
Frontiers in Plant Science

OPEN ACCESS

EDITED BY

Nathaniel K. Newlands,
Agriculture and Agri-Food Canada
(AAFC), Canada

REVIEWED BY

Yang Lu,
Heilongjiang Bayi Agricultural University,
China
Jun Steed Huang,
Carleton University, Canada

*CORRESPONDENCE

Halidanmu Abudukelimu

abdklmhldm@gmail.com

RECEIVED 25 September 2024

ACCEPTED 20 November 2024
PUBLISHED 11 February 2025

CITATION

Abulizi A, Ye J, Abudukelimu H and Guo W
(2025) DM-YOLO: improved YOLOv9 model
for tomato leaf disease detection.
Front. Plant Sci. 15:1473928.
doi: 10.3389/fpls.2024.1473928

COPYRIGHT

© 2025 Abulizi, Ye, Abudukelimu and Guo. This
is an open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

TYPE Original Research

PUBLISHED 11 February 2025

DOI 10.3389/fpls.2024.1473928
DM-YOLO: improved YOLOv9
model for tomato leaf
disease detection
Abudukelimu Abulizi , Junxiang Ye, Halidanmu Abudukelimu*

and Wenqiang Guo

School of Information Management, Xinjiang University of Finance and Economics, Urumqi, China
In natural environments, tomato leaf disease detection faces many challenges,

such as variations in light conditions, overlapping disease symptoms, tiny size of

lesion areas, and occlusion between leaves. Therefore, an improved tomato leaf

disease detection method, DM-YOLO, based on the YOLOv9 algorithm, is

proposed in this paper. Specifically, firstly, lightweight dynamic up-sampling

DySample is incorporated into the feature fusion backbone network to enhance

the ability to extract features of small lesions and suppress the interference from

the background environment; secondly, the MPDIoU loss function is used to

enhance the learning of the details of overlapping lesion margins in order to

improve the accuracy of localizing overlapping lesion margins. The experimental

results show that the precision (P) of this model increased by 2.2%, 1.7%, 2.3%, 2%,

and 2.1%compared with those of multiple mainstream improved models,

respectively. When evaluated based on the tomato leaf disease dataset, the

precision (P) of the model was 92.5%, and the average precision (AP) and the

mean average precision (mAP) were 95.1% and 86.4%, respectively, which were

3%, 1.7%, and 1.4% higher than the P, AP, and mAP of YOLOv9, the baseline

model, respectively. The proposed detection method had good detection

performance and detection potential, which will provide strong support for the

development of smart agriculture and disease control.
KEYWORDS
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1 Introduction

The tomato is an annual herbaceous plant that is widely grown worldwide and is an

important source of income in many agricultural countries. Owing to environmental and

climatic factors, tomatoes are highly susceptible to bacterial and viral infections, which

seriously affect their yield and quality. Initial symptoms of leaf diseases usually appear on

the surface of leaves, and early detection and identification of the diseases are crucial to

reducing mutual infection and spread among tomato plants; therefore, accurate disease

identification becomes especially critical (Yao et al., 2023). Conventional disease detection
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mainly relies on the empirical judgments of agricultural experts,

which is not only inefficient but also has poor consistency of results,

making it difficult to meet the needs of modern efficient agriculture.

In recent years, as computer vision (CV) and deep learning (DL)

have been widely favored by the academic community, the

integration of leaf disease detection technique into tomato

production has become an important trend in modern

tomato planting.

DL has significantly improved the performance of deep neural

networks with its excellent self-directed learning capability, which

has become a frontier and new trend of tomato disease detection

(Sunil et al., 2023). Compared with conventional methods, DL

algorithms have advantages in detection speed, detection accuracy,

and generalizability (Liu and Wang, 2021b). Currently, mainstream

object detection algorithms include Faster R-CNN (Ren et al.,

2017), SSD (Single Shot MultiBox Detection) (Liu et al., 2016),

and YOLOs (You Only Look Once) (Liu and Wang, 2021a; Li et al.,

2022; Wang et al., 2023a). Based on these algorithms, researchers

have conducted a number of studies on tomato disease detection,

demonstrating the great potential and advantages of DL algorithms

in disease detection. Under different detection environments

(Zayani et al., 2024), built independently a greenhouse tomato

leaf disease dataset and proposed an automated disease detection

model based on YOLOv8, by which an accuracy of 66.7% was

achieved. Meanwhile (Wang et al., 2021), introduced the Dense

module into YOLO and increased the tomato detection accuracy to

96% while varying scale and density. On this basis (Jin et al., 2023)

performed multiscale feature fusion by adding the Convolutional

Block Attention Module (CBAM) and the Weighted Bidirectional

Feature Pyramid Network (BiFPN), so that it became easier to

deploy the algorithm on disease detection equipment, and an online

disease diagnosis platform has been developed. In terms of model

lightweighting (Zeng et al., 2023)reconstructed the backbone

network using downsampled convolutional layers and MobileNet

to lighten the model structure. Meanwhile (Umar et al., 2024)

integrated the Simple Parament-Free Attention Module (SimAM),

Dual Attention-in-Attention Module (DAiAM), and the Max

Pooling Convolution (MPConv) structure into the YOLOv7

network architecture, which enabled model lightweighting while

increasing the accuracy. However, in contrast (Albattah et al., 2021)

proposed a DenseNET-77-based framework for automatic plant

disease detection that could not be deployed on mobile devices due

to its failure to take into account the model volume.
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However, the above studies were conducted only in the

greenhouse environment, yet in the actual natural detection

environments, factors such as light variation, symptom overlap,

and small lesion area present many challenges to tomato leaf disease

detection. For example, it is difficult to localize a lesion due to light

change, different diseases have similar symptoms, the detection area

is small owing to leaf occlusion, etc. In order to address these

challenges, related researchers have proposed methods for tomato

leaf disease detection in natural environments. First (Roy et al.,

2022), proposed a high-performance real-time fine-grained object

detection framework based on YOLOv4, thereby such problems as

dense distribution, irregular shape, and texture similarity in plant

disease detection were solved. Meanwhile (Tang et al., 2023),

proposed a PLPNet-based method for tomato leaf disease

detection, which introduces an adaptive convolution module and

a location-enhanced attention mechanism to suppress the

interference from soil background. In terms of specific disease

detection (Liu and Wang, 2023) introduced a hybrid attention

mechanism into the feature prediction structure of YOLOv5 to

improve the detection accuracy of tomato brown spot disease in

complex scenes, while (Liu and Wang, 2021b) incorporated

MobileNetv2 into YOLOv3 for early identification of tomato gray

spot disease. In terms of leaf occlusion and overlap detection

(Wang et al., 2021)proposed the YOLOv3-tiny-IRB algorithm

motivated by the idea of an inverse residual block, addressing

effectively the problems of light variations and tree branch

occlusion. Meanwhile, by combining the improved YOLOv5 with

ShuffleNet (Li et al., 2022), enabled precise detection of peach tree

leaf diseases in natural environments. Although the lightweight

improvement led to a slight decrease in accuracy, the detection

effect was still satisfactory (Zhang et al., 2022). enabled real-time

detection of cotton diseases and insect pests in complex natural

environments by introducing the Efficient Channel Attention

(ECA) mechanism, hard-Swish function, and Focal Loss function

into YOLOX. Finally (Gao et al., 2024), introduced the Adaptive

Feature Extraction Network (AFEN) and Cross-layer Feature

Extraction Network (CFFN) and proposed a new LACTA

algorithm, resulting in higher detection accuracy of cherry tomato

diseases in an unstructured environment. In addition (Wang Y et

al., 2024), proposed a tomato disease detection method

incorporating CBAM and multiscale re-parameterized generalized

feature fusion (BiRepGFPN) based on YOLOv6 (Liu and Wang,

2023). proposed an object detection algorithm with a prior
YOLO
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FIGURE 1

The overall workflow of DM-YOLO,including data input,feature extraction and fusion, and out of detection map at the detector.
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knowledge attention mechanism and additional new feature fusion

layers and prediction layers (PKAMMF)to address the challenges of

dense object distribution and insufficient feature information of

small objects, with an AP of 91.96% on a self-constructed tomato

disease dataset (Qi et al., 2023). proposed a tomato viral disease

detection method based on SE-YOLOv5, which extracts key disease

features using the squeeze-excitation (SE) mechanism, resulting in

higher detection accuracy (Li et al., 2022). proposed a multiscale

cucumber disease detection method in natural scenes combining

coordinate attention (CA) and Transformer mechanisms to reduce

the interference from invalid background information. Besides, in

literature (Guo et al., 2021; Zhao et al., 2022; Cai and Jiang, 2023; Li

et al., 2022; Li K. et al., 2023; Guan et al., 2024; Zhang et al., 2024;

Zhu et al., 2024) the detection of leaf diseases of grapes,

strawberries, passion fruits, maize, wheat, olives, and other plants

in natural environments was also enabled from the perspectives of

multi-scale feature fusion and the attention mechanism, and in all

the cases, excellent detection effects were achieved.

Although good outcomes have been achieved in the above

studies in terms of tomato leaf disease detection, accurately

identifying disease classes in natural environments remains a

tough challenge. A rise in the false detection rate is jointly caused

by factors such as light variation-induced shadows being easily

confounded with the spots caused by tomato leaf mold, small

detection area due to leaf occlusion, and fewer lesion features at

the early stage of early blight. In view of the urgent need to improve

the performance of existing tomato leaf disease detection methods

to address the above problems, the authors incorporated the point

sampling operation of DySample (Liu et al., 2023) and adaptively

adjusted the positions and density of the sampling points, enabling

more precise capture of the fine lesion features so as to improve the

accuracy of disease detection and to enhance the ability to detect

small lesion features; moreover, by using the MPDIoU (Ma and Xu,

2023), the model pays more attention to the marginal details of

features during the training, thus enhancing the ability to learn

fuzzy margin areas and improving the localization accuracy of

overlapping margins of lesions, so as to effectively solve the above

detection challenges.

The YOLO family of algorithms is widely favored in the field of

disease detection for its delicate balance between speed and accuracy,

among which YOLOv9 (Wang C. et al., 2024) performs particularly

well in terms of inference speed and detection accuracy. Therefore,

YOLOv9 is chosen as the baseline model in this paper. However, this

model has still some limitations for such problems as light variation,

small size of lesion location, and overlapping symptoms. To address

these problems, this paper proposes an improved tomato leaf disease

detection method based on YOLOv9, which mainly has theoretical

and practical contributions as follows.

Theoretical contribution: The unique Programmable Gradient

Information (PGI) and Generalized Efficient Layer Aggregation

Network (GELAN) architectures of YOLOv9 are used to

effectively capture tomato leaf disease information at different

levels and scales and enhance the model’s ability to perceive and

capture small lesion features of tomato leaf diseases, enabling

effectively rapid detection of different classes of leaf diseases.
Frontiers in Plant Science 03
Practical contribution: With the integrated DySample and

MPDIoU, more detailed and accurate fine feature information of

diseases can be obtained, the marginal detail features of the lesions

can be captured, and the marginal detail learning can be enhanced

to identify effectively the early fine lesion areas, enabling accurate

detection of tomato diseases and precise localization of the fine

marginal features of the lesions at different scales.
2 Related work

Object detectors: The core of an object detector is to efficiently

classify and localize objects of interest with low delay, which is

crucial for practical applications. In recent years, researchers have

invested a lot of efforts in developing efficient detectors

(Zhang et al., 2022; Lu et al., 2022; Zhang et al., 2020). In

particular, YOLO algorithms (Wang C. et al., 2024; Redmon

et al., 2016; Redmon and Farhadi, 2017, Redmon and Farhadi,

2018; Bochkovskiy et al., 2020; Ge, 2021; Glenn, 2022; Li et al., 2023;

Wang et al., 2023a; Varghese and Sambath, 2023; Wang Y. et al.,

2024) have stood out from numerous detectors due to their

excellent performance. Since its inception, the YOLO has evolved

continuously and a number of its versions have been iteratively

released. In YOLOv1 (Redmon et al., 2016), YOLOv2 (Redmon and

Farhadi, 2017), and YOLOv3 (Redmon and Farhadi, 2018), a typical

network architecture, i.e., backbone–neck–head, is used. In

YOLOv4 (Bochkovskiy et al., 2020) and YOLOv5 (Glenn, 2022),

the Cross Stage Partial Network (CSPNet) (Wang et al., 2020) is

introduced in place of the original DarkNet (Wang et al., 2019) to

optimize the network structure. In YOLOv6 (Li et al., 2023), the

network structure is further optimized by introducing Bidirectional

ConvLSTM network (BiC) and Simultaneous Cross Stage Partial

Spatial Pyramid Pooling Feature (SimCSPSPPF). In YOLOv7

(Wang et al., 2023a), the E-ELAN architecture is introduced to

enrich the gradient information. In YOLOv8 (Varghese and

Sambath, 2023), the C2f module is proposed for feature

extraction and feature fusion. Gold-YOLO (Wang et al., 2023b)

enhances the multiscale fusion capability through an advanced GD

mechanism. In YOLOv9 (Wang C. et al., 2024), PGI and GELAN

are introduced to solve the problems of information loss and

reversibility. In the latest YOLOv10 (Wang Y. et al., 2024), a dual

training strategy without non-maximum suppression (NMS) and a

model structure design based on accuracy-efficiency driving are

introduced, enabling end-to-end real-time detection.

Disease detection: Disease detection is an integral part of the

agricultural production process. With the rapid development of DL

technique, disease detection algorithms have received extensive

attention from the academic community. Researchers are

committed to developing practical disease detection frameworks

and algorithms, and have proposed various YOLO-based

algorithms and their variants, which have significantly improved

the performance and efficiency of disease detection. The YOLOv4-

based detection framework (Aldakheel et al., 2024) was trained for

disease classification on a dataset of fourteen plant leaf diseases and

showed good performance. YOLO-NAS (Hicham et al., 2024) was
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extensively trained on a comprehensive dataset including different

lights and backgrounds, making the detection more robust. In

YOLOv5-CBAM-C3TR (Lv and Su, 2024), an attention

mechanism and a Transformer-based module are introduced for

apple leaf disease detection, making subsequent classification more

convenient. In YOLOv8-Grad-CAM++ (Quach et al., 2024), a

tomato fruit health inspection system with real-time tracking and

counting functions is built to further improve the detection

accuracy and efficiency.
3 Methodology

3.1 DM-YOLO

As illustrated in Figure 1, the DM-YOLO framework in this paper

consists primarily of three components: the head network, neck

network, and detector. The head network features a series of

convolutional blocks designed to extract shallow and deep features

of various scales from the input image. The neck network integrates

the lightweight DySample module to dynamically perform differential

sampling and feature fusion on disease characteristics, forwarding

these to the model’s detection head. The detection head then utilizes

MPDIoU to calculate the loss between the predicted and target boxes,

ultimately generating the detection map.

For the above problems, the authors improved YOLOv9 in two

key aspects to improve its tomato disease detection performance in

natural environments. Firstly, a lightweight upsampler, DySample,
Frontiers in Plant Science 04
was integrated into the backbone network, enabling finer collection

of image samples with similar symptoms by automatically adjusting

the sampling strategy so as to efficiently extract small lesion features,

suppress the interference from invalid information, and accurately

identify similar diseases. Secondly, a new loss function, MPDIoU,

was used, which not only strengthened the model’s ability to learn

details of overlapping margins but also further improved the ability

to accurately locate and differentiate the overlapping lesion margins,

helping accurate localization of overlapping areas. The improved

DM-YOLO architecture is shown in Figure 2.

3.1.1 DySample
The YOLOv9 (Wang C. et al., 2024) algorithm is not so sensitive

to the information of images with similar disease features during

image sampling, failing to differentiate images with similar

symptoms. To solve this problem, DySample (Liu et al., 2023), an

efficient sampler, was introduced, which improved the sampling

efficiency for similar disease images and suppressed unwanted

background information by automatically learning different

features. Its detailed framework is shown in Figure 3. DySample

combines the initial sampling position and offset and captures the

disease features more accurately by dynamically adjusting the

sampling point, resulting in higher detection accuracy. Its

implementation is detailed as follows:

Return to the essence of upsampling, i.e., point sampling: The

feasibility of sampling-based dynamic upsampling design was

demonstrated using PyTorch built-in functions, as shown in

Figures 3A, B.
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DM-YOLO network structure diagram.
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Control the initial sampling position: Given two feature

mappings: source feature mapping X of size C � H1 �W1 and

object sampling set S of size 2�H2 �W2. A grid sample function

was used to resample the hypothetical bilinear interpolation X into

X
0
of size C � H2 �W2, as shown in Equation 1:

X
0
= gride _ sample(x, S), (1)

Adjust the offset moving range: Given an upsampling scale

factor S and a feature mapping x of size C � H �W , an offset O of

size 2s�H �W was generated via a linear layer with input and

output being C and 2s2, respectively, and finally, the offset was

reshaped by pixel shuffle into 2� sH � sW. In order to constrain

the local offset range, a “static scope factor was introduced, and the

offset was multiplied by 0.25 to satisfy the boundary condition

between overlapping and non-overlapping lesion margins. This

process is illustrated in Equation 2–Equation 4.

O = linear(X), (2)

S = G + O, (3)
Frontiers in Plant Science 05
O = 0:25linear(x) : (4)

Introduction of dynamic scope factors: The introduction of

dynamic factors enables the model to handle various complex

features more accurately. Point-by-point “dynamic scope factors

were generated by linear projection, and the use of a sigmoid

function with a dynamic factor of 0.5 ensures flexible adjustment of

sampling under different features and environments, so that the offset

of each point is not only subject to the static factor but also adjustable

depending on the dynamic factor, as detailed in Equation 5.

O = 0:5sigmoid(linear1(x)) • linear2(x) : (5)

The dynamic upsampling mechanism of DySample can help

DM-YOLO achieve high-precision extraction and accurate

localization of disease features, which also provides an

opportunity for subsequent sampler improvement for YOLOv9.

3.1.2 MPDIoU
Tomato leaf disease symptoms differ in shape and size, and

most of the lesion locations overlap to variable extents, making it

difficult to extract marginal detail features and localize lesions,
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which poses a challenge to disease identification. Therefore, the

introduction of MPDIoU (Ma and Xu, 2023) enabled the model to

focus on overlapping or non-overlapping disease margin areas for

the first time, which effectively improved the ability to capture fuzzy

marginal features and provides a new idea and tool for solving the

above problems.

Based on a rectangle defined with the coordinates of the top left

and bottom right points, a minimum distance-based intersection

over union, i.e., MPDIoU, was designed, which is able to directly

minimize the distance between the predicted bounding box and the

ground truth bounding box so as to optimize the accuracy of the

bounding box prediction. Its computation is detailed in Table 1.

At the model training stage, each predicted box bprd = ½xprd , yprd
,wprd , hprd� was made as close as possible to the ground truth box

bgt = ½xgt , ygt ,wgt , hgt � by loss function minimization so as to

improve the similarity between the predicted box and the ground

truth box, as detailed in Equation 6:

L = m in
Q o

bgt∈Bgt

L(bgt , bprdjQ) : (6)

In Equation 6, bgt denotes a set of ground truth boxes, bprd
denotes a set of predicted boxes, and Q is a deep regression model

parameter; normally, the norm of ln acts as a typical form of the loss

function. However, recent studies have shown that the norm-based

loss function does not meet the needs for evaluation metrics, so an

MPDIoU-based loss function form was introduced, as shown in

Equation 7.

LMPDIoU = 1 −MPDIoU : (7)

By optimizing the key point distances between the predicted

boxes and the ground truth boxes, MPDIoU obtained rich margin

regression information, enhanced the ability to capture the details

of disease margins, and improved the localization accuracy of

overlapping symptoms. Combined with the dynamic sampling

mechanism of DySample, MPDIoU helped DM-YOLO

enable high-precision extraction and high-accuracy localization

of disease features for real-time detection, which provides a

more reliable and efficient solution for actual agricultural

disease detection.
Frontiers in Plant Science 06
4 Experimental

4.1 Data acquisition

Currently, studies on tomato leaf disease detection focus mainly

on lesion identification and localization. However, in actual

production, leaf diseases often affect the health status of the whole

leaf, varying in morphology and size. Therefore, in this study, the

whole leaf was chosen as the detection object to detect diseases from

a global perspective. The dataset used in this paper is a tomato leaf

disease dataset “Tomato Diseases Detection available on Roboflow

platform (Bryan 2023). The dataset consists of images taken in

outdoor environments and images captured in laboratory settings.

Indoor images are obtained by simulating real environment

backgrounds, and outdoor images are taken by researchers under

different lighting conditions, such as direct sunlight and leaf

occlusion. Additionally, the dataset also includes variations in

lesions throughout the disease lifecycle, encompassing a range of

sizes, shapes, textures, and colors. As shown in Figures 4A–I, the

dataset is highly complex and has rich disease diversities, covering 8

common tomato leaf diseases and healthy leaves, including Early

light, Healthy, Late light, Leaf Mold, Leaf Miner, Mosaic Virus,

Septoria, Spider Mites, and Yellow Leaf Curl Virus.
4.2 Data preprocessing

In order to increase the diversity and richness of the training

sample images so as to improve the quality and effectiveness of the

model training, data augmentation was performed on the original

tomato leaf disease dataset, and the augmentation methods include

shift, random cropping, rotation, scaling, and brightness

control.The dataset was eventually expanded to 4124 images. The

data augmentation not only increased the data volume but also

significantly improved the robustness and generalizability of the

detection model, and Figure 5 shows the distribution of disease

samples after the data expansion.
4.3 Dataset splitting

To enhance the effectiveness of model training, we primarily use

outdoor images as the training set. However, due to the limited

amount of outdoor data, training DM-YOLO effectively is

challenging. Therefore, a portion of indoor data is added to

expand the dataset. The dataset is structured such that it includes

all outdoor data and some indoor data in the training set, with the

remaining data allocated to the validation and test sets. By

combining both outdoor and indoor images in the training set,

we improve the quality of model training while also enhancing the

model's robustness, stability, and generalization ability for detecting

tomato leaf diseases across diverse environments. As detailed in

Table 2, the tomato leaf disease dataset is divided into 80% for

training, 10% for validation, and 10% for testing.
TABLE 1 Computation process of MPDIoU.

Algorithm: Intersection over Union with Minimum Points Distance

Input: Two arbitrary convex shapes: A,B ∈ S⊆Rn , width and height of input
image: w, h

Output: MPDIoU

1:For A and B, (xA1 , y
A
1 ), (x

A
2 , y

A
2 ) denote the top-left and bottom-right point

coordinates of A, respectively, while (xB1 , y
B
1 ), (x

A
2 , y

A
2 ) denote the top-left and

bottom-right point coordinates of B, respectively.

2: d21 = (xB1 − xA1 ) + (yB1 − yA1 )
2

3: d22 = (xB2 − xB2 ) + (yA2 − yA2 )
2

4: MPDIoU =
A ∩ B
A ∪ B

−
d21

w2 + h2
−

d22
w2 + h2
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(a) Late Blight (b) Early Blight (c) Leaf Miner

(d) Mosaic Virus (e) Septoria (f) Leaf Mold

(g) Healthy (h) Yellow Leaf Curl Virus (i) Spider Mites

FIGURE 4

(A–I) Healthy leaf and 8 common tomato leaf diseases. Covering (A) Late Blight, (B) Early Blight, (C) Leaf Miner, (D) Mosic Virus, (E) Septoria, (F) Leaf
Mold, (G) Healthy, (H) Yellow Leaf Curl Virus, (I) Spider Mlites.
FIGURE 5

Distribution of disease samples after dataset expansion.
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4.4 Experimental environment

In this study, with YOLOv9 as the baseline model, the DM-

YOLO model was constructed to train and evaluate the tomato leaf

disease dataset. The experiments in this study were all conducted in

the same environment, using training platform NVIDIA A40,

80GB, CUDA 11.3, Ubuntu 20.04, Linux operating system, with

PyTorch 1.11.0 as the learning framework and Python 3.8 as the

programming language. In the training process, the learning rate

was set to 0.01, “batch sizes was set to 16, “epochs was set to 100,

and SGD was used as the parameter optimizer. To save

computational resource, the training was performed by CUDNN

optimization and mixed precision training.
4.5 Evaluation metrics

In this paper, metrics P (precision), R (recall), and AP (average

precision) are used tomeasure the detection performance of the model.

A value of P represents the ratio of the number of actual leaf disease

samples over the number of all detected leaf disease samples, reflecting

the ability to identify a relevant object. A value of R focuses on the ratio

of the number of correctly detected leaf disease samples over the

number of all detected leaf disease samples; the greater the R, the fewer

the samples escaping the detection and the better different classes of

leaf diseases are detected by the model. AP is the area under the

precision–recall curve, which measures the detection performance of

the model for a single class of objects. The higher the AP, the better a

specific class of diseases are detected. The evaluation metrics are

calculated as shown in Equations 8-10, respectively.
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P =
TP

TP + FP
� 100% (8)

R =
TP

TP + FN
� 100% (9)

AP =
Z 1

0
Pd(R)� 100% (10)

where TP denotes the number of samples correctly detected as

positive, FP denotes the number of samples falsely detected as

positive, and FN denotes the number of samples that are actually

positive but falsely detected as negative; the PR curve, with R as the

abscissa and P as the ordinate, reflects the precision performance of

object detection.

The mean average precision (mAP) is a mean value of the AP

values for various classes of diseases, which directly reflects the

comprehensive dataset classification ability of the model. The

higher the mAP, the better all classes of diseases are detected by

the detection model. The calculation of mAP is illustrated in

Equation 11

mAP = o
classes
i=1 APi
classes

� 100% (11)

where “classes is the number of disease classes. And mAP50

denotes the average accuracy of detecting multiple classes of

diseases when the IoU is 0.5.
5 Results and analyses

5.1 Comparison between samplers

In order to evaluate how different samplers influence the

performance of YOLOv9, five different samplers, namely, FADE,

SAPA, CARAFE, HWD, and DySample, were introduced into the

YOLOv9 model for training and evaluation of the tomato leaf

disease detection model versus YOLOv9.
TABLE 3 Performance indicators of different sampling methods in detection results.

Samplers
Metrics

P (%) R (%) AP (%) mAP50 (%) Params (M) GFLOPs (G)

YOLOv9 89.5 87.4 93.4 85.0 50716758 234.7

CARAFE 91.0 85.3 93.8 83.5 50897822 239.9

HWD 90.7 84.6 92.2 81.2 52093014 242.4

FADE 86.6 83.0 91.0 79.5 59737654 243.4

SAPA 90.2 83.7 92.5 81.9 81453142 314.0

DySample 91.4 86.3 94.1 85.7 50866913 236.8
87.4.4 value represents the best performance of the R metrics.
94.1 value represents the best performance of the AP metrics.
85.7 value represents the best performance of the mAP metrics.
91.4 value represents the best performance of the P metrics.
TABLE 2 Tomato leaf disease dataset distribution.

Dataset Number of samples

Training set 3300

Test set 412

Validation set 412
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From the experimental results in Table 3, it can be seen that

different samplers have different degrees of impact on improving the

detection performance of the model. Compared with the baseline

model, CARAFE improves P and AP by 1.5% and 0.4% respectively,

HWD and SAPA improve by 1.2% and 0.7% in terms of P value

respectively. It can be seen that DySample has the most outstanding

improvement effect, with an improvement of 1.9%, 0.7% and 0.7% in

P, AP andmAP50 respectively. It is worth noting that the R andmAP

50 of HWD, FADE, SAPA and CARAFE are slightly lower than those

of YOLOv9. The main reason is that the GFLOPs are reduced by

3.1%, 3.7%, 25.3% and 2.2% compared with the baseline model, and

the number of parameters is increased by 2.6%, 15.1%, 37.7% and

0.3% respectively compared with the baseline model. It can be seen

that the decrease in the detection accuracy of these four samplers is at

the expense of the increase in the number of parameters and latency,

so it is inevitable to sacrifice some recall and precision. Overall,

among these five samplers, DySample performed excellently in

metrics R and mAP, as its R and mAP were 1.5% and 2.7% higher

than those of CARAFE, respectively, and 1.0% and 2.2% higher than

those of HWD, respectively. If the other four samplers are integrated

into YOLOv9, not only will the detection accuracy be reduced, but the

detection speed and efficiency of the model will be slow, which

cannot meet the detection needs of tomato leaf disease in natural

environments. The introduction of DySample not only improves the

accuracy of the baselinemodel, but also greatly reduces the number of

network parameters and speeds up network inference, which is

conducive to ensuring the stability of detection while reducing the

structure. These experimental results clearly show that DySample was

superior to the other samplers in tomato leaf disease detection,

demonstrating its superior detection performance, enabling it to

effectively help DM-YOLO fulfill the task of detecting tomato leaf

diseases in natural environments, which strongly corroborates the

effectiveness and reasonableness of the subsequent improvement

using DySample.

CARAFE (Wang et al., 2019) guides the upsampling process

with the content of the input features themselves in order to

improve the performance of conventional upsampling methods

(such as bilinear interpolation and transposed convolution) to

generate sharper and more accurate outputs, making it suitable

for fine upsampling scenarios such as image super-resolution.

HWD (Xu et al., 2023) saves as much information as possible
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while reducing the spatial resolution of feature maps by wavelet

transforms, in order to solve the problems of conventional

downsampling methods (such as maximum pooling or strided

convolution) in terms of information loss, and better preserve the

margin, texture, and detail information of an image. FADE (Lu et

al., 2022) selects and enhances data by analyzing the feature

distribution of samples, paying special attention to samples that

are easy or difficult to classify in the data set. It is suitable for tasks

that improve the model's ability to identify complex or confusing

samples, such as image classification and target detection. SAPA (Lu

et al., 2022) dynamically adjusts the intensity or type of data

enhancement and allocates more appropriate data according to

the learning state of the model. It is suitable for tasks that require

long-term training and gradual enhancement, such as natural

language processing. In contrast, DySample (Liu et al., 2023)

calculates the differences between the current pixel and the

neighboring pixels by differential sampling, and selects only the

portions with a greater difference for sampling, so as to improve the

sampling rate and efficiency, making it suitable for multi-image

processing and computer vision tasks.

The comparison results in Figures 6A–C show that, the

DySample-enhanced model performed well in both detection

precision and average precision on the tomato leaf disease

dataset, showing excellent detection performance compared to the

other two samplers. The main reason is that DySample effectively

improved the resolution and information capacity of the disease

feature maps through its unique upsampling mechanism, which

enabled the model to more accurately extract the key disease

features and capture the subtle difference features between similar

diseases, and to perform differential sampling, demonstrating its

unique role and advantages in accomplishing the tomato disease

detection task with DM-YOLO.
5.2 Comparison between loss functions

In order to verify the impact of different loss functions on

improving the performance of the baseline model, five different loss

functions, namely, CIoU, MPDIoU, InnerIoU, InnerCIoU, and

InnerMPDIoU, were introduced into YOLOv9 for training and

evaluation and compared with YOLOv9.
A B C

FIGURE 6

Performance comparison of different samplers.
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By analyzing the results in Table 4, it can be known that the use

of different loss functions had a positive impact on improving the P

and AP of the baseline model, as for these five loss functions versus

the baseline model, the P values increased by 1%, 1.2%, 1.5%, 0.9%,

and 2%, respectively, and the AP values increased by 0.5%, 0.4%,

0.3%, 0.6%, and 0.7%, respectively. In addition, among these five

loss functions, MPDIoU performed the best in terms of P, AP, and

mAP, in particular, its P value was 1%, 0.8%, 0.5%, and 1.1% higher

than those of the other four loss functions, respectively. This is

mainly because MPDIoU greatly improved the regression

performance of the bounding boxes by minimizing the key point

distance between the predicted bounding box and the ground truth

bounding box, thereby richer disease information was obtained,

making the model more accurate in capturing the leaf margin

details and thus more precise in isolation and localization of each

overlapping lesion area, significantly improving the overall

detection performance of the model.

CIoU (Zhen et al., 2021) focuses on the position, size, and shape

of a box, enabling more comprehensive assessment of the accuracy

of the predicted box, making it suitable for scenes requiring precise
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localization of the object bounding box. InnerIoU (Zhang et al.,

2023) pays more attention to the overlapping areas inside a

bounding box and is suitable for scenes where attention should be

paid to the overlapping areas inside a bounding box. InnerCIoU

solves the problem of failing to effectively measure the distance

between the predicted box and the ground truth box when both

boxes do not overlap, making it suitable for scenes where there is

rotation or scaling of the object of interest. InnerMPDIoU takes into

account the bounding box overlap, the distance between the center

points, and other factors, and is thus suitable for scenes where

attention should be paid to the width and height of a bounding box.

MPDIoU (Ma and Xu, 2023) pays more attention to the marginal

details of the predicted box and is suitable for scenes requiring

precise capture of information about the object margins. Different

loss functions have different focuses and should be selected

depending on specific tasks.

Compared with the other four loss functions, MPDIoU focuses

on the overlapping margins between the predicted box and the

ground truth box for the first time, enhances the margin detail

awareness of the model so as to obtain key features, and has a

significant role and unique advantages in YOLOv9, providing the

preconditions for subsequent selection of it as an improved

loss function.
5.3 Comparison between improved models

Table 5 shows the detection results of the tomato leaf disease

dataset by different mainstream improved models. From the

analysis of the experimental results in Table 5, it can be known

that, for each improved model versus the baseline model, P, R, AP,

and mAP increased to variable extents. For YOLOv9-Attention-

MPDIoU, both R and AP increased by 1.1%. For YOLOv9-

GhostConv-MPDIoU, P and AP increased by 1% and 0.5%,

respectively. For YOLOv9-DWConv-MPDIoU, P and AP

increased by 1.3% and 0.9%, respectively. For YOLOv9-iRMB-

MPDIoU, both P and AP increased by 0.8%, mainly due to a fact
TABLE 5 Performance indicators of different improved models in detection results.

Models
Metrics

P (%) R (%) AP (%) mAP50 (%) Params (M) GFLOPs (G)

YOLOv9 89.5 87.4 93.4 85.0 50716758 236.7

YOLOv9-DWConv-MPDIoU 90.8 88.0 94.3 85.5 50644182 233.0

YOLOv9-Attention-MPDIoU 90.2 88.5 94.5 85.4 40310428 222.5

YOLOv9-iRMB-MPDIoU 90.3 84.8 94.2 82.8 54415446 339.9

YOLOv9-GhostConv-MPDIoU 90.5 86.7 93.9 83.6 50679894 235.7

YOLOv9-ACmix-MPDIoU 90.4 87.6 93.6 83.8 53687118 312.5

DM-YOLO(Ours) 92.5 86.8 95.1 86.4 50066913 230.8
92.5 value represents the best performance of the P metrics.
88.5 value represents the best performance of the R metrics.
95.1 value represents the best performance of the P metrics.
86.4 value represents the best performance of the mAP metrics.
TABLE 4 Performance indicators of different loss functions.

Models
Metrics

P R AP mAP

YOLOv9 89.5 87.4 93.4 85.0

YOLOv9-CIoU 90.5 88.5 93.9 84.8

YOLOv9-InnerIoU 90.7 87.5 93.8 85.8

YOLOv9-InnerCIoU 91.0 87.8 93.7 85.3

YOLOv9-
InnerMPDIoU

90.4 88.2 94.0 85.2

YOLOv9-MPDIoU 91.5 86.5 94.1 86.0
91.5 value represents the best performance of the P metrics.
87.4 value represents the best performance of the R metrics.
94.1 value represents the best performance of the AP metrics.
86.4 value represents the best performance of the mAP metrics.
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that cumulative error for the iRMB structure increased with

increasing number of network layers, resulting in a slight decrease

in accuracy. In contrast, P, AP, and mAP of DM-YOLO increased

by 3%, 1.7%, and 1.4%, respectively; compared to the other

improved models, DM-YOLO outperformed in P and mAP, with

P increasing by 2.2%, 1.7%, 2.3%, 2%, and 1.4%, respectively, and

mAP increasing by 3.6%, 0.9%, 1%, 3.8%, and 2.6%, respectively.

Overall, the detection performance of YOLOv9 and its improved

model is not much different, but it can be clearly seen that as the

detection accuracy of other improved models increases, their own

network parameters and GFLOPs also increase accordingly. The

YOLOv9-ACmix-MPDIoU P and AP increased by 0.9% and 0.2%

compared with the baseline model, but this improvement came at

the expense of increasing the number of parameters by 5.5% and

GFLOPs by 24.3%. Obviously, the trade-off between efficiency and

accuracy was not achieved, and the same is true for other samplers.

On the contrary, while DM-YOLO increased P, R, and mAP50 by

3%, 1.7%, and 1.4% respectively, its parameter volume and GFLOPs

decreased by 1.2% and 2.5%respectively, truly improving detection

accuracy. At the same time, the model is lightweight and a trade-off

between efficiency and accuracy is achieved. Obviously, among

these five improved models, DM-YOLO incorporating DySample

and MPDIoU had the best detection performance and was better

competent for tomato leaf disease detection tasks.

In order to visualize the improvement effect and verify the

feasibility of the improvement, DM-YOLO and YOLOv9 were

trained and evaluated on the tomato leaf disease dataset,

respectively, and Figure 7 compares the changes in P, R, AP, and

mAP before and after the model improvement.
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TABLE 6 Performance indicators of different models in the tomato leaf
disease dataset.

Models
Metrics

P(%) R(%) AP(%) mAP50(%)

YOLOv3 84.1 82.2 88.3 75.4

YOLOv3tiny 77.8 79.8 83.1 59.7

YOLOv5 84.3 81.5 88.9 71.9

YOLOv6 86.5 82.8 89.6 74.3

YOLOv8 88.9 78.7 89.3 74.0

YOLOv9 89.5 87.4 93.4 85.0

YOLOv9c 85.9 84.9 91.4 76.8

YOLOv9s 83.2 86.4 91.4 77.1

YOLOv9m 89.6 84.0 91.8 79.2

YOLOv10n 83.3 81.6 89.4 73.4

YOLOv10s 87.4 83.8 91.6 76.2

YOLOv10m 86.7 85.5 91.3 77.5

YOLOv11 82.2 86.0 91.3 77.6

RT-DETR 86.4 83.7 87.2 72.2

LW-DETR 87.9 84.2 90.3 75.4

DM-YOLO(Ours) 92.5 86.8 95.1 86.4
87.4 value represents the best performance of the R metrics.
92.5 value represents the best performance of the P metrics.
95.1 value represents the best performance of the AP metrics.
86.4 value represents the best performance of the mAP50 metrics.
FIGURE 7

Performance comparison of before and after model improvement.
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5.4 Comparative experiments with
mainstream models

To further verify the detection and generalization capabilities of

the proposed DM-YOLO on the tomato leaf disease dataset, this

paper first compares 14 other detection models on the same dataset

and compares their overall performance with DM-YOLO. The

models compared in this paper include YOLOv3, YOLOv5,

YOLOv6, YOLOv8, YOLOv10, YOLOv11 (Khanam and Hussain,

2024) and YOLOv9 in different versions to highlight the

generalization ability of the proposed model. The experimental

results of all the compared models are shown in Table 6. Analyzing

the experimental results in Table 6, it can be seen that compared

with the baseline model YOLOv9, although the R value of DM-

YOLO is slightly lower, DM-YOLO has improved P, AP, and

mAP50 by 2%, 1.7%, and 1.4%, respectively, because a higher

recall rate will reduce the accuracy to a certain extent. When

considering the network parameters and GFLOPs separately,

DM-YOLO is reduced by 1.2% and 14% respectively compared

with the baseline model, achieving a trade-off between accuracy and

efficiency of tomato leaf disease detection in a natural environment.

Compared with other comparison models, DM-YOLO outperforms

most detection models in all evaluation indicators, achieves the best

balance between precision and recall, achieves the highest mAP

value, and can excellently complete the task of detecting tomato leaf

diseases in natural environments.
5.5 Between-disease comparison in
detection results

The tomato leaf disease dataset used in this paper is rich in

disease class, and the challenges encountered in detecting lesions in
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natural environments, such as small lesion size, overlapping lesion

areas, and overlapping leaves with each other, lead to insufficient

precision in the extraction of lesion sites. Therefore DM-YOLO, a

new detection model, is proposed in this paper. To demonstrate the

ability of the DM-YOLO to detect different classes of leaf diseases in

natural environments, the model was trained and evaluated based

on the above training parameters, and the detection results were

obtained as shown in Table 7. From Table 7, it can be seen that DM-

YOLO had good overall performance in detecting nine types of

tomato leaf diseases. For Early Blight, Healthy, Late Blight, Leaf

Miner, Mosaic Virus, Septoria, and Spider Lites in the dataset, all

the values of P and AP remained above 90%, and the R and mAP

were both higher than 77% and 83%, respectively. In particular, Leaf

Miner had the optimal detection results, with P reaching 96.3%, R

reaching 98.3%, AP reaching 98.9%, and mAP reaching 91.3%,

which satisfied the actual detection requirements. However, for

disease classes Leaf Mold and Yellow Leaf Curl Virus, although

good performance was made in P and AP, the R and mAP values

were not so desirable, and the mAP for Yellow Leaf Curl Virus was

only 71%. The main reason is that both diseases resulted in a small

lesion area and a low extractability of lesion features, making it not

easy to extract small lesion features and localize specific lesions.

Therefore, the detection results of Leaf Mold and Yellow Leaf Curl

Virus by DM-YOLO are reasonable. Overall, DM-YOLO was able

to fulfill the task of detecting most of the common tomato

leaf diseases

In order to better demonstrate the disease detectability of DM-

YOLO and facilitate comparison and analysis, the P and AP values

of detecting various diseases before and after the model

improvement were visualized and compared, as shown in Figure 8.
5.6 Ablation experiments

To evaluate the effectiveness and feasibility of the DM-YOLO

proposed in this paper for tomato leaf disease detection, a number

of ablation experiments based on YOLOv9 were conducted. Each

individual improvement and a combination of two improvements

were added to YOLOv9 and compared with it, aiming to test the

effectiveness of each improvement separately so as to elucidate the

contribution of each improvement to the overall performance of the

model, and the results of the experiments are shown in Table 8.

After incorporating DySample, a lightweight upsampler, into

the backbone network, the improved model had improved

performance to variable extents in terms of P, AP, and mAP

(increasing by 1.9%, 0.7%, and 0.7%, respectively). The results

show that DySample could capture the key features of the lesion

area more accurately by dynamically adjusting the sampling

strategy and could identify the early tiny lesion features quickly

and effectively, thus improving the detection accuracy and efficiency

of the model.

The introduction of MPDIoU in the detector had a positive

impact on improving the model performance, especially in terms of

P, AP, and mAP, which increased significantly by 2%, 0.7%, and 1%,

respectively, despite a slight decrease in recall. The analysis suggests

that by using MPDIoU, the model is able to identify and localize
TABLE 7 Detection results of different diseases under DM-YOLO.

Classes
Metrics

P R AP mAP

Helthy 95.2 77.9 94.3 85.7

Septoria 91.8 79.1 91.7 83.3

Leaf Mold 89.5 84.7 94.1 84.1

Late Blight 92.3 89.2 96.9 89.0

Leaf Miner 94.5 98.3 98.9 91.3

Spider Lites 96.3 91.2 97.7 90.3

Early Blight 92.1 85.3 93.5 85.0

Mosaic Virus 93.5 88.7 94.1 89.3

Yellow Leaf Curl Virus 87.6 73.3 88.8 71.0

All 92.5 86.8 95.1 86.4
96.4 value represents the best performance of the P metrics.
98.3 value represents the best performance of the R metrics.
98.3 value represents the best performance of the R metrics.
91.3 value represents the best performance of the mAP metrics.
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overlapping lesion areas more accurately, better capture lesion

margin features, and significantly improve the accuracy of

localizing lesion areas.

For a combination of two improved strategies versus the

baseline model, the values of P, AP, and mAP increased by 3%,

1.7%, and 1.4%, respectively, indicating significant improvement in

model performance. These experimental results strongly indicate

the effectiveness of the proposed method. This also just suggests that

only by combining both improved methods can we maximize the

detection performance and potential of DM-YOLO to fulfill

brilliantly the task of tomato leaf disease detection in

natural environments.

In conclusion, the authors took advantage of two different

improvement strategies to effectively improve the overall

detection performance of the model, strongly verified the

feasibility of both improvement strategies, and demonstrated that

the improved model DM-YOLO is competent for tomato leaf
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disease detection in complex natural environments, which also

provides an effective means of detecting other diseases.

Figure 9 visualizes the effectiveness of two improvement

strategies. Improving the sampler or the loss function alone had

no significant effect on improving the overall performance of the

baseline model, while a combination of both improvements resulted

in all-around improvement in model performance, with the metrics

being 3%, 1.7%, and 1.4% higher than those of the baseline model,

respectively, which strongly indicates that the combination of both

improvements is conducive to improving the overall detection

performance of the DM-YOLO and helping it fulfill a number of

detection tasks.

Figures 10A–R shows the visualization of the detection results

on the tomato disease dataset before and after the model

improvement, with the bright red candidate boxes corresponding

to the same class of tomato leaf diseases and the differences in

detection precision.

The detection results Figures 10J, P in column 1 show that when

YOLOv9 and YOLOv10 was disturbed by symptom overlap in

natural environments, its detection precision values for Leaf Mold

were 93% and 54%, obviously not meeting the detection

requirements, in contrast, based on Figure 10M in column 1, the

precision values of DM-YOLO detecting Leaf Mold reached 95%,

enabling precise localization of the margins of Leaf Mold with a small

lesion area and enabling high-precision feature extraction, too. The

low detection accuracy of the baseline model was mainly due to the

difficulty in feature extraction caused by the Leaf Mold, leading to

false detection, while the improved model could overcome the

interference from the background environment and maintain the

accuracy of detection under complex detection environments.
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FIGURE 8

Disease detection performance of before and after model improvement.
TABLE 8 Results of ablation experiments.

YOLOv9 DySample MPDIoU P R AP mAP

√ 89.5 87.4 93.4 85.0

√ √ 91.4 86.3 94.1 85.7

√ √ 91.5 86.5 94.1 86.0

√ √ √ 92.5 86.6 95.1 86.4
√ indicates adding a module into the baseline model.
92.5 value represents the best performance of the P metrics.
87.4 value represents the best performance of the R metrics.
92.5 value represents the best performance of the AP metrics.
92.5 value represents the best performance of the AP metrics.
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(A–R) Comparison of prediction results on tomato disease dataset before and after model improvement.
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In addition, light variations further affected the extraction of leaf

texture features, thereby affecting the accuracy of detection. However,

in complex scenes with similar symptoms, such as Figures 10B, E, K in

column 2, detection accuracy of Early Blight by the baseline model,

YOLOv6 and YOLOv8 were 85%,86% and 84% only, in comparison,

from Figure 10N in column 2, DM-YOLO had a detection precision up

to 95%. It is able to learn effectively the marginal features with

overlapping similar symptoms and accurately identify and localize

precisely Early Blight and Late Blight with similar symptoms. Disease

classes differing much in symptoms could be effectively detected by

both models. For diseases with small lesion areas and overlapping
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symptoms, such as early Spider Mlites disease in Figures 10I, R, L in

Column3, the precision of RT-DETR, YOLOv10, YOLOv9 were 75%,

50% and 90%, while that of DM-YOLO was 93% because it is able to

extract precisely the fine marginal features of the small lesions and

localize accurately the marginal areas.

The DM-YOLO proposed in this paper is able to suppress the

interference from the environment, maintain the robustness and

stability of the model detection in complex environments, and keep

high precision when facing such factors as symptom overlap, small

lesion area, and symptom similarity, making it competent for

tomato disease detection tasks in complex natural environments.
FIGURE 9

Performance Comparison of ablation experiments.
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6 Discussion and limitations

6.1 Discussion

Existing YOLO detectors (Zeng et al., 2023; Umar et al., 2024; Liu

et al., 2023; Liu and Wang et al., 2021b; Liu et al., 2023) have

demonstrated impressive performance on tomato leaf disease datasets.

However, detecting tomato leaf diseases in natural environments still

faces many challenges, such as light variations, small lesion area,

symptom overlap, and leaf occlusion, and existing studies still have

limitations in these areas. The DM-YOLO proposed in this paper

maintains the same network structure as other YOLO models, which

allows for a key improvement to YOLOv9 that is different from the

previous ones, i.e., introduction of DySample and MPDIoU, which has

strengthened the model's ability to sample leaves with small lesion areas

and enhanced the ability to learn details of overlapping margins of

disease symptoms, in order to improve the model's ability to extract

small lesion features and precision of localizing fuzzy margins while

effectively suppressing the interference from natural environments, so as

to significantly improve the accuracy of classification and localization by

the model. These works not only address the problems in previous

studies but also explore new interests of research; nevertheless, more

optimized solutions need to be further explored. The authors believe

that, given beneficial explorations in addressing the challenges to tomato

leaf disease detection in natural environments, DM-YOLO is very

promising to provide a powerful technical tool for agricultural disease

control and may be a compelling interest of study for future research on

object detection in agriculture.
6.2 Limitations

Despite remarkable progress made for DM-YOLO on the tomato

disease dataset, it still faces a challenge of unbalanced distribution of

disease feature samples in the existing dataset. The model proposed in

this paper performed poorly in processing images of small lesion

samples with similar symptoms and failed to adequately capture the

key features of a few classes of lesions, so the precision of identifying

and localizing a few classes of diseases needs to be further improved.

7 Summary and prospect

In order to improve the accuracy of tomato leaf disease

detection in natural environments, the YOLOv model was

improved in this paper. Firstly, the lightweight dynamic

upsampler DySample was introduced. This improvement made

the model more capable and efficient in sampling small area

lesions on leaves while effectively reducing the interference from

the background environment. Secondly, the loss function was

replaced with MPDIoU, which strengthened the model's ability to

learn the details of overlapping margins of symptoms and improved

the model's ability to capture fuzzy features. The experimental

results show that the improved DM-YOLO model was able to
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accurately recognize tomato leaf diseases in natural environments.

Compared with other detection models, DM-YOLO showed

excellent detection performance. Significant detection effect was

achieved on the public dataset "Tomato Diseases Detection", which

further validates its superior generalizability and detection accuracy.

Future research work includes: (1) Improvement and optimization

of the model structure: Optimize the aggregation of residual blocks

(i.e., Multi-Scale Aggregation) to reduce information loss and noise

amplification in the process of feature fusion, and enhance the

inference speed and detection ability of the model. (2) Improvement

of the annotation strategy: Designing a more fine-grained and

comprehensive annotation framework (i.e.,rotation labeling

strategy), especially for small lesion sample images with similar

symptoms, introducing more key information and detailed

annotations, such as lesion shapes, edge features, and color changes.

(3) Multimodal data fusion: Construct multimodal datasets by

combining environmental information (e.g., temperature, humidity,

light) and non-visual data such as soil composition during the

shooting period. Perform multimodal recognition and fusion to

improve the accuracy of tomato leaf disease detection in natural

environments. (4) Lightweight network structure design: Examine the

components of the model comprehensively from an accuracy-

efficiency-driven perspective to reduce redundant structures and

improve the detection speed and efficiency of the model.
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