xm (1)

3. We established a multiple linear regression model f(x) based

on representative samples and selected simulated data samples with

a smaller distance from the simulated biomass yt as the updated

training dataset. We also used the updated training dataset to train

regression models for estimating biomass in the measured dataset.

Among them, the distance from f (xt) to yt is represented as

follows:

dxt = jjf (xt) − yt jj < e , xt ∈ Xt (2)

We selected a new sample from the measurement dataset for

each iteration to update the training dataset until the maximum

number of samples (K) was reached. To balance sampling costs and

model performance, we usually set the maximum number of new

samples to 10% of the measured datasets (Wan et al., 2020, 2022).
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However, for small datasets, K will be set higher (Wan et al., 2023),

and if too few samples are selected, effective features cannot

be learned.

The traditional random selection method is based on the

maximum number of new samples, and it directly selects samples

from the measurement dataset, which cannot guarantee the quality

of new samples. Contrary to this random method, the greedy

algorithm based on NRBO can impose constraints on the quality

of new samples, thereby enhancing the potential to improve model

performance beyond random selection.
2.3 Technical approach

To achieve high-precision prediction mechanisms for maize

SPU, we comprehensively explored and analyzed the use of small-

scale remote sensing data (Figure 2). We established two empirical

models based solely on actual ground measurement data based on

two-dimensional correlation spectra and a hybrid model based on

Newton–Raphson-based optimizer’s active learning (NRBO-AL)

optimization and a combined prediction model combining mixed

models and partial empirical models.

We used 2T2DCOS (see Appendix S2.3.1) to couple the spectra

of the filling and milk stages to establish an empirical model. We

selected new spectral features based on peak position screening for

accurate AGB prediction. We also used first-order differentially

enhanced two-dimensional correlation spectroscopy (1Der-

2DCOS) (see Appendix S2.3.2) to analyze the spectral changes

under P concentration disturbance, thereby predicting the P

concentration in maize canopy leaves. We multiplied the two as

SPU, except for the grains. For predicting P uptake by grains, we

utilized 1Der-2DCOS to analyze the spectral changes under yield

disturbances, thus establishing a prediction model for maize kernel

biomass. We multiplied this by the P concentration in the seeds to

determine the amount of P absorbed by the seeds.

To establish a hybrid model for predicting leaf biomass, we

conducted a sensitivity analysis of the parameters in the PROSAIL-

5B model (Jacquemoud et al., 2009) (see Appendix S2.3.3). We

determined the parameter’s sensitivity through EFAST sensitivity

analysis (Qiao et al., 2020) (see Appendix S2.3.4) and using the

mixing sine and cosine algorithm with the Lévy flying chaotic

sparrow algorithm (Qinghua et al., 2021) (see Appendix S2.3.5) to

optimize the model parameters and determine the range of high-

sensitivity parameters and the values of other low-sensitivity

parameters. Subsequently, we screened the simulation dataset

generated by the PROSAIL-5B model using the NRBO-AL

method, which comprehensively improved the PROSAIL-5B

model’s effectiveness, achieving localization of model parameters

and high-precision prediction of leaf biomass. We multiplied this by

the P concentration in the canopy leaves to determine the amount

of P absorbed by corn leaves. Subsequently, we established a

prediction model for P uptake by stems and grains based on P

uptake by corn leaves.

Using actual observed data, we evaluated the accuracy of the

four SPU combination prediction models by determining the

coefficient (R2), root mean square error (RMSE), and relative
frontiersin.org
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percentage difference (RPD) (see Appendix S2.3.6) and selecting the

best prediction model from them.
3 Results

3.1 Stable prediction model for small-
size datasets

Taking the prediction of whole reproductive period LPC as an

example, we selected different sample sizes to investigate the possibility

of stable prediction on small datasets. We selected samples consistent

with the entire dataset’s distribution, namely 10%, 20%, 30%, 40%,

50%, 60%, 70%, 80%, 90%, and 100% samples (n=252), and compared

and analyzed the stability of different dimensionality reduction

methods and the combination effect of prediction methods.
Frontiers in Plant Science 05
We applied derivative transformation to the spectrum to

eliminate background noise, and compared the stability of

different dimensionality reduction methods such as Successive

Projections Algorithm (SPA), Least Absolute Shrinkage and

Selection Operator (LASSO), (Elastic Net) EN, and 2DCOS. As

the number of repetitions decreased from 10 to 5, Table 1 recorded

the changes in the number of bands under different methods. The

SPA method has almost no repeated band selection, while both the

EN and 2DCOS methods have repeated band selection. However, at

a repetition rate of 10, the 2DCOS method shows a higher number

of bands. When the number of repetitions decreases, the number of

bands in the EN method slightly increases, while the 2DCOS

method shows a stable trend. This set of data reveals the dynamic

variation characteristics of the number of bands under different

methods as the number of repetitions changes. The selected bands

for 2DCOS dimensionality reduction are independent of the
TABLE 1 Each type of preprocessing method repeatedly selects the band number distribution of different datasets.

Repetitions Number of bands

SPA EN 2DCOS

Raw 1-Der 2-Der Raw 1-Der 2-Der Raw 1-Der 2-Der

10 / / / 4 1 1 8 110 229

9 / / / 5 1 2 6 86 118

8 / / / 11 2 2 4 44 88

7 / / / 34 3 5 2 44 70

6 / / / 53 5 12 14 40 64

5 1 1 / 77 14 16 14 32 48
FIGURE 2

Schematic representation of the technical approach.
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amount of data, exhibiting strong stability and unique advantages

(Yue et al., 2021).

In this study, we selected bands with more than 8 datasets that

were repeatedly selected under 6 different preprocessing methods to

test the LPC prediction performance. Among them, we compared

the prediction performance of selecting different bands and the

same band under different data partitioning (as shown in Figure 3).

From Figure 3, it can be observed that for the raw data, the

prediction performance when selecting the same sensitive bands is

inferior to when selecting different sensitive bands (-0.1275 [-0.1022,

-0.1529]). This suggests that the sensitive bands in the raw data are

unstable and susceptible to interference from external factors such as

background noise, leading to shifts in the sensitive bands. Therefore,

after removing the impact of background noise using derivative

transformation, the prediction performance significantly improves.

Under the first-order derivative preprocessing, for datasets with

non-uniform bands, EN’s dimensionality reduction performs better

than 2DCOS. This is because the sensitive bands after EN

dimensionality reduction have lower redundancy, indicating that

EN dimensionality reduction has poor universality and is more

influenced by the heterogeneity of the dataset. In contrast, on a

uniform dataset, 2DCOS shows better prediction performance

because it has higher universality in dimensionality reduction,

performing well across different datasets with minimal model

tuning required. Additionally, under 2DCOS dimensionality

reduction, regardless of whether fixed bands are selected, the

prediction performance difference is very small (-0.0033 [-0.0119,

0.0052]). Therefore, combining derivative transformation with

2DCOS dimensionality reduction provides the most stable

regression model.

We compared three different types of regression methods—

Support Vector Regression (SVR), Back-Propagation Neural
Frontiers in Plant Science 06
Network (BPNN), and Gradient Boosting Regression Tree

(GBRT)—under varying data sizes. While the SVR and BPNN

models perform well on small datasets, their predictive accuracy

significantly decreases with larger datasets (as shown in Figure 4).

When the data volume is less than 100, the results of 1Der-2DCOS-

SVR are higher and the model is more stable. However, when the

amount of data is large, the prediction effect is average. The 1Der-

2DCOS-GBRT model is the most stable among these models. No

matter how the size of the dataset changes, its prediction accuracy

remains consistent, which can achieve more robust and accurate

predictions. This result also solves the problem of using small data

to predict.
3.2 Empirical model prediction of SPU

3.2.1 Prediction of SPU based on overall
plant characteristics

Predicting the SPU before the season helps to comprehensively

understand the nutrient requirements and growth potential of

crops, and can adjust the fertilizer application rate reasonably,

thereby improving the efficiency of phosphorus fertilizer use and

reducing carbon emissions in agricultural production. At the

same time, pre-season forecasting can also help agricultural

production respond quickly to uncertain climate conditions,

improve crop stress resistance and stability, and promote sustainable

agricultural development.

This study directly predicts SPU using spectral data from the

jointing stage, filling stage, and milk stage. As shown in Table 2, the

best period for pre-season prediction is the grouting period.

Pre-seasonal prediction of SPU is a key technology in precision

agriculture management. It can not only improve the sustainability
FIGURE 3

The prediction performance under different treatments.
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of agricultural production, but also provide important scientific

basis for agricultural decision-making. It has profound significance

for the intelligent management and resource optimization of

modern agriculture.

3.2.2 Prediction of SPU based on plant parts
Directly predicting the P uptake of the entire plant may

overlook the differences between these parts, resulting in

inaccurate predictions. By predicting the P uptake of different

parts of maize plants, the model can flexibly adjust the

parameters of each part, avoiding simplifying the entire maize’s P

uptake process into a unified parameter. This type of model is easier

to explain and optimize, and also helps to reveal the specific laws

and influencing factors of P uptake between different parts, thereby

more accurately integrating the effects of different factors on P

uptake in various parts and improving prediction accuracy.

We selected the relatively important parts of corn plants -

leaves, stems, and grains. However, traditional empirical models are
Frontiers in Plant Science 07
difficult to distinguish the biomass of leaves and stems in canopy

spectra. Therefore, we use the P concentration of mature leaves to

represent the P concentration in the aboveground part of the plant,

and multiply it with AGB except for grains to calculate the P uptake.

We applied the 1Der-2DCOS algorithm to the canopy spectrum

to search for bands sensitive to the P concentration of mature leaves

changes. Subsequently, we divided the dataset into training and

validation sets in a 7:3 ratio to predict the P concentration in maize

canopy leaves (n = 56). Figure 5A shows the 1Der-2DCOS analysis

results for the canopy spectrum. Figure 5B shows the prediction

results of the model, with a prediction accuracy reached 0.7553.

At different growth stages, we studied and analyzed the

correlation between different bands (see Appendix S3.2.2 for

specific bands) and AGB. Supplementary Figure S1 shows that

compared to the jointing stage, the correlation between maize AGB

and spectral data is higher during the filling and maturity stages, as

the jointing stage is in the early stages of growth and there is greater

uncertainty in monitoring maize biomass. Therefore, in this study,
TABLE 2 SPU prediction results at different growth stages.

R2
test RMSEtest MAEtest MAPEtest

1Der-2DCOS-SVR

jointing 0.7757 2.3515 9.9863 0.2425

filling 0.8327 1.5253 4.0063 0.1267

milk 0.7883 2.1993 9.1119 0.2769

1Der-2DCOS-GBRT

jointing 0.7258 2.6399 2.0155 0.0634

filling 0.7351 4.9514 3.2085 0.0792

milk 0.6668 3.4575 2.9863 0.0963

1Der-2DCOS-BPNN

jointing 0.7284 5.0201 4.9882 0.1254

filling 0.7893 6.1996 10.0962 0.3105

milk 0.7254 3.9593 12.1049 0.3333
FIGURE 4

The prediction performance under the same sensitive frequency band.
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the 2T2DCOS method was used to couple canopy spectral data

during the filling and milk stages, namely filling-milk-2T2DCOS,

where we selected over half of the samples (>20) as sensitive bands,

i.e., 399, 400, 425, 553, 753, 1127, 1173, 1677, 1723, 2097, 2297,

2425, 2450, and 2451 nm. We established a random forest (RF)

model (Figure 6A) and obtained the importance ranking of

variables in RF (Figure 6B).

To avoid high correlation between the same frequency band at

different growth stages, which may affect the model’s accuracy, we

selected the growth period with high contribution from each band,

i.e., F399, F753, F1173, F1677, F2097, F2297, F2451, M400, M425,

M553, M1127, M1723, M2425, and M2450 (F: filling stage; M: milk

stage). We constructed a dual-band index based on these 14 bands

and ranked all the obtained variables’ correlations. We then selected

the top 10 positively correlated bands and the top 10 negatively

correlated bands, totaling 20 bands. Using an RF model to

predict the AGB data (Supplementary Figure S2), we found an

overestimation phenomenon in the simulation process of low

biomass samples (AGB< 7 t/ha). Using the extreme learning

machine (ELM) algorithm (see Appendix S2.4.3) to establish an

AGB prediction model, we found that DSI has the best prediction

effect (Figure 6C).
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During the filling stage, P stored in the nutrient organs is

gradually reactivated into the developing grains to support their

growth: 50%–85% of leaf P and 15%–50% of stem P accumulated

before silking stage production are re-fixed into the grains (Zhang

et al., 2022). Therefore, this study suggests that the P concentration

in mature corn leaves is equal to that in harvested grains, and that

the P concentration in mature corn leaves can be used instead of

that in grains (Woli et al., 2018) (Supplementary Figure S3).

Meanwhile, using the milk stage spectrum to predict grain

biomass, as shown in Figure 7A, with the 1Der-2DCOS spectrum.

We established a prediction model for grain biomass, as shown in

Figure 7B, with great prediction performance (R2 = 0.7888, RPD =

2.1021). Calculates grain P uptake by multiplying the two, as shown

in Figure 7C, with R2 = 0.8103 and RPD = 2.2404. The prediction

effect is excellent, thus achieving nondestructive and high-precision

prediction of grain P uptake based on remote sensing data.

From the perspective of reducing model computational

complexity and saving computational time, we obtained two

models for predicting SPU in maize by predicting LPC based on

measured data from the jointing and filling stages, predicting AGB

of maize except for grains based on measured data from the

filling and milk stages, and combining them with the maize grain
FIGURE 5

(A) Two-dimensional synchronous spectrum and (B) prediction results.
FIGURE 6

(A) Random Forest model. (B) The contribution of AGB sensitive bands. Features1-14: Filling Stage; Features15-28: Milk Stage. (C) AGB prediction
model based on filling-milk-2T2DCOS.
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P uptake prediction method. Figure 7D shows that although the

computational and time costs were reduced, the best-performing

model only achieved an accuracy of 0.6244 at the cost of

sacrificing the model’s accuracy, and the predicted values were

generally overestimated.
3.3 Hybrid model prediction of SPU

3.3.1 Parameter calibration
To improve the accuracy of the leaf biomass inversion model,

we used the EFAST method for sensitivity analysis of the PROSAIL

model parameters (Appendix S3.3.1) and calibrated the PROSAIL

model parameters using the mixing sine and cosine algorithm with

the Lévy flying chaotic sparrow algorithm, thus providing accurate

model input parameters for maize planting areas under different

treatments within the research area and applying them to leaf

biomass inversion.

We set the sensitivity threshold to 0.1 and considered

parameters above this threshold as high-sensitivity parameters.

The results of the sensitivity analysis indicate that during the

filling stage, leaf area index (LAI), leaf chlorophyll content (Cab),

and average leaf angle (ALA) considerably affect visible light. LAI

and ALA considerably impact near-infrared spectra. LAI ALA, and

leaf water content (Cw) considerably impact shortwave infrared
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spectra. Compared with the filling period, the sensitivity analysis of

the green light band and shortwave infrared 1 during the milk stage

has changed. During the milk stage, the sensitivity of the total

carotenoid content to the green light band is relatively high, and the

hot-spot parameter (hs) also has a certain impact on the shortwave

infrared spectrum. Ultimately, input parameters with strong global

sensitivity include LAI, Cab, Cw, total carotenoid content (Car), hs,

and ALA. Although dry matter content (Cm) is not a sensitive

variable, in this study, the PROSAIL model was mainly used for

simulating leaf biomass; therefore, this variable was also included as

a sensitive variable.

Based on this preliminary analysis, we have decided to only change

the most sensitive parameters, which have a wide range of amplitudes

and sensitivities, while keeping other parameters unchanged, which is

the standard value in Supplementary Table S2. This decision seems

reasonable considering the required computing power and a single

crop in the same region, which is the focus of this study.

Supplementary Figure S6 shows poor simulation results at 400–

615 nm and 765–990 nm. Therefore, we selected simulation datasets

of 615–765 nm and 990–2500 nm for subsequent modeling.

3.3.2 Leaf biomass prediction
Using parameter calibration results, we established a

quantitative relationship between reflectance and LAI, Cm, using

the PROSAIL model to develop a remote sensing inversion model
FIGURE 7

(A) The synchronous spectrum of the first-order differential spectrum; (B) The corresponding predicted grain biomass results; (C) Model for
predicting P uptake by grains; (D) The prediction model results of SPU based on measured data.
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for maize leaf biomass. Based on a simulation dataset of 59,400, we

established a plant leaf biomass prediction model for the top 30

bands of RF selection variable importance ranking. This model

performs very well on the prediction dataset, with fitting accuracy

and RMSE of 0.88 and 0.21 t/ha, respectively. However, when

validating the model with field measurement data, the effect was not

satisfactory (as shown in Supplementary Figure S7, R2 = 0.15, RMSE

= 0.19) because of the “same effect with different parameters”

phenomenon and parameter combinations that do not match the

actual situation used for simulation in the model, which may lead to

substantial deviations between the inversion results and the

measured values. Therefore, the purposeful selection of samples

to establish models is crucial.

The physical method process is complex, with too many

parameters, making the inversion of the model ill-posed. Ill-

posedness refers to the possibility that different parameter

combinations may result in the same canopy reflectance, leading

to the best-matched simulated reflectance not necessarily resulting

in the best canopy parameters. Therefore, we attempted to use

active learning strategies to filter the simulated databases. Based on

the NRBO optimization simulation dataset, we obtained 200,000

pieces of data. We then established a linear regression model using

35% of the measured data and selected 464 data points with better

performance from the simulated dataset according to the sampling

strategy of NRBO-AL as the updated training data (Figure 8A).

Figure 8B shows the results of using the training dataset to

establish an ELM model for predicting the measured leaf biomass

data in the field. Active learning can effectively improve the

effectiveness of PROSAIL models and enhance the effectiveness of

simulated training sets, with R2 = 0.72 and RPD = 1.86, indicating

that high-precision estimation of maize leaf biomass can be

achieved through active learning. Using 464 training data points,

we re-predicted the data from experiment 1, and the results are

shown in Figure 8C. The prediction effect was good: R2 = 0.77,

RMSE = 0.14, and RPD = 2.04.

3.3.3 SPU prediction
We estimated the leaf P uptake of maize leaves by multiplying the

canopy P concentration of maize plants by the leaf biomass predicted

based on NRBO-AL. Figure 9 shows that the model’s prediction
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accuracy can reach 0.85, with an RPD > 2, indicating good

prediction performance. However, the predicted interval shows that

when leaf P uptake is >9 kg/ha, the predicted value is slightly lower than

the true value.

In general, because straw mainly comprises non-photosynthetic

tissues such as stems, leaf sheaths, and tassels, the stem P uptake of

straw is relatively low, and its metabolic activity is relatively low. In

addition, because of the difficulty in monitoring the P concentration

and biomass of corn stems through spectroscopy, we attempted to

use polynomial regression to fit the relationship between the

measured leaf P uptake and the measured stem P uptake

(Figure 10A) and applied the model to the predicted leaf P

uptake data. Figure 10B shows that the predictive performance of

polynomial regression is average, and the predicted values are

relatively concentrated, mainly between 0.70 and 0.85 kg/ha.

However, regarding absolute RMSE (Wocher et al., 2022),

RMSE of stem P uptake decreased by 75% compared with the

training results.

The relationship between leaf and stem P uptake is complex and

diverse (Poorter et al., 2012). Because of the synergistic effect

between leaves and stems in absorbing and utilizing P elements,

we attempted to indirectly predict the amount of P absorbed by

stems using remote sensing methods and solved the limitations of

remote sensing data usage. However, the prediction effect is poor,

and the predicted values are relatively concentrated because of the

way leaves and stems absorb and utilize P during plant growth and

development. Predicting grain P uptake is based on polynomial

regression to fit the relationship between measured leaf P uptake

and grain P uptake (Figure 10C) and is applied to the predicted leaf

P uptake dataset. Figure 10D shows that in terms of absolute RMSE;

RMSE of the grain P uptake prediction model decreased by 38%

compared with the training results, indicating poor performance.

The final SPU prediction model is obtained by combining the P

uptake of leaves based on a hybrid model and the P uptake of stems

and grains obtained from this model, also referred to as the hybrid

model. Although the prediction of P uptake by leaves is effective,

polynomials cannot fully demonstrate the complex dynamic

relationship between P uptake by maize leaves, stems, and grains.

Therefore, the final effect is poor, as shown in Figure 11, with the R2

of only 0.45.
FIGURE 8

(A) The effectiveness of NRBO-AL’s sampling strategy. The leaf biomass prediction model in (B) Experiment 1 + 2 and (C) Experiment 1 is based on
NRBO-AL correction.
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3.4 Combined model prediction of SPU

We established a combined model to predict corn SPU based on

the above research results. Combining the advantages of empirical

and hybrid models in SPU prediction, the combined model consists

of a leaf P uptake prediction model, a stem P uptake prediction

model in the hybrid model, and a grain P uptake model in the

empirical model. Figure 12 shows that the combination model

achieved the best performance. Although the introduction of the

NRBO-AL sampling strategy greatly increases the computational

complexity and time cost of the model, the accuracy of the

prediction model has also been considerably improved (R2 =

0.8707, RPD = 2.7140), a 24.63% increase.
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Based on the combined prediction model, it is possible to

achieve nondestructive prediction of SPU in maize plants based

on hyperspectral data, which will provide important guidance for

timely P nutrition management decisions.
4 Discussion

4.1 The potential of 2DCOS and 2T2DCOS

Compared with visible and near-infrared spectra, 2DCOS and

2T2DCOS are advanced spectroscopic analysis techniques with

wider applications in infrared, fluorescence, and Raman spectra
FIGURE 10

(A) A fitting model between the measured P uptake by leaves and the measured P uptake by stems. (B) Predict the P uptake by the stem. (C) A fitting
model between the measured P uptake by leaves and the measured P uptake by grains. (D) Predict the P uptake by grains.
FIGURE 9

Predictive models for P uptake by leaves.
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(Noda, 2017; Li et al., 2021a). Nevertheless, researchers such as

Zhang et al. (2021a) have proposed using shape- and amplitude-

enhanced 2DCOS combined with transfer learning to estimate

chlorophyll content in winter wheat. Zhang et al. (2024) used a

2DCOS analysis method based on first-order differential

enhancement to highlight chlorophyll information in the

spectrum. These results indicate that 2DCOS has enormous

potential in visible/near-infrared remote sensing.

Our study found that compared to the Raw-2DCOS, baseline-

corrected 2DCOS can effectively improve the accuracy of the

prediction model (15–17%) (Supplementary Figure S8). This

improvement is due to the narrowing of the absorption peak in

the first-order derivative spectrum and the sharpening of the peak

shape after derivative conversion, this method extends traditional

spectra in two dimensions and improves the screening ability of
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sensitive bands based on first-order differential spectra, thereby

obtaining more effective sample information (Dong et al., 2021).

Although the peak of Raw-2DCOS is clear and the feature

information is relatively intuitive, based on the full band

spectrum, 1Der-2DCOS displays subtler feature information,

including the number of self-peaks and cross-peaks, peak

intensity, and their correlation (Figure 13). These are helpful for

the attribution analysis and sample identification analysis of

different peaks.

Although biomass prediction models vary under the influence

of different external factors (Figures 6, 7), small sample datasets can

still provide predictions with sufficient accuracy in this variability.

To better characterize the relationship between spectra at different

growth stages and AGB, we proposed a 2DCOS analysis method

that couples filling and milk stages. Supplementary Figure S9 shows
FIGURE 12

Results of SPU prediction model based on combined model.
FIGURE 11

Results of SPU prediction model based on hybrid model.
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the autocorrelation peak extracted from the filling-milk-2T2DCOS

synchronous spectrum, where the peak position is relatively stable.

Therefore, this method performs well on small datasets, with a high

repetition rate of the selected sensitive bands and good universality.

Our experiment is based only on ground-scale data from the

fields used to construct the models. In the next step, we will use the

small dataset model of this study to accurately monitor and predict

satellite remote sensing data, reduce the cost of on-site sampling,

provide a scientific basis for management decision-making in

agriculture, the environment, and other fields, and promote the

application and development of remote sensing technology in P

uptake in aboveground parts of farmland.
4.2 Limitations in predicting P uptake
by stems

Research has shown a synergistic effect between leaves and

stems in absorbing and using P elements (Wu et al., 2015). For

example, increasing the P uptake capacity of leaves may promote

the transportation and use of P in stems, thereby improving the

overall P utilization efficiency of plants. In contrast, the storage and

transportation of P in stems may also affect the uptake and

utilization of P by leaves, and there is an interactive relationship

between the two. Therefore, we conducted a correlation analysis

between the two to predict the P uptake of corn stalks without

any damage.

However, the relationship between P uptake by maize leaves

and stems is not constant but varies with growth stage and

environmental conditions (Zhang et al., 2022).

First, there are substantial differences in the function and tissue

structure of leaves and stems during plants’ growth and

development stages, which leads to different ways in which they

absorb and utilize P (Adam et al., 2018). In general, leaves are the

main organs for photosynthesis (Wu et al., 2019); therefore, a

high demand for P is required for photosynthesis. Relatively, the

stem mainly plays a role in supporting and transporting nutrients
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(Wang and Ning, 2019), and its demand for P is relatively low.

Therefore, during the growth process of plants, leaves usually

absorb and utilize P more actively than stems. Second, plant

growth stage and external environmental factors influence the

relationship between leaf P uptake and stem P uptake (Marschner

et al., 1996) and external environmental factors (Bi et al., 2020; Mao

et al., 2021). In the early plant growth stages, the growth rate of

leaves is relatively fast; therefore, their demand for P is also relatively

high (Kerkhoff et al., 2006). As the plant grows, the growth rate of

the stem gradually accelerates, and its demand for P will also

gradually increase. Therefore, to understand the relationship

between P uptake by corn leaves and straw, we must consider

other factors, such as plant growth stage and environmental factors.

We only investigated the P uptake by leaves and stems during

one stage of growth and development without considering the

influence of external factors; thus, we could not fully interpret the

complex and diverse relationship between leaf P uptake and stem P

uptake. Although the stem P uptake prediction results in this study

are generally low, the impact on the overall SPU is relatively small. If

this relationship can be further studied in the future, it will help to

better understand the demand and utilization patterns of P in

plants, provide a scientific basis and technical support for

agricultural production, and have important significance in plant

growth and development and P nutrition management.
4.3 Impact of interannual planting on SPU

P plays a crucial role in various physiological processes in plants

(Lambers, 2022; Khan et al., 2023), including energy transfer and

nucleic acid synthesis. However, its availability in soil is often low

(Gao and DeLuca, 2018; Cao et al., 2021), which limits the efficiency

of plant uptake. As a result, environmental factors (Song et al.,

2020) and cultivation practices (Zhang et al., 2016) significantly

influence P uptake. Additionally, the impact of interannual

planting, as a relatively long-term cultivation factor, can also

affect P uptake and utilization.
FIGURE 13

Autocorrelation peak extracted from the (A) 2DCOS synchronous spectrum based on the original canopy spectrum and (B) 1Der-2DCOS
synchronous spectrum.
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With interannual planting, the availability of P in the soil may

be affected by processes such as annual fertilization (He et al., 2018),

adaptability of plant roots (Liu, 2021) and soil P conversion

(Hussain et al., 2023; He et al., 2018). Long-term application of

chemical phosphorus fertilizers can lead to the accumulation of

phosphorus in the soil, particularly when soil phosphorus levels

reach saturation. This may reduce the plant’s ability to absorb

phosphorus. Additionally, the continuous cultivation of certain

crops, especially those with high phosphorus requirements, can

result in the gradual depletion of soil phosphorus over the years,

potentially impacting phosphorus uptake in subsequent seasons.

Therefore, proper cultivation practices such as planting density

(Luo et al., 2023; Yan et al., 2024), irrigation methods (Li et al., 2021b;

Wang et al., 2021), and fertilization management can improve P

availability in the soil and enhance plant P uptake. When planting

density is high, root space is limited, which can increase competition

among roots and reduce their ability to absorb P. Proper density

management can mitigate this issue and improve P use efficiency in

the soil. Irrigation has a significant impact on P uptake (Wang et al.,

2021); excessive irrigation can lead to P leaching or loss, particularly

when soil P levels are high. On the other hand, insufficient irrigation

can cause soil water stress, restricting the plant’s ability to absorb P.

Thus, effective irrigation management not only improves water use

efficiency but also optimizes P uptake. The application method and

timing of P fertilizer directly affect plant P uptake. Therefore, it is

necessary to forecast P uptake in the above-ground plant parts before

the season and implement integrated measures based on local soil

conditions and crop types (Lyu et al., 2016) to ensure the efficient use

of P fertilizers.
4.4 Performance of the empirical and
hybrid models

In this study, we used a combined prediction model to improve

the accuracy of inverting maize SPU from field spectral data and

compared its performance with that of empirical methods and a

hybrid model. Overall, the combination model has the highest

accuracy and is superior to the empirical models (Figure 7) and

hybrid models (Figure 11). This may be because, in the empirical

model, we established a relationship between the sum of the

biomass of organs (such as leaves, stems, and axes) and the

spectra. Because of crop canopy obstruction, the response of

spectral reflectance to AGB may only be concentrated on the

biomass of canopy leaves and cannot fully extract effective

information from other organs, resulting in slightly poor

prediction performance.

The hybrid model based on NRBO-AL constraints also performs

better than the general hybrid models (Supplementary Figures S7, S8).

When there are many unknown variables in the search space of the

PROSAIL model, RTM inversion makes it challenging to accurately

infer the biophysical variables of corn (Liang et al., 2015; Danner et al.,

2021). Although prior knowledge under the constraint of actual

measurement range increases the feasibility of hybrid methods for

simulating plant growth states, it cannot replace real datasets. This may

also be why despite limiting the search space for highly sensitive
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parameters in the PROSAIL model, the results are still not as accurate

as those of the hybrid model based on active learning correction

(Supplementary Figure S7).

To address this issue, we combined active learning with hybrid

methods to improve the estimation of leaf biomass through canopy

reflectance. Our results indicate that compared with random

selection, the NRBO-AL sampling strategy can select more

representative samples in each iteration and exhibit better

distribution in the sample space, with higher diversity and

representativeness (Supplementary Figure S10). As the number of

simulated data increases, this difference may become more

pronounced, and the larger the randomly selected sample size, the

more errors and uncertainties it may bring (Verrelst et al., 2016).

Féret et al. (2021) reported that the scale, reflectance anisotropy,

and canopy structure from leaves to canopy can affect inversion

accuracy. However, we improved the prediction accuracy of SPU

and reduced the uncertainty level of the simulated dataset using a

hybrid model based on active learning correction. This indicates

that the model’s predictive performance can achieve consistent

results under different environmental conditions.

Therefore, using high-quality and informative samples is crucial

instead of numerous training datasets (Verrelst et al., 2016), as this will

reduce costs and computational requirements and improve model

performance. This requires selecting sufficiently representative data

(Hauser et al., 2021) to fully cover the possible range of these variables,

i.e., an active learning method based on the NRBO-AL sampling

strategy and selecting high-quality training sets from a large number

of simulated datasets. Our work will drive further research on biomass

prediction models using the PROSAIL model.
4.5 Implications for future work

Although in situ samples are still required for predicting P uptake

in combined models, our results show that active learning and two-

dimensional spectral analysis require fewer samples to achieve excellent

model performance compared with traditional empirical prediction

models. Therefore, this study can reduce sampling costs and establish

an estimation model by reducing the number of in situ samples. In

practical situations, it is sufficient to select representative samples at

critical reproductive stages; therefore, there is no need to accumulate

many on-site samples for model training.

In addition, our model performs very well in monitoring P

uptake in maize using remote sensing data from scientific

experimental area-scale experiments. If new samples from

different experiments can be combined, active learning can

continuously improve the model. This continuous updating

mechanism is highly robust under different plant species and

environmental conditions. Therefore, in the future, we will collect

ground measurement samples and remote sensing satellite images

from different regions, experimental treatments, and future crops,

calibrate the model to local crops, and provide spatial distribution

predictions of P uptake over a large area. However, an important

source of uncertainty in applying this method to large-scale

farmland is the relatively large spatial variability of P observed in

small-scale crops on the planting site.
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To train and validate models using satellite remote sensing data

in this situation, in our future work, we will (i) determine pixel sizes

smaller than the spatial variability, (ii) collect accurate samples and

image localization, and (iii) select sampling areas with minimal

spatial variability. We also suggest that further research should

include the evaluation of P uptake prediction models for large-

scale farmland to evaluate the accuracy of these models in

practical applications.
5 Conclusions

In optimizing fertilization management and protecting the

environment, monitoring the surplus of soil P is crucial and

largely depends on the timely monitoring and application of crop

P. In this study, we developed three methods to monitor SPU of

maize using field spectroscopy, including empirical, hybrid, and

combined methods. The main findings of this study are as follows.
Fron
1. Based on two-dimensional correlation spectra, we can

achieve stable screening of sensitive bands in small

datasets, in which the sample size of the dataset does not

limit the number of selected bands.

2. The quality of the simulated datasets in the hybrid models

considerably impacts the prediction performance. The

accuracy of boundary constraint models based on actual

situations is not as good as that based on NRBO-AL

sampling constraints. This may be because the active

learning strategy removes simulated data that differ

considerably from the actual situation.

3. The filling stage is the optimal time to directly predict

maize SPU using canopy reflectance spectra. If the SPU of

maize is calculated in different parts, the P concentration of

mature leaves in the canopy can be used to replace the P

concentration in grains to predict the P uptake by grains.

4. The combination model of leaf biomass prediction model

based on NRBO-AL sampling constraint, LPC and grain

biomass prediction model based on 1Der-2DCOS, and

polynomial prediction model of stem P uptake is a robust

method for estimating maize SPU, as it helps to solve the

key limitations of RTM and empirical methods while

maintaining their key advantages.
Spaceborne hyperspectral sensors can provide a unique

environmental process detector on a global scale. To ensure optimal

use of such a rich dataset, we anticipate that the combination prediction

model (described in this study) will play a crucial role. This study

provides new ideas and evaluation tools for the large-scale analysis of

aboveground P uptake in crops. Continuous monitoring of P removal

from crop aboveground parts on a global scale will promote the

optimization of fertilizer application and other environmental

sustainability goals. Ultimately, continuous monitoring of P removal

from crop aboveground parts can be achieved globally, promoting the
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development of agriculture toward efficiency, environmental

protection, and sustainability.
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Féret, J. B., Berger, K., De Boissieu, F., and Malenovsky, Z. (2021). PROSPECT-PRO
for estimating content of nitrogen-containing leaf proteins and other carbon-based
constituents. Remote Sens. Environ. 252, 112173. doi: 10.1016/j.rse.2020.112173
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