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Due to the constraints of the tobacco leaf curing environment and

computational resources, current image classification models struggle to

balance recognition accuracy and computational efficiency, making practical

deployment challenging. To address this issue, this study proposes the

development of a lightweight classification network model for recognizing

tobacco leaf curing stages (TCSRNet). Firstly, the model utilizes an Inception

structure with parallel convolutional branches to capture features at different

receptive fields, thereby better adapting to the appearance variations of tobacco

leaves at different curing stages. Secondly, the incorporation of Ghost modules

significantly reduces the model’s computational complexity and parameter

count through parameter sharing, enabling efficient recognition of tobacco

leaf curing stages. Lastly, the design of the Multi-scale Adaptive Attention

Module (MAAM) enhances the model’s perception of key visual information in

images, emphasizing distinctive features such as leaf texture and color, which

further improves the model’s accuracy and robustness. On the constructed

tobacco leaf curing stage dataset (with color images sized 224×224 pixels),

TCSRNet achieves a classification accuracy of 90.35% with 158.136 MFLOPs and

1.749M parameters. Compared to models such as ResNet34, GhostNet,

ShuffleNetV2×1.5, EfficientNet-b0, MobileViT-xs, MobileNetV2, MobileNetV3-

large, and MobileNetV3-small, TCSRNet demonstrates superior performance in

terms of accuracy, FLOPs, and parameter count. Furthermore, when evaluated

on the public V2 Plant Seedlings dataset, TCSRNet maintains an impressive

accuracy of 97.15% compared to other advanced network models. This

research advances the development of lightweight models for recognizing

tobacco leaf curing stages, providing theoretical support for smart tobacco

curing technologies and injecting new momentum into the digital

transformation of the tobacco industry.
KEYWORDS

tobacco leaf curing stage, image classification, lightweight network model, attention
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1 Introduction

The tobacco industry plays a crucial role in the fiscal revenue of

many developing countries, providing them with a substantial

amount of tax income. This tax revenue has to some extent

alleviated the financial pressure of these nations, enabling

governments to invest in poverty alleviation, infrastructure

development, and other critical areas. This has effectively

promoted economic development and improved living standards

in economically disadvantaged regions, making a positive

contribution to achieving regional poverty reduction goals.

Incomplete statistics show that China’s total tobacco output

accounts for over 42% of the global total, and its cigarette

production even makes up 32% of the world’s total, making it the

largest tobacco producer and consumer globally (Liu, 2024).

Among the key steps in tobacco processing, leaf curing is critical

to ensuring cigarette quality. Even if the fresh tobacco leaves are of

superior quality, their characteristics can be significantly degraded

by improper curing, which in turn affects the economic benefits of

the cured leaves (Li et al., 2021; Wang et al., 2019). Tobacco leaf

curing refers to the process of removing moisture from fresh

tobacco leaves under high-temperature conditions in curing barns

or similar facilities, based on the growth characteristics of the leaves.

By controlling appropriate curing parameters, such as temperature,

humidity, and duration, the curing process regulates the enzymatic

activities within the leaves, consolidating and developing the

desirable attributes formed during leaf maturation. This

transformation promotes the development of favorable leaf

appearance and internal chemical composition, ultimately

enhancing the overall quality of the cured tobacco leaves (Wang

et al., 2009; Ding et al., 2023). Currently, the tobacco leaf curing

process in China has developed into a refined and diversified set of

intensive curing techniques across different regions. However, most

curing methods are primarily based on 10 distinct stages

characterized by observable changes in the appearance of the

tobacco leaves. By monitoring alterations in color, texture, and

moisture loss throughout the curing process, farmers can basically

determine the current stage of the leaves and subsequently adjust

the wet-bulb and dry-bulb temperatures, as well as the stabilization

time in the curing barn, to complete the curing of the tobacco

leaves. At this stage, the identification of curing stages in intensive

curing barns still relies predominantly on manual assessment.

Farmers observe the degree of yellowing and shrinking of the

tobacco leaves through the barn windows to subjectively evaluate

the curing status and adjust the curing process accordingly (Li et al.,

2022b; Du et al., 2022). Nevertheless, the tobacco leaf curing process

lasts for more than 150 hours, typically spanning 6 to 7 days, and

the entire operation is highly subjective. This subjectivity can easily

lead to mismatches between the curing stage and the curing

techniques, resulting in an inability to guarantee the quality of the

cured tobacco leaves (Sun et al., 2023). As shown in Figure 1,

premature or delayed execution of the curing process can lead to the

production of a significant amount of substandard tobacco,

including gray, mottled, undercooked, and overcooked leaves,

which severely impacts the quality of the cured tobacco.

Therefore, researching methods for accurately identifying the
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stages of intensive tobacco curing, utilizing emerging image

processing technologies for precise and automatic stage

recognition, is a key focus in current tobacco curing research.

In recent years, machine vision technology and deep learning

techniques have significantly advanced the development of smart

agriculture, resulting in numerous high-quality research outcomes

in the agricultural field. These advancements include real-time

monitoring of crop growth and development (Arend et al., 2016;

Ni et al., 2018), detection of crop diseases (Li et al., 2022a; Liu and

Wang, 2020; Zeng et al., 2022; Zhang et al., 2023a; Zhou et al.,

2024), and harvesting of fruits (Tang et al., 2020; Kang et al., 2020).

In the tobacco sector, related research has primarily focused on

diagnosing pests and diseases in tobacco fields (Chen et al., 2023),

determining the maturity of tobacco leaves (Chen et al., 2021), and

grading of cured tobacco leaves (Xin et al., 2023; Zhang and Zhang,

2011). Zhang et al. (2013) Utilize the HSI color space to perform

color segmentation and recognition of tobacco leaves, and employ

fuzzy logic to make decisions regarding the curing stage of the

tobacco leaves. Wu et al. (2014) proposed the integration of color

features from tobacco images with curing environment data,

resulting in the development of a three-layer BP neural network

regression prediction model to forecast the curing state of tobacco

leaves. Wang et al. (2017) demonstrated that combining the color

features and texture features of tobacco leaf images during the

curing process as the input to a neural network can significantly

improve the prediction accuracy. Wang and Qin (2021) proposed a

method that utilizes tobacco leaf weight data for prediction,

constructing a fusion model that incorporates the color and

weight characteristics of tobacco leaves to forecast the curing

status. Pei et al. (2024) utilized XGBoost to construct a model

that integrates curing environment information and tobacco leaf

image information to determine the curing stage of tobacco leaves.

However, while the aforementioned research methods can enhance

model performance by leveraging various information sources, they

necessitate the manual design of feature engineering to address the

fusion and weighting of heterogeneous information sources. The

capacity for feature representation in images is influenced by

subjective human factors, and most studies are limited to utilizing

low-dimensional primary features such as color and texture,

thereby failing to fully exploit the high-dimensional advanced

feature information within images. In contrast, deep learning

models possess the capability to automatically extract image

features, process image information in real-time, and facilitate

end-to-end deployment. This inherent ability allows deep learning

approaches to more effectively harness the fusion of heterogeneous

information sources, thereby improving model performance

without the constraints imposed by manual feature engineering,

which is often susceptible to subjective biases in feature

representation. Jiang et al. (2023) utilized the existing Efficient

Channel Attention (ECA) mechanism to replace the Squeeze-and-

Excitation (SE) channel attention mechanism in EfficientNet,

thereby achieving optimized discrimination of the tobacco leaf

drying stage. Consequently, conventional machine learning

techniques are unable to fully leverage the feature information

within images, necessitating the fusion of multi-source

information to maintain model accuracy. Furthermore, traditional
frontiersin.org
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Convolutional Neural Networks (CNNs) maintain high accuracy at

the expense of computational resources, rendering them unsuitable

for direct deployment in the resource-constrained environment of

tobacco leaf drying houses.

Based on the aforementioned research, it is evident that

deploying a tobacco leaf drying stage recognition model within a

dense drying house requires the model to possess low

computational complexity, a minimal number of parameters, and

robust generalization capabilities. To address this, this study

proposes a lightweight network model specifically designed for

the recognition of the tobacco leaf drying stage—named

TCSRNet. This model integrates an improved Inverted Residual

Structure with the proposed MAAM. On the one hand, the

enhanced Inverted Residual Structure and Ghost module facilitate

the extraction of richer image features while significantly reducing

the number of parameters and computational complexity within the

model. On the other hand, the MAAM allows for the adaptive

adjustment of feature importance based on the input data,

accommodating the varying characteristics of different tobacco

leaf drying stages and thereby enhancing the model’s robustness.

This enables TCSRNet to effectively integrate features of varying

levels and types within the resource-constrained environment of a

drying house, allowing it to better capture the intricate feature

information present in tobacco leaf images throughout the drying

process. Consequently, the proposed lightweight network

classification model, TCSRNet aligns with the practical conditions

and environmental demands of intelligent tobacco drying,

providing a theoretical foundation and technical support for the

subsequent intelligent automation of dense drying processes.

In this paper, we propose a lightweight network model for

tobacco leaf drying stage recognition, named TCSRNet. Our main

contributions are as follows:
Fron
1. Improved Inverted Residual Structure: We incorporated

the Inception structure to replace the standard convolution

for channel expansion in the original Inverted Residual

Structure, enabling the capture of tobacco leaf image

features at different scales. Additionally, we leveraged

Ghost convolution to reduce the image dimensionality,

significantly decreasing the model complexity and

parameter count.

2. Designed Multi-scale Adaptive Attention Module: This

module employs diverse feature aggregation methods to

extract versatile feature representations, and by computing
tiers in Plant Science 03
the weighted combination of feature maps, it achieves

adaptive focus on the important features within the

tobacco leaf images, enhancing the model’s robustness.

3. Developed the TCSRNet Model: With a computational

complexity of only 158.136M FLOPs and a parameter

count of only 1.749M, the TCSRNet model achieves a

recognition accuracy of 90.3% for the tobacco leaf drying

stages, demonstrating superior performance compared to

other deep learning network models.
2 Experimental materials

2.1 Image acquisition

The experiments were conducted in 2023 in Anfu County, Jiangxi

Province, Luonan County, Shaanxi Province, and Xichang City,

Liangshan Prefecture, Sichuan Province. The tested variety was the

locally grown Yunyan 87. The fresh tobacco leaves were produced

using the local standardized tobacco production and management

practices, ensuring uniform leaf quality. The experiments used

biomass curing barns. The local promotion technology was used

for curing. An intelligent curing image acquisition device designed by

the Tobacco Research Institute of the Chinese Academy of

Agricultural Sciences was used to collect tobacco leaf images, as

shown in Figure 2. The device uses an LT-P4A50-C industrial high-

temperature camera and a 25 W standard photography light source.

A 200-mesh windscreen is installed above the device. The industrial

camera is fixed on a stainless-steel frame, level with the tobacco sticks

and tilted 45 degrees downward, with the light source facing the
FIGURE 2

Tobacco leaf image acquisition device.
FIGURE 1

Tobacco leaf image dataset after curing. (A) Gray Tobacco (B) Mottled Tobacco (C) Undercooked Tobacco (D) Overcooked Tobacco
(E) Standard Tobacco.
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tobacco leaves and evenly spaced 15 cm apart. An image is captured

every 5 minutes and uploaded to the server.
2.2 Image enhancement

This study aims to simulate the image acquisition process in

different curing barns under real-world conditions. To address issues

related to camera positioning and angle offsets during installation in

various curing barns, geometric transformations were applied to the

images. Additionally, to mitigate the effects of water vapor, dust, and

fine particulate matter generated by the high-temperature and high-

humidity environment during the curing process, filtering techniques

were employed. Color transformations were also conducted to

address the variations in luster and color disturbances presented by

the light sources and different qualities of tobacco leaves.

Furthermore, to prevent the imbalance of category samples for

typical tobacco curing stages and to ensure that small sample sizes

can be effectively trained, additional data augmentation methods,

such as scaling, were utilized to increase the dataset’s sample size and

avoid overfitting. As illustrated in Figure 3, a variety of enhancement

techniques were applied to the tobacco leaf images, including varying

degrees of geometric transformations (such as affine transformations,

rotations, and flips), filtering processes (including noise and blur

reduction), and color transformations (such as adjustments to

brightness, saturation, and contrast). The objective was to simulate

the numerous challenges faced when acquiring tobacco leaf images in

real environments and to apply multiple enhancement methods in an

overlapping manner, rather than relying on a single approach. This

multifaceted enhancement strategy enables the model to learn more

complex features during the curing stages in diverse environments,

thereby improving the robustness and generalization performance of

the model’s classification capabilities.
2.3 Dataset construction

Throughout the curing process, the tobacco leaves undergo

changes, transitioning from the yellowing stage, to the color-fixing

stage, and finally to the drying stage. Based on the reference to the

three-stage curing process (Yang et al., 1995), the five-stage and

five-corresponding curing process (Gao et al., 2002), and the eight-
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point curing process (Xu et al., 2012), and in consultation with

professional curing experts, the industry standard (as shown in

Table 1) was adopted, with a focus on the appearance and color of

the leaves, as well as the critical temperature points. The entire

dataset of images collected during the curing process was then

divided into 10 typical tobacco leaf curing stages.

From the three locations of Anfu, Jiangxi, Luonan, Shaanxi, and

Xichang, Sichuan, 3 curing cycles from each location, totaling 9

curing cycles, were selected as the training dataset. One curing cycle

from each location, totaling 3 curing cycles, was used as the

validation dataset, and another 3 curing cycles, one from each

location, were used as the test dataset. Data augmentation was only

applied to the training dataset, resulting in 48,164 augmented

training images, 6,039 validation images, and 5,986 test images.

To facilitate subsequent processing, the image size was reduced to

224×224 pixels using Python 3.11.0.
3 Model design

3.1 Model architecture

Due to the constraints of computational resources within the

curing barns, the deployment of complex models is not feasible.

Therefore, this study adopts the lightweight MobileNetV3 model as

the backbone network structure. Howard et al. (2019) proposed that

MobileNetV3 is based on the foundations of MobileNetV1

(Howard et al., 2017) and MobileNetV2 (Sandler et al., 2018),

inheriting the depth-separable convolutions from V1 and the linear

bottleneck residual structure from V2. The model has been further

updated, with improvements made to the building blocks, the use of

NAS-searched parameters, and a redesign of the time-consuming

layers. This has resulted in not only an increase in image

classification accuracy but also an improvement in inference

speed. As shown in Figure 4, the research has made

improvements to the original MobileNetV3 architecture,

including the Inverted Residual Structure and the attention

module, to design a lightweight tobacco leaf curing stage

recognition model, TCSRNet. Firstly, an Inception-like structure

is used to replace the initial 1×1 expansion convolution layer in the

Inverted Residual Block, allowing for the extraction of multi-scale

tobacco leaf features through different branch convolution and

pooling operations. Secondly, Ghost convolutions are employed

to fuse the multi-scale features and perform dimensionality

reduction in the final bottleneck layer, reducing the model

complexity and improving its generalization capability. Lastly, a

novel attention module, MAAM, is designed to effectively enhance

the model’s perception and representation capabilities of the input

data, thereby improving the overall performance of the model.
3.2 Improved inverted residual structure

3.2.1 Inception structure
The research has made improvements to the original Inverted

Residual Structure by incorporating an Inception structure to
FIGURE 3

Tobacco leaf image enhancement.
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extract multi-scale features, which enhances the model’s

adaptability to various types of input data. The parallel extraction

of multi-scale feature information improves the model’s recognition

capabilities. The Inception module, proposed by Google’s Szegedy

et al. (2016), is based on the core idea of combining different

convolution layers in a parallel manner. The result matrices from

the various convolution layers are concatenated along the depth

dimension, forming a deeper matrix that aggregates visual

information at different scales, facilitating the extraction of

features at multiple scales. Compared to the standard 1x1

convolution-based expansion operation in the original Inverted

Residual Module, the use of the Inception structure offers several

advantages. As shown in Figure 5, firstly, the Inception structure,

with its parallel operations of 1x1 convolution, 3x3 convolution, 3x3

dilated convolution (dilation rate = 2), and max-pooling, better

adapts to different types of input data and extracts multi-scale image

feature information in parallel, enhancing the model’s expressive

capability for the input data. Secondly, the use of 1x1 Ghost
Frontiers in Plant Science 05
convolution to fuse and expand the multi-scale features allows for

the comprehensive utilization of the different feature information

extracted by the various branches, effectively reducing the model

complexity and mitigating the overfitting issue. Lastly, each parallel

branch includes normalization and activation functions, further

improving the non-linear expression capability of the Inverted

Residual Structure and enhancing the model’s generalization ability.

3.2.2 Ghost module
Due to the limited computational resources in the tobacco

curing barns, the incorporation of the Inception structure to

extract multi-scale information would increase computational

complexity and parameter count. The introduction of Ghost

convolution can mitigate these issues by reducing both

computational complexity and parameter count, thereby

enhancing the model’s inference speed and facilitating its

practical deployment. The Ghost module, proposed by Han et al.

(2020), was designed to address the redundancy of feature maps in
TABLE 1 Classification standards for tobacco leaf drying stages.

Curing
Stage

Dry
Bulb

Temperature

Wet
Bulb

Temperature
Degree of Yellowing Degree of Drying

Tobacco
Leaf Image

1 36 35
Leaf margins turn yellow; leaves

yellow approximately 30%
Leaves are soft

2 38 36 Leaves yellow approximately 70% Main veins soften; slight tip curling

3 40 37 Leaves are nearly completely yellow
Tips curled and edges rolled; slight tip

curling at the base

4 42 37

Leaf color is yellow with white; main
veins entirely white and shiny; over
two-thirds of lateral veins turned
white; tips are dry and scorched

Leaves are approximately 30% dry

5 44 37 Yellow veins with green stripes Leaves are approximately 50% dry

6 46 38 Yellow veins with yellow stripes Leaves are approximately 70% dry

7 50 38 Main veins turn white Leaves are approximately 90% dry

8 54 38 /
Leaves are mostly dry; main veins

slightly white

9 60 40 / Main veins are approximately 50% dry

10 68 42 / Main veins are completely dry
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deep neural networks. As shown in Figure 6, this module generates

additional feature maps through a series of linear operations,

creating a cost-effective means of producing rich information

while ensuring model accuracy and reducing the number of

parameters. Assuming the generation of n channel feature maps,

a scaling factor of s, a convolution kernel size of k, and an input data

channel count of c, the parameter compression ratio when using the

Ghost module can be calculated as shown in Equation 1, allowing

the network’s parameters to be compressed to 1
s of the original

count. In the TCSRNet network, Ghost convolution is primarily

applied within the multi-branch Inception structure and the final

dimensionality reduction layer of the Inverted Residual Block. By
Frontiers in Plant Science 06
introducing randomly generated low-dimensional “ghost” filters in

the convolution layers, the model’s parameter count can be

effectively reduced while maintaining performance, thereby

minimizing the risk of overfitting and ensuring the operational

efficiency of the lightweight model.

rc =
n·c·k·k

n
s ·k·k+(s−1)·

n
s ·k·k

(1)
3.2.3 Multi-aggregation attention module
Although CNNs are remarkably powerful in image

representation, they exhibit deficiencies in expressing spatial

information. Therefore, in the original version of MobileNetV3, the

SE attention module was introduced and placed in the middle of the

bottleneck layer. Hu et al. (2020) used two fully connected layers and

an activation function to provide updated weight values. However,

the SE attention module only considers the interdependencies

between channels, neglecting positional information. Given that the

color, shape, and texture of tobacco leaves undergo non-linear

changes during the curing process, we propose the MAAM. As
FIGURE 4

The structure of tobacco leaf curing stage recognition net.
FIGURE 5

The structure of inception.
FIGURE 6

The structure of GhostNet module.
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shown in Figure 7, we first apply different pooling operations, such as

average pooling, max pooling, and standard deviation pooling, to the

input feature maps along the channel and spatial dimensions. This

allows us to capture the multi-scale semantic information of the input

features from different statistical perspectives, providing a more

comprehensive representation of the tobacco leaf’s state. Next, we

elementwise add the different-scale semantic information and use 1x1

convolution and a sigmoid function to adjust the importance of

channel and spatial information, effectively highlighting the crucial

channels or spatial locations. Finally, we employ a gating unit to

control the feature fusion, dynamically adjusting the weights of the

channel and spatial information in the final output. This enhances the

model’s perception and robustness in tobacco leaf curing state

assessment, and also strengthens its real-time response capability in

complex environments, providing strong support for the practical

application of intelligent curing monitoring systems. Compared to

other attention mechanism modules, the MAAM has several

key advantages:

Multi-scale Feature Extraction: By applying various pooling

operations, such as average, max, and standard deviation pooling, to

the channel and spatial dimensions of the input feature maps, we

comprehensively describe the semantic information of the input

features from different statistical perspectives. This consideration of

both channel and spatial dimensions allows the model to gain a

deeper understanding of the complex changes in tobacco leaves

during the curing process.

Highlighting Feature Importance: After extracting multi-scale

feature information, we use elementwise addition to fuse

these features. This method effectively preserves the relative

relationships between different scales, allowing the features at

each scale to complement each other and form a richer semantic

representation. Additionally, the flexibility of 1x1 convolution and

the sigmoid function enables the model to adapt to different feature

distributions, thus more effectively highlighting the important

visual information.
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Effective Feature Fusion: The introduction of a gating unit

allows the model to dynamically evaluate the importance of channel

and spatial features in the input information, and automatically

adjust their weights based on the specific input data. This dynamic

weight adjustment mechanism ensures that the model can always

focus on the most influential features for the task, thereby

improving overall performance. Compared to traditional simple

weighted summation or concatenation operations, the gating

mechanism is more flexible in handling the mutual relationships

and interference between features, enhancing the model’s

robustness in complex environments.
4 Results and analysis

4.1 Experimental setup

The experiments were conducted on a Windows 11 operating

system, using Python 3.9.5 and the PyTorch 2.0.0 deep learning

framework. The CUDA version used was 11.8, and the hardware

configuration included a 16 vCPU Intel(R) Xeon(R) Platinum

8352V CPU @ 2.10GHz, 24 GB of memory, and an NVIDIA

GeForce RTX 4090 GPU.
4.2 Classification metrics

TP represents the number of correctly classified positive

samples, TN represents the number of correctly classified negative

samples, FN represents the number of false negative samples, and

FP represents the number of false positive samples. To accurately

and comprehensively describe the data processing performance, the

following metrics were used for evaluation: Accuracy, Precision,

Recall, F1-Score, and Specificity.
FIGURE 7

Multi-Aggregation attention module.
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Accuracy =
TP + TN

TP + TN + FP + FN
(2)

Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)

F1 − Score =
2 · (Precision · Recall)
(Precision + Recall)

(5)

Specif icity =
TN

TN + FP
(6)

Image classification efficiency is evaluated using two metrics:

Floating Point Operations (FLOPs) and the number of

parameters. FLOPs can be used to measure the model

complexity, while the number of parameters represents the

weights and biases that need to be learned in the model. Fewer

FLOPs and parameters mean that the model requires less storage

space, less memory during inference, and fewer computational

resources during training. This is an important consideration for

practical deployment, as it allows the model to be efficiently

implemented on resource-constrained devices, such as those

used in the tobacco curing process. By optimizing the model’s

FLOPs and parameter count, the overall efficiency and feasibility

of the system can be significantly improved, making it more

suitable for real-world applications.
4.3 Model training

Figure 8 shows the trends of the training loss and validation

accuracy of the TCSRNet during the training process. As observed

from the figure, the training loss function value decreases rapidly as

the number of training epochs increases, and then gradually

stabilizes. This indicates that the model quickly learned effective

feature representations in the early stages of training, leading to a

rapid improvement in its predictive capabilities. In the later stages
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of training, the loss function value further decreases slowly,

stabilizing around 0.2 after 100 epochs. We selected the model

weights corresponding to the highest validation accuracy during

training as our output, and applied this model to the test set for

evaluation. This approach ensures that the final model achieves the

best performance on the validation data, which is representative of

the true data distribution, and can therefore be expected to

generalize well to the test set.
4.4 Ablation experiment

To validate the feasibility and effectiveness of the designed

TCSRNet model, we conducted an ablation study using

MobileNetV3-Small as the baseline model. The ablation study

involved evaluating the impact of the Inception structure, Ghost

module, and MAAM on the model’s performance. The results are

presented in Table 2.

The original MobileNetV3-Small network, which uses standard

convolution and SE attention mechanism, achieved an accuracy of

87.8%. The Ghost convolution, which generates “primary” features

using fewer standard convolution kernels and then uses linear

transformation to generate “ghost” features, reduces the overall

computational complexity and the number of parameters. When

the standard convolution in the baseline model was replaced with

Ghost convolution, the accuracy was 87.4%. Although this resulted

in a slight sacrifice in accuracy, it significantly reduced the model’s

computational cost. The SE module primarily focuses on global

features, and may not be effective in capturing the importance of

small objects in the image, thus failing to improve the recognition

performance of small objects. In contrast, the MAAM combines

average pooling, max pooling, and standard deviation pooling,

allowing the model to comprehensively capture the diverse

statistical characteristics of the input features and extract richer

feature representations. Replacing the SE module with MAAM

resulted in an accuracy of 88.3%. To simultaneously capture both

local and global features, improve computational efficiency, and

enhance the overall recognition performance, the Inception

structure was introduced in the tobacco leaf curing stage
FIGURE 8

Schematic diagram of TCSRNet training process. (A) Variation of training set loss value (B) Variation of validation set accuracy.
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recognition model. The Inception structure can effectively extract

multi-scale features, enhancing the model’s expressive capabilities,

and achieved an accuracy of 90.3%. In summary, the Inception

structure helps the model better capture local features (textures,

spots) and global features (shapes, structures), the Ghost module

significantly reduces the model’s inference overhead while

minimizing the sacrifice in accuracy, and the MAAM attention,

composed of efficient pooling operations and simple weighted

summation, contributes to the improvement of the model’s

expressive capabilities through diverse feature representations.
4.5 Comparison of different
attention mechanisms

To intuitively demonstrate the impact of different attention

mechanisms, we computed and compared the effects of various

attention mechanisms (ECA, MSCA, CBAM, CCA, SimAM,
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MAAM) on model accuracy and other performance metrics

within the improved residual structure framework.

As shown in Figure 9, we can clearly observe the numerous

advantages of the MAAM model during the training process

compared to other attention mechanism models. First, the

accuracy curve of MAAM quickly reaches a high level at an early

Epoch stage. This phenomenon indicates that MAAM can learn

effective feature representations more rapidly, enabling the model to

quickly focus on critical information within the input data and

accelerating the model’s convergence process. Secondly, the MAAM

accuracy curve demonstrates high stability with minimal

fluctuations, a characteristic that highlights the model’s stability

during training. This means that the MAAM attention mechanism

enhances the model’s robustness, significantly reducing the risk of

dramatic performance variations. Finally, MAAM maintains an

accuracy rate higher than other models throughout the entire

training process, with particularly outstanding performance in the

later Epochs. This result further validates MAAM’s highly efficient
FIGURE 9

Schematic diagram of accuracy variation for different attention mechanisms.
TABLE 2 Ablation experiments.

Normal Convolution Inception Ghost SE MAAM Accuracy

√ √ 87.8

√ √ 87.4

√ √ 88.3

√ √ √ 89.6

√ √ √ 90.3
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capability in capturing and utilizing key features from input data,

thereby improving the overall model performance.

As shown in Table 3, MAAM also demonstrates significant

advantages in the comparison of performance metrics. First, MAAM

ranks among the top models with an accuracy of 0.9033, while the

accuracy of other attention mechanisms ranges from 0.8505 to 0.8934,

highlighting MAAM’s superiority in feature capturing and

information integration. The multiple attention mechanisms

employed by MAAM provide a distinct advantage in effectively

integrating and utilizing input information, significantly enhancing

the overall performance of the model.Secondly, in terms of

computational efficiency, MAAM achieves a frames per second

(FPS) rate of 0.3004, slightly lower than CBAM’s 0.3122. MAAM’s

latency is 88.0553 milliseconds, only better than CCA’s 135.0216

milliseconds. While other attention mechanisms have certain

advantages in latency, their accuracy is significantly lower than that

of MAAM. This indicates that MAAM successfully achieves high

accuracy while maintaining reasonable inference speed, demonstrating

its strong competitiveness in real-time applications.Furthermore,

regarding resource usage, although the model sizes of ECA and

SimAM are 3.9638 MB and 3.9636 MB, respectively, with a memory

usage of 24.2890 KB, which allows them to excel in terms of resource

consumption, they consequently sacrifice accuracy and FPS. In

contrast, MAAM has a model size of 6.6730 MB and memory usage

of 28.8388 KB, showcasing superior resource efficiency.

In summary, the design philosophy of MAAM embodies a

novel multi-attention mechanism that effectively captures key
Frontiers in Plant Science 10
features of input data, allowing the model to demonstrate

efficiency and stability during training and inference. Compared

to other models, MAAM not only leads significantly in accuracy but

also maintains a good balance in computational efficiency and

resource usage. This multidimensional optimization enhances

MAAM’s application potential in complex tasks, particularly in

real-time and resource-constrained scenarios, where MAAM

exhibits greater adaptability and practicality.
4.6 Comparison of different models

To further validate the effectiveness of the proposed TCSRNet

model, we introduced and compared different models on the same

dataset. These include heavyweight network models such as

ResNet50, as well as lightweight network models like GhostNet,

ShuffleNetV2×1.5, EfficientNet-b0, MobileViT-xs, MobileNetV2,

MobileNetV3 large, and MobileNetV3 small, which are advanced

classification models. The comparison models were all tested on

their original model and parameter settings frameworks, and the

experimental results were obtained on the test set.

As shown in Table 4, compared to the heavyweight network

model ResNet50 and the lightweight network models GhostNet,

ShuffleNetV2×1.5, EfficientNet-b0, MobileViT-xs, MobileNetV2,

MobileNetV3 large, and MobileNetV3 small, the TCSRNet model

has achieved significant performance improvements. In the task of

recognizing the tobacco leaf drying stage, the TCSRNet model
TABLE 4 Comparative analysis of classification metrics for different models.

Model Accuracy Precision Recall F1-Score Specificity FLOPs/M Parameter/M

ResNet50 0.9112 0.897 0.896 0.895 0.990 4132 23.529

GhostNet 0.8745 0.861 0.861 0.855 0.986 196.618 4.215

ShuffleNetV2×1.5 0.8938 0.891 0.892 0.888 0.988 305.816 2.489

EfficientNet-b0 0.8967 0.887 0.895 0.888 0.989 411.562 4.020

MobileViT-xs 0.8561 0.847 0.845 0.842 0.984 743.485 1.937

MobileNetV2 0.8879 0.886 0.867 0.870 0.987 326.284 2.237

MobileNetV3large 0.9038 0.898 0.906 0.899 0.989 232.970 4.215

MobileNetV3small 0.8783 0.864 0.860 0.859 0.987 61.177 1.528

TCSRNet 0.9035 0.897 0.899 0.896 0.989 158.136 1.749
TABLE 3 Performance metrics of different attention mechanisms.

Model Accuracy FPS Latency (ms) Model Size (MB) Memory Usage (KB)

CBAM 0.8676 0.3122 55.4707 5.6956 30.3740

CCA 0.8505 0.2957 135.0216 8.2962 33.0517

ECA 0.8934 0.2834 78.1321 3.9638 24.2890

MSCA 0.8886 0.2893 84.7065 8.3931 26.1875

SimAM 0.8766 0.2960 81.5219 3.9636 24.2890

MAAM 0.9033 0.3004 88.0553 6.6730 28.8388
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proposed in this study achieved an accuracy of 90.3%. Compared to

the other lightweight networks GhostNet, ShuffleNetV2×1.5,

EfficientNet-b0, MobileViT-xs, MobileNetV2, and MobileNetV3

small, the increase was 2.90%, 0.97%, 0.68%, 4.74%, 1.56%, and

3.28% respectively. In terms of Precision, the TCSRNet model

improved by 0.60% to 5.00% compared to the other models on

the dataset. In terms of Recall, the TCSRNet model improved by
Frontiers in Plant Science 11
0.40% to 6.42% compared to the other models on the dataset. In

terms of F1-Score, the TCSRNet model’s F1 score was 0.10% to

5.20% higher than the other models. In terms of computational

complexity, it is only 3% of ResNet50, and in terms of the number of

parameters, it is only 7% of ResNet50, which is lower than the other

models to varying degrees.
4.7 Confusion matrix

To more intuitively and comprehensively demonstrate the

classification accuracy of different models in the tobacco leaf

curing stage, we have created a confusion matrix. This allows us

to clearly understand the correct and incorrect classifications of

the model for each category, thereby evaluating the overall

performance of the model and helping to fully grasp the model’s

classification capabilities.

As shown in Figure 10, the errors of each model are

predominantly concentrated in stages 7 to 10, which correspond

to the latter phase of the color-setting process and the curing stage

of the tobacco leaf. This phenomenon may be attributed to the
FIGURE 10

Schematic diagram of confusion matrices for different models.
TABLE 5 Accuracy of TCSRNet and other advanced models on the V2
plant seedling dataset.

Proposed Model Test Set
Accuracy (%)

(Mu et al., 2022) Faster R-CNN-FPN 95.61

(Rahman et al., 2020) ResNet50 96.21

(Makanapura et al., 2022) EfficientNetB0 96.52

(Zhang et al., 2023b) Improved
MobileNetV1

96.63

Ours TCSRNet 97.06
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relatively minor changes in characteristics during these stages,

where the color tends to become uniform, exhibiting a similar

orange-yellow hue. Such visual similarity significantly complicates

the task of distinguishing between the tobacco curing stages 7 to 10

based solely on visual assessment. Furthermore, during this period,

the moisture content of the tobacco leaves is generally quite low,

with the entire leaf, except for the main vein, approaching a state of

dryness. This similarity in moisture conditions further exacerbates

the complexity of feature differentiation, presenting additional

challenges for the model in its recognition tasks.
4.8 Public dataset

To validate the performance of our enhanced model, we applied

it to the widely utilized V2 plant seedling dataset. The dataset was

divided into training, validation, and test sets in a ratio of 6:1:3. It

encompasses 3 types of plants (common wheat, maize, and sugar

beet) and 9 varieties of weeds (black-grass, common chickweed,

cleavers, scentless mayweed, small-flowered cranesbill, shepherd’s

purse, loose silky-bent, charlock, and fat hen). Through

comparative analysis, as presented in Table 5, our enhanced model

achieved an impressive accuracy of 97.06% in the plant seedling

recognition task, surpassing the performance of other models. This

outcome substantiates the model’s effectiveness and superiority.
5 Results and analysis

Currently, the identification of tobacco leaf drying stages in

dense curing barns primarily relies on manual assessment based on

visual observations of changes in leaf color, texture, and other

characteristics, which introduces a significant degree of subjectivity.

Moreover, most existing models prioritize accuracy at the expense

of computational efficiency, making practical deployment in

resource-constrained curing environments challenging. In

response to these issues, this paper proposes a lightweight model

for tobacco leaf drying stage recognition, designed to leverage

limited computational resources to enhance the model’s ability to

extract multi-scale features from images of drying stages while

simultaneously reducing model complexity and parameter count to

improve generalization capability. This research addresses two

primary concerns: (1) reducing model complexity and parameter

count while ensuring recognition accuracy, and (2) conducting a

comparative analysis with existing lightweight classification

networks to demonstrate the feasibility of the proposed model.

To tackle the first issue, the model incorporates innovative

techniques such as the Inception structure, Ghost convolution, and

MAAM. The Inception structure effectively extracts multi-scale

features, enhancing the model’s sensitivity to visual information of

varying granularity and improving its ability to capture visual

characteristics such as texture and color of tobacco leaves. Ghost

convolution significantly reduces the model’s computational

complexity and parameter count through parameter sharing while

maintaining robust feature extraction capabilities, thereby facilitating
Frontiers in Plant Science 12
deployment in environments with limited computational resources.

MAAM adaptively enhances the model’s perception of critical visual

information, improving feature discrimination and bolstering

generalization performance in complex curing conditions.

For the second issue, a comparative analysis is conducted

between TCSRNet and classical classification networks.

Experiments on the tobacco leaf image dataset will evaluate the

model based on metrics such as accuracy, precision, recall, F1 score,

FLOPs, and parameter count. A comprehensive analysis will

demonstrate the feasibility of the proposed model relative to

existing classification networks.

Despite the progress made in this study, there are still two main

challenges to address. First, the heterogeneity of the tobacco

datasets and regional differences may lead to significant variations

in model performance across different datasets. For instance, the

same model may achieve higher classification accuracy during the

tobacco curing stage when applied to data from the same region;

however, its accuracy could decrease noticeably when applied to

data from different regions. The performance discrepancies across

datasets should not be directly used as a measure of algorithm

effectiveness, but rather reflect the method’s suitability for specific

application contexts. Therefore, it is essential to conduct thorough

testing and validation across different datasets in practical

applications to ensure the selected algorithm’s applicability and

robustness in various environments. Secondly, this study primarily

evaluates the algorithm’s computational complexity by comparing

FLOPs and the number of model parameters, but it has not

conducted systematic testing in actual embedded systems or

industrial environments. Although a comprehensive analysis of

FLOPs and parameter count has been performed in this study,

and the model demonstrates good computational performance, its

real-world performance still requires further validation, particularly

in practical scenarios where hardware resources are limited or

environmental interference is present. Future research will focus

on experimental validation on embedded platforms, particularly

assessing the algorithm’s adaptability and performance in

application environments with constrained computational

resources or stringent real-time requirements, such as in tobacco

curing rooms.

6 Conclusion

In this study, we developed a lightweight model, TCSRNet, for

the recognition of tobacco leaf drying stages in dense curing barns.

By integrating the Inception structure, Ghost convolution, and

MAAM, the model effectively balances recognition accuracy,

computational efficiency, and generalization performance.

Comparative experiments on the tobacco leaf drying stage dataset

showed that TCSRNet achieved an accuracy of 90.3%, with a

computational complexity of 158.136M FLOPs and a parameter

count of 1.749M, outperforming other lightweight classification

networks. This provides a reliable technical solution for real-time

automated monitoring and quality assessment in complex

curing environments.
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