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1 Introduction

Alfalfa is the most widely planted perennial forage crop in the world, serving as a vital

supplementary feed for cattle and requiring substantial water inputs (Zhang et al., 2023;

Fink et al., 2022; Jia et al., 2024). Precision field water management can improve alfalfa yield

without necessitating increased use of fertilizers or insecticides (Bai et al., 2022; Kayatz

et al., 2024). However, challenges such as global warming, drought, and excessive water use

have intensified water scarcity (Rosa et al., 2018; Salehi, 2022; Gerten et al., 2020),

particularly in the Ningxia Irrigation Area of the Yellow River (NIR) in northwest

China. This region, characterized by arid conditions and minimal rainfall, heavily relies

on the Yellow River for irrigation. Yet, the effective utilization rate of this water source

remains relatively low (Zhang et al., 2022). Currently, alfalfa irrigation in the NIR follows

quota schedules based on historical field experiences, lacking adaptability to fluctuating

precipitation and soil moisture dynamics, which leads to inefficient water use (Du et al.,

2020; Zhou et al., 2019). Therefore, improving water management efficiency for alfalfa in

the NIR is crucial for promoting regional cultivation and optimizing water

resource utilization.

Predicting soil moisture at multiple depths within alfalfa’s root zone is crucial for the

early detection of drought or over-irrigation, mitigating trends in soil salinization, and

enhancing the assessment of water and nutrient availability in areas with concentrated

alfalfa roots. Current research extensively employs soil moisture sensors to monitor the

dynamics of soil moisture and assess crop growth comprehensively (Hu et al., 2019). For

example, Yan et al. (2019) conducted experiments involving five water levels and rain-fed

plots to compare the growth of alfalfa under various irrigation conditions. Sun et al. (2022)

analyzed soil water content, salinity, and temperature across different fertilizer levels to

study their impact on soil moisture and seedling emergence rates. However, high-precision

multi-depth soil moisture sensors are typically costly and may lack adequate

predictive capability.
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Additionally, remote sensing technology and radar facilitate the

rapid detection of soil moisture. Zhu et al. (2021) employed remote

sensing to gather soil moisture data from 14 stations in the 0-5 cm

layer, covering the period from April 2017 to October 2019. They

applied the inverse distance interpolation algorithm to predict soil

moisture at the station scale. Some studies integrate neural networks

with multi-source remote sensing data to estimate soil moisture

using inversion models (Jia et al., 2021), while others have

combined satellite data with soil texture, terrain, and climate

variables for prediction (Celik et al., 2022). However, the

collection and processing of remote sensing and radar data can be

costly and are susceptible to weather conditions and surface

vegetation cover, which limits their effectiveness for precise

monitoring of soil moisture at multiple depths in small-scale

farmland (Weihermüller et al., 2007; Guo et al., 2021).

With advancements in artificial intelligence, researchers are

increasingly adopting deep learning models to simulate and

predict soil moisture. Han et al. (2021) developed a model

focused on forecasting soil moisture for the subsequent six days.

Yu et al. (2020) utilized continuous meteorological and soil

moisture data, integrating ResNet and BiLSTM to extract high-

dimensional spatial and temporal features, thereby achieving

accurate predictions of soil moisture. Recently, Liu et al. (2024)

proposed a dual-branch combined deep learning model for

predicting multi-depth soil moisture in alfalfa using time series

data, demonstrating improved prediction accuracy, particularly

under conditions of instantaneous water supplementation. These

studies highlight the effectiveness of deep learning models in

leveraging historical soil moisture data to predict moisture at

various depths. Their robust data fitting and generalization

capabilities enhance prediction accuracy and reduce agricultural

input costs. However, predictive performance is heavily dependent

on the quality and quantity of available data from the study area.

At present, numerous studies are concentrating on soil moisture

datasets, emphasizing spatiotemporal variations in soil moisture

and its correlation with soil properties (Mälicke et al., 2020;

Martıńez-Fernández et al., 2021). In the atmospheric dynamics-

alfalfa-soil system, soil moisture varies due to meteorological

conditions, crop growth, soil basal, and field management

practices. Alfalfa, as a perennial crop, impacts soil moisture

differently across various planting years. Moreover, in arid and

semi-arid regions, limited rainfall and varying precipitation

intensities influence soil moisture levels at different depths.

Obtaining high-quality datasets that reflect diverse water

replenishment scenarios necessitates extensive, long-term field

experiments conducted across various depths and conditions.

However, publicly available datasets specific to this system,

particularly those that include shallow multi-depth soil moisture

data related to alfalfa growth and environmental factors, are scarce.

In light of this context, this study established a comprehensive

dataset of soil moisture and its spatiotemporal variations at shallow

depths for alfalfa in the NIR. The dataset integrates meteorological

data, shallow soil moisture measurements (0-10 cm, 10-20 cm, and

20-30 cm), alfalfa growth metrics, and field management practices.
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The aim of this study is to reduce agricultural input costs and

provide data support for optimizing field water management

methods for alfalfa in the NIR.
2 Value of the data

(1) This study established a shallow soil moisture dataset for

alfalfa, encompassing different precipitation years, irrigation

methods, and water and nitrogen levels. The dataset includes data

from 12 cuts of alfalfa in 2017, 2018, 2022, and 2023, totaling

139,213 shallow soil moisture data points (31,206 in 2017, 36,339 in

2018, 50,868 in 2022, and 20,800 in 2023). It addresses the gap in

publicly available shallow soil moisture data for alfalfa in the

northwest agricultural-pastoral transitional zone. This dataset

serves as a reliable source for developing deep learning models to

accurately predict soil moisture at multiple depths for alfalfa,

thereby supporting the optimization of field water management in

the NIR.

(2) This dataset includes meteorological data, crop growth

metrics (such as leaf area index, growth periods, and yield), soil

temperature records, and field management details across various

planting years and cuts of alfalfa. Specifically, it comprises 49,358

meteorological records, 695 entries for alfalfa leaf area index, 46

growth period records, 37 yield measurements, and 81,564 soil

temperature readings. The integration of these diverse features

enhances the dataset’s utility for multi-faceted modeling, thereby

improving the predictive performance of models.
3 Materials and methods

3.1 Study area

In this study, the interest area is NIR, located in the Ningxia Hui

Autonomous Region in China, characterized by a temperate

continental climate. The NIR extends from 37:4° to 39:6° North

and from 104:9° to 106:8° East. Figure 1 shows the distribution of

the monitoring stations within the study area.

The experimental area is situated at the eastern foot of the

Helan Mountain within the Helan Mountain alluvial fan plain. The

average altitude is 1120 m. The mean annual temperature is 8.4°C.

The mean annual sunshine duration ranges from 2800 to 3000

hours, and the mean annual evaporation is approximately

3000 mm. The annual precipitation ranges from 180 to 200 mm,

primarily concentrated from June to September. The soil texture is

classified as light loam soil, specifically light gray calcium soil. The

soil composition consists of approximately 58.39% sand particles,

15.86% silt particles, and 25.76% clay particles. The pH value of the

0-30 cm soil layer is 8.61, with an organic matter mass fraction of

13.4 g/kg, a total nitrogen mass fraction of 0.76 g/kg, an available

phosphorus mass fraction of 10.65 mg/kg, and an available

potassium mass fraction of 128.26 mg/kg. The soil basal
frontiersin.org
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characteristics of the experimental area are shown in Table 1. We

employed the Wilcox method to measure field capacity at various

depths. The cutting-ring method was used to assess saturated

capacity, while the oven-drying method was applied to determine

bulk density. Additionally, the traditional biological method was

used to evaluate the wilting point.
3.2 Experimental design

Due to regional field irrigation demands and agricultural input

costs, the primary irrigation methods for alfalfa in the NIR include

flood irrigation with Yellow River water, underground drip irrigation,

and surface micro-spray irrigation. This study designed under

irrigation by varied water and nitrogen levels based on annual

average precipitation and alfalfa’s water and fertilizer requirements
Frontiers in Plant Science 03
(Hu et al., 2019). Field experiments were conducted over four years

(2017, 2018, 2022, 2023) under different irrigation methods (Table 2).

The alfalfa varieties utilized in the experiments are Magnum 7

(planted on May 16, 2016) and Magnum 401 (planted on April 19,

2022, andMay 1, 2023). Seeding was performed manually at a depth

of 2 cm, with a seeding rate of 22.5 kg/hm2 and a row spacing of

15 cm. In the NIR, the optimal harvesting time for forage is during

the early flowering stage (10% flowering), typically harvesting four

cuts per year. However, in the first planting year, it usually harvests

three cuts.

(1) In 2017 and 2018, underground drip irrigation was

employed, with drip irrigation belts spaced 60 cm apart within

each plot. The main pipeline was buried at a depth of 1.5 meters,

and capillary pipes were placed 20 cm deep. Each plot was equipped

with independent valves for irrigation control, and water

application was regulated using a water meter. The experiment
TABLE 1 The soil basal characteristics of experimental area.

Soil
layer (cm)

Field capacity
(cm3·cm-3)

Saturated capacity
(cm3·cm-3)

Wilting point
(cm3·cm-3)

Bulk density
(g·cm-3)

0-10 0.275 0.318 0.06 1.521

10-20 0.298 0.320 0.06 1.456

20-40 0.301 0.337 0.06 1.527
FIGURE 1

Location of the study area and spatial distribution of meteorological and soil sampling points.
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utilized a split-plot design, with primary treatments focusing on

irrigation amounts and secondary treatments on nitrogen

application rates. Irrigation levels were set at four amounts:

476 mm (W1), 544 mm (W2), 611 mm (W3), and 679 mm (W4).

Nitrogen was applied at four rates: N0 (0 kg/hm2), N1 (60 kg/hm2),

N2 (120 kg/hm2), and N3 (180 kg/hm2). Urea, containing 46.4%
Frontiers in Plant Science 04
nitrogen, was applied concurrently with the first irrigation and after

each cut.

(2) In 2022, surface micro-sprinkler irrigation was employed. Different

irrigation amounts were designed for the second and third cuts of alfalfa,

set at four levels: 200 mm (W1), 246 mm (W2), 260 mm (W3), and

269 mm (W4). No specific nitrogen application rate was assigned.
TABLE 2 The growth stages and irrigation treatments of alfalfa in 2017, 2018, 2022, and 2023.

Cuts time Growth stage Year Division date of growth stages Irrigation date

Irrigation
amount (mm)

W1 W2 W3 W4

First cuts

Vegetative
(Turn-green or Emergence)

2-yr-old
3-yr-old
1-yr-old

2017/3/28-4/22
2018/4/7-5/2
2023/5/1-5/20

4/2
4/20
-

52
52
-

60
60
-

67
67
-

67
67
-

Branch
2-yr-old
3-yr-old
1-yr-old

2017/4/23-5/19
2018/5/3-5/21
2023/5/20-6/29

4/23
5/3
5/31

45
45
60

52
52
-

52
52
-

67
67
-

Branch
2-yr-old
3-yr-old
1-yr-old

2017/4/23-5/19
2018/5/3-5/21
2023/5/20-6/29

5/12
5/14

6/9(6/22)

37
37
60

45
45
-

52
52
-

52
52
-

Early flowering
2-yr-old
3-yr-old
1-yr-old

2017/5/20-5/24
2018/5/22-6/1
2023/6/30-7/14

5/20
5/22
7/9

37
37
60

37
37
-

45
45
-

52
52
-

Second cuts

Vegetative

2-yr-old
3-yr-old
1-yr-old
1-yr-old

2017/5/25-6/8
2018/6/2-6/22
2022/7/8-7/18
2023/7/15-7/26

6/3
6/12
7/8
7/22

45
45
45
60

52
52
52
-

52
52
65
-

60
60
60
-

Branch

2-yr-old
3-yr-old
1-yr-old
1-yr-old

2017/6/9-6/20
2018/6/23-7/5
2022/7/19-7/28
2023/7/27-8/5

6/9
6/24
7/19
-

37
37
37
-

45
45
52
-

52
52
45
-

52
52
52
-

Early flowering

2-yr-old
3-yr-old
1-yr-old
1-yr-old

2017/6/21-6/27
2018/7/6-7/8
2022/7/29-8/10
2023/8/6-8/23

6/22
7/6
7/29
8/6

37
37
37
60

37
37
45
-

45
45
64
-

52
52
52
-

Third cuts

Vegetative
2-yr-old
3-yr-old
1-yr-old

2017/6/28-7/13
2018/7/9-7/29
2022/8/11-9/1

7/6
7/16
-

45
45
-

52
52
-

52
52
-

60
60
-

Branch
2-yr-old
3-yr-old
1-yr-old

2017/7/14-7/23
2018/7/30-8/6
2022/9/2-9/23

7/14
7/30
8/11

37
37
37

37
37
45

45
45
52

52
52
60

Early flowering
2-yr-old
3-yr-old
1-yr-old

2017/7/24-7/31
2018/8/7-8/12
2022/9/24-10/4

7/24
8/7
9/2

30
30
45

37
37
52

45
45
46

52
52
60

Fourth cuts

Vegetative
2-yr-old
3-yr-old

2017/8/1-8/6
2018/8/13-8/18

–
-
-

-
-

-
-

-
-

Branch
2-yr-old
3-yr-old

2017/8/7-9/6
2018/8/19-9/6

8/8
8/15

37
37

45
45

52
52

60
60

Early flowering
2-yr-old
3-yr-old

2017/9/7-9/17
2018/9/7-9/29

9/4
9/7

37
37

45
45

52
52

60
60

Total
2017, 2018

2022
2023

476
200
360

544
246

611
260

679
269
frontier
1. During 2017-2018, the experimental design included various water and nitrogen treatments across a large plot area. Due to limitations in the daily irrigation capacity of the equipment,
completing an irrigation plan typically took 2-3 days. As a result, irrigation dates for different treatments occasionally experienced delays of 1-3 days compared to the original schedule. 2. The
irrigation scheduled for June 3, 2017, was canceled due to heavy rainfall of 27.0 mm prior to the planned irrigation.
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(3) In 2023, flood irrigation with Yellow River water was used.

According to the traditional irrigation schedule of NIR, the

irrigation amount for the first and second cuts of alfalfa was set

at 360 mm (W1). No specific nitrogen application rate was assigned.
3.3 Data acquisition

3.3.1 Shallow soil water content data acquisition
This study utilized soil moisture sensors to collect soil water

content and soil temperature data. The MP406 soil moisture sensor

from Australia was used during 2017-2018 (Figure 2C), and from

2022 to 2023, the Shang Crop & Soil Monitor (INSENTEK,

Hangzhou, China) was employed (Figure 2B).

Before deployment, we conducted laboratory calibration on

various devices, achieving sensor accuracies ranging from ±1%

to ±2%. These sensors measure soil water content (SWC) (%) and

soil temperature (°C) across different soil layers (0-10 cm, 10-20 cm,

and 20-30 cm). Data collection intervals were 30 minutes from 2017

to 2018 and 10 minutes from 2022 to 2023, enabling 24-hour real-

time monitoring. Due to experimental constraints, SWC was

measured across seven different water and nitrogen treatments

during 2017-2018. This included various nitrogen treatments

(W2N0, W2N1, W2N2, W2N3) under consistent water levels and

different water treatments (W1N2, W3N2, W4N2) under uniform

nitrogen levels.
3.3.2 Meteorological data acquisition
This study utilized the Tianqi meteorological monitoring

s ta t ion (INSENTEK, Hangzhou, China) to gathered

environmental data (Figure 2A). The station primarily collected

environmental temperature (°C), humidity (% RH), solar radiation

(MJ/m2), wind speed (m/s), and rainfall (mm). Data collection

intervals were 30 minutes from 2017 to 2018 and 10 minutes from

2022 to 2023, enabling 24-hour real-time monitoring. A total of

49,358 meteorological data points were collected during the growth

period of alfalfa over the past four years. The average monthly

temperature recorded in this dataset is approximately 20°C. Rainfall

mainly comprised light precipitation, with occasional heavy rain or

rainstorms occurring primarily in July and August each year.
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3.3.3 Alfalfa data acquisition
This study collected comprehensive crop data, including alfalfa

growth stage, leaf area index (LAI), yield, and harvesting time

(Figure 2D). When alfalfa entered the turn-green (or vegetative)

stage, three random sample plants per plot were selected weekly for

height measurement, leaf area, and LAI calculation (Gower et al.,

1999), adjusting for rain delays. At the early flowering stage,

uniform alfalfa plants were selected for cutting. Using the

diagonal method, three 1 m × 1 m quadrats per plot were

randomly selected, maintaining a 5 cm stubble height. After weed

removal, fresh yield was measured, and approximately 300 g of fresh

alfalfa samples were air-dried in the laboratory to a constant mass

for hay yield determination. Growth and harvesting times of each

cut were observed and recorded in the field.
4 Description and analysis of dataset

This shallow soil moisture dataset for alfalfa consists of six

parts, including growth stage data,leaf area index data,

meteorological data, soil temperature data, soil water content

data, and yield data. To facilitate data usage, we have annotated

the file names in the dataset. This collection comprises 139,213

alfalfa soil moisture measurements at various depths across different

water levels. Specific details of the dataset are provided in Table 3.

Soil moisture plays a crucial role in the atmospheric dynamics-

alfalfa-soil system and is essential for researching alfalfa growth,

root nutrition, yield, and variety formation. Soil basal determines

the upper limit of SWC at various depths, while meteorological

conditions, crop growth, soil basal, and field management practices

drive dynamic changes in soil moisture across different growth

periods. Figures 3–6 show the dynamic trends of soil moisture at

multiple depths during various precipitation years, cuts, and

differing water and nitrogen levels selected from the dataset.

Figures 3–6 show that the overall trend of soil moisture changes

at multiple depths in alfalfa aligns with the expected soil moisture

range for each soil layer. During significant precipitation or

irrigation events, the SWC is high, often reaching saturation at

different depths. Conversely, during light precipitation, low

irrigation, or when SWC approaches the wilting point, the SWC
FIGURE 2

Data collection equipment and collection of crop indicators. (A) Weather Station; (B) Shang Crop & Soil Monitor; (C) MP406 Soil Monitor; (D)
Experimental scenario.
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generally reaches the soil’s field capacity. Notably, under light

precipitation conditions, shallow soil moisture trends to increases,

while deeper soil moisture often decrease. The figures indicate that

the SWC at depths of 0-10 cm and 10-20 cm is significantly
Frontiers in Plant Science 06
influenced by solar radiation and evapotranspiration. The SWC in

these upper layers tends to be lower than in the 20-30 cm layer,

aligning with findings from Yu et al. (2020) and Ait Hssaine et al.

(2020). The small difference in SWC between the 0-10 cm and 10-

20 cm layers may be attributed to similar environmental factors, as

noted by Liu et al. (2019). Therefore, since rainfall primarily

consists of light precipitation in the NIR, the analysis and

prediction of shallow soil moisture are crucial for the effective

utilization of micro-rainfall in the region. Additionally, the

experimental data indicate that the W2 treatment is a more

suitable water configuration for alfalfa under underground drip

irrigation, while the W3 treatment is better suited for surface micro-

spray irrigation.

Additionally, a comprehensive analysis of the dataset found

that within the same precipitation year, low nitrogen levels had a

relatively small effect on soil moisture compared to other nitrogen

levels and did not significantly impact alfalfa growth. In different

planting years, varying nitrogen application rates influenced

alfalfa growth differently, even under the same irrigation

amounts. Regarding nitrogen application, recommendations

vary among studies. Some researchers suggest that timely

nitrogen application can increases yield when soil NO3
- content

is below 15 mg/kg (Hannaway and Shuler, 1993). Conversely,

excessive nitrogen application may inhibit rhizobia development

in alfalfa, thereby reducing nitrogen fixation and economic

benefits (Markus and Battle, 1965; Hojjati et al., 1978). Thus,

nitrogen application for alfalfa is complex and needs to consider

factors such as grass age, soil basal, economic costs, and

environmental conditions. The dataset from this study includes

shallow soil moisture data for alfalfa with and without nitrogen

application, providing a valuable reference for future research.

However, the dataset focuses specifically on soil moisture within

the shallow root concentration area of alfalfa in irrigated areas.

Future research will concentrate on the following aspects: 1)

conducting more extensive field experiments to collect deep soil

moisture data of alfalfa, particularly tracking changes under dry

farming conditions; 2) introducing deep learning methods to

enhance the efficacy of precision irrigation management and

prediction in alfalfa fields.
FIGURE 3

Soil water content at shallow depths of alfalfa under W2N3 treatment of the second cuts in 2017. VE is the vegetative (or turn-green) stage. BR is the
branch stage. EF is to early flowering stage. The same is below.
TABLE 3 Summary of six parts of the dataset.

Dataset Folder name Data indicators
Sample
size

Soil water
content data

2017 data
0-10 cm, 10-20 cm,

and 20-30 cm
31206

2018 data
0-10 cm, 10-20 cm,

and 20-30 cm
36339

2022 data
0-10 cm, 10-20 cm,

and 20-30 cm
50868

2023 data
0-10 cm, 10-20 cm,

and 20-30 cm
20800

Soil
temperature

data
ST data

0-10 cm, 10-20 cm,
and 20-30 cm

81564

Meteorological
data

Meteorological data

Temperature

49358

Dew
point temperature

Humidity

CO2 concentration

Wind speed

Solar radiation

Rainfall

Leaf area
index data

LAI data

Leaf area index

695Plant height

Stem diameter

Growth
stage data

Growth stage data Growth stage date 46

Yield data Yield data Yield 37
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5 Potential use

With the rapid development of deep learning, the dataset

established in this study has significant practical implications for

predicting soil moisture at shallow depths in alfalfa within the NIR.

Researchers can use this dataset to integrate complex environment
Frontiers in Plant Science 07
information, including meteorology, crop growth, and field

management, to develop a shallow soil moisture prediction model

for alfalfa. Furthermore, a deep learning model developed using this

dataset can be combined with the alfalfa model, providing crucial

data support for yield estimation and the precise management of

water and nitrogen in the field.
FIGURE 5

Soil water content at shallow depths of alfalfa under W3 treatment of the second cuts in 2022.
FIGURE 6

Soil water content at shallow depths of alfalfa under W1 treatment of the second cuts i`n 2023.
FIGURE 4

Soil water content at shallow depths of alfalfa under W1N2 treatment of the third cuts in 2017.
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