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Changchun, China, 3College of Information Technology, Jilin Agricultural
University, Changchun, China
Mung bean seeds are very important in agricultural production and food

processing, but due to their variety and similar appearance, traditional

classification methods are challenging, to address this problem this study

proposes a deep learning-based approach. In this study, based on the deep

learning model MobileNetV2, a DMS block is proposed for mung bean seeds, and

by introducing the ECA block and Mish activation function, a high-precision

network model, i.e., HPMobileNet, is proposed, which is explored to be applied in

the field of image recognition for the fast and accurate classification of different

varieties of mung bean seeds. In this study, eight different varieties of mung bean

seeds were collected and a total of 34,890 images were obtained by threshold

segmentation and image enhancement techniques. HPMobileNet was used as

the main network model, and by training and fine-tuning on a large-scale mung

bean seed image dataset, efficient feature extraction classification and

recognition capabilities were achieved. The experimental results show that

HPMobileNet exhibits excellent performance in the mung bean seed grain

classification task, with the accuracy improving from 87.40% to 94.01% on the

test set, and compared with other classical network models, the results show that

HPMobileNet achieves the best results. In addition, this study analyzes the impact

of the learning rate dynamic adjustment strategy on the model and explores the

potential for further optimization and application in the future. Therefore, this

study provides a useful reference and empirical basis for the development of

mung bean seed classification and smart agriculture technology.
KEYWORDS

mung bean seeds, deep learning, MobileNet model, image classification,
artificial intelligence
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fpls.2024.1474906/full
https://www.frontiersin.org/articles/10.3389/fpls.2024.1474906/full
https://www.frontiersin.org/articles/10.3389/fpls.2024.1474906/full
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2024.1474906&domain=pdf&date_stamp=2025-02-13
mailto:yuhelong@aliyun.com
mailto:xuemx@jlau.edu.cn
https://doi.org/10.3389/fpls.2024.1474906
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2024.1474906
https://www.frontiersin.org/journals/plant-science


Song et al. 10.3389/fpls.2024.1474906
1 Introduction

As a multi-nutrient-rich ingredient (Dahiya et al., 2015), mung

bean has gained prominence in both traditional Chinese medicine

theory and modern nutritional science (Ganesan et al., 2018).

Analyzed from a nutritional perspective, mung beans are rich in

unsaturated fatty acids and dietary fiber, which play a key role in

regulating blood lipids, especially by lowering serum cholesterol

and triglyceride levels, with potential benefits in preventing the

occurrence and development of cardiovascular diseases (Ganesan

et al., 2018). In dietary applications, the diverse cooking methods of

mung bean, such as mung bean porridge, mung bean soup, and

mung bean cake, not only enrich people’s dietary choices but also

enhance the overall nutritional value through the complementary

effects between ingredients, providing abundant options for a

healthy diet (Liyanage et al., 2018).

The classification system of mung bean is essential for the

accurate identification of its diversity, not only to facilitate

consumers’ choice of appropriate mung bean varieties for

consumption according to their personal preferences and health

needs (Tarahi et al., 2024) but also to promote in-depth research in

nutritional and food sciences. Specifically, the differences in

nutrient composition and bioactive substances among mung bean

varieties, such as protein composition, fiber content, vitamin types,

and antioxidant capacity, have been clarified through the systematic

classification, which provides a scientific basis for assessing the

nutritional value and functional properties of mung bean varieties

and provides strong support for the development of healthy dietary

strategies for the public. In addition, classification is also important

for agricultural practices. It helps farmers and growers understand

the adaptive characteristics of mung bean varieties (Bellemare and

Lim, 2018), including the optimal planting area, growth cycle, and

cultivation management techniques so that they can precisely select

seeds and optimize the planting structure according to the regional

climate, soil conditions, and market demand, and realize the double

enhancement of yield and economic benefits. At the same time,

taking into account the differences in the sensory characteristics of

mung bean varieties (such as taste, size, and shape), the

classification also promotes the refinement of the food processing

industry, so that enterprises can choose the best mung bean raw

materials based on the product characteristics, to develop a more

diversified, unique flavor mung bean products to meet the

diversified market demand. At the market level, the classification

of mung beans promotes the unification of market standards and

the improvement of trading rules enhances market transparency

and fairness, and provides consumers with clearer and more

comparable purchasing options. For scientific research, the

classification work has revealed the genetic diversity of mung

bean (Zhao et al., 2020) and the intrinsic links between its

varieties, laying a solid foundation for genetic breeding research,

which indicates that new varieties of mung bean with higher quality,

higher yield, and stronger resistance may be cultivated in the future,

thus promoting the sustainable development of the mung bean

industry (Acquah et al., 2021).

Traditional methods for seed purity identification include

morphological examination (Kanwal et al., 2022), chemical
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identification (Yu et al., 2022), electrophoretic techniques (Nikolić

et al., 2012), and spectroscopic techniques (Mehdizadeh et al.,

2024). However, these methods are generally time-consuming,

require specialized personnel and equipment, are often subject to

the subjective experience of the tester, and are relatively costly. In

addition, the identification process may damage the samples.

Therefore, there is a need to develop a fast, accurate, non-

destructive and inexpensive method for classifying and identifying

mung bean seeds.

Classification of mung beans using computer vision technology

and deep learning technology is of far-reaching significance in many

aspects (Ma et al., 2023). Different mung bean varieties differ more

or less in color, size, and shape, but there are also many similarities,

which makes it challenging to classify mung bean seeds. Through

computer vision technology, we can quickly and accurately identify

the variety, color, area, size, and other characteristics of mung beans

for automated classification and screening (Li et al., 2018). This

cannot only reduce the error and labor intensity of manual

classification but also improve the accuracy and efficiency of

classification (Naik et al., 2024), further promoting the

development of agricultural modernization and intelligence.

Through computer vision technology, we can perform non-

contact inspection of mung beans, avoiding the pollution and

damage problems that may exist in traditional inspection

methods (Feng et al., 2020). In addition, computer vision to

classify mung bean seeds also helps to promote the development

of related industries. For example, in the food processing industry,

the classification and screening of mung beans by computer vision

technology can provide better quality raw materials for the

subsequent processing and improve the quality and taste of

the products.

Chuanqi Xie (Xie and He, 2018) utilized visible and near-

infrared hyperspectral imaging for the classification of mung bean

varieties, and the original hyperspectral images of mung beans were

collected at wavelengths of 380-1023 nm. An extreme learning

machine (ELM) model was established to classify the mung bean

species using the full-spectrum wavelength. The Modified-Gram-

Schmidt (MGS) method was used to identify the effective

wavelengths. Based on the selected wavelengths, ELM and linear

discriminant analysis (LDA) models were developed. All models

performed well, with correct classification rates (CCRs) ranging

from 99.17%-99.58% in the training set and 99.17%-100% in the test

set. Mulan Wu (Wu et al., 2023) compared two techniques (i.e.,

near-infrared (NIR) and Raman spectroscopy) for source

identification and quantification of nutrients in mung beans. The

predictive ability of orthogonal partial least squares discriminant

analysis models for NIR and Raman spectroscopy were 94.3% and

92.9%, respectively, indicating that both NIR and Raman

spectroscopy are capable of differentiating mung beans from

different sources. Lei He (He et al., 2023) developed and

optimized Random Forest (RF) and Support Vector Machine

(SVM) models for distinguishing mung beans from different

climate zones and growing zones. The SVM model outperformed

the RF model in predicting both climate zones and growing zones of

mung beans, with accuracies of 100% and 98.72%, respectively. Jian

Li (Li et al., 2024) built a corn seed dataset containing a total of
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5,877 images from six categories and proposed a corn seed

recognition model based on the improved ResNet50 framework.

The ResStage structure, Efficient Channel Attention (ECA)

mechanism, Depth Separable (DS) convolution, and Swish-

PReLU hybrid activation function were introduced to improve

the model, respectively. The results show that the model achieves

91.23% accuracy in corn seed classification, which exceeds other

related models. Compared with the original model, the model

improved the accuracy by 7.07%, reduced the loss value by 0.19,

and reduced the number of parameters by 40%. Yufei Ge (Ge et al.,

2024) proposed a publicly accessible dataset for categorizing rice

seeds for hyperspectral imaging systems. The dataset contains six

categories with nearly 10,000 seeds in each category. Based on the

proposed dataset, an Instance difficulty-weighted K Nearest

Neighbors algorithm (IDKNN) is further proposed, and the

effects of different regions of interest (ROIs) on the classification

results are also explored, and compared with 10 representative

algorithms, the IDKNN algorithm has the best performance,

especially in the ROIs of the whole seeds. Chunguang Bi (Bi et al.,

2022) combined deep learning with machine vision and utilized the

foundations of Swin Transformer to improve corn seed recognition.

The study focuses on feature attention and multi-scale feature

fusion learning. The experimental results show that the proposed

network model, MFSwin Transformer, has the highest classification

accuracy compared to other models with an average precision,

recall, and F1 value of 96.53%, 96.46%, and 96.47%, respectively, on

the test set with a parameter memory of 12.83 M. The proposed

network model, MFSwin Transformer, has the highest classification

accuracy compared to other models. Lei Zhou (Zhou et al., 2020)

proposed a convolutional neural network-based feature selector

(CNN-FS) to screen out the depth-target related spectral channels

and designed a convolutional neural network with attention (CNN-

ATT) framework for wheat seed classification. CNN-ATT obtained

the highest performance in the comparison experiments. CNN-

ATT achieved 93.01% accuracy using the full spectrum and

maintained its high accuracy (90.20%) by training on 60 channels

of features obtained through the CNN-FS approach. Ziliang Huang

(Huang et al., 2022) designed a complete soybean seed classification

process following a segmentation-categorization procedure. Image

segmentation is performed by a popular deep learning method,

Mask R-CNN, while the classification phase is performed through a

network called Soybean Network (SNet). SNet is a lightweight

model based on convolutional networks, which contains the

Mixed Feature Recalibration (MFR) module. The MFR module is

designed to improve SNet’s ability to represent damaged features,

making the model focus more on critical regions. Experimental

results show that the SNet model proposed in this study can achieve

96.2% recognition accuracy using only 1.29M parameters. Chao Xia

(Xia et al., 2019) collected 400 to 1000 nm hyperspectral images of

1632 maize seeds (17 varieties) for classifying seed varieties.

Fourteen features, including one spectral feature and 13 imaging

features (i.e., five first-order and eight S-order texture features),

were extracted from the hyperspectral image data, and a multilinear

discriminant analysis (MLDA) algorithm was proposed to select the

optimal wavelengths and to transform and reduce the classification

features in order to improve the speed of the acquisition and
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processing of hyperspectral images. Experimental results show

that the combined features based on the MLDA wavelength

selection algorithm have high classification accuracy at the same

number of wavelengths (varying between 5-15 wavelengths). Perez

Mukasa (Mukasa et al., 2022) used an RGB camera to capture

watermelon seed ploidy images, DD-SIMCA and SVM quadratic

classifiers for single class classification, and a multivariate machine

learning approach to develop a watermelon ploidy seed

discrimination model. One-class classification with the DD-

SIMCA and the SVM-quadratic models yielded triploid

discrimination accuracies of 69.5% and 84.3%, respectively.

Andrea Loddo (Loddo et al., 2021) has proposed a model called

SeedNet for seed classification and has utilized several state-of-the-

art Convolutional Neural Networks to make the most adequate and

exhaustive comparison of the considered scenarios. In detail, two

analyzed datasets for seed classification, the first with an accuracy of

95.65% and the second with an accuracy of 97.47%, have been

obtained with better results. Also, he investigated the problem of

deep learning-based retrieval with satisfactory results. Mikel Barrio-

Conde (Barrio-Conde et al., 2023) examined the ability of deep

learning (DL) algorithms to classify sunflower seeds. Using a Nikon

camera and an image acquisition system with controlled lighting,

6,000 seeds of six sunflower varieties were positioned and

photographed. A CNN AlexNet model was used for variety

classification, specifically categorizing 2 - 6 varieties. The

classification model achieved a 100% accuracy value for two

categories and 89.5% accuracy value for six categories, this result

verifies that the deep learning algorithm has better classification

results for sunflower seeds. Helong Yu (Yu et al., 2024) improved

for ResNet50 and also improved the SE attention mechanism to

obtain HResNet, which can effectively identify the origin of rice

seeds. After a large number of comparisons and validations,

HResNet obtained an accuracy of 95.13%, which is ahead of other

comparative models and provides a reference for origin

identification of other crops.

Based on the above studies, effective identification of seed or

seed varieties is challenging due to similar appearance, genetic

diversity, and growth environment. Therefore, the combination of

neural networks and hyperspectral data has become a major tool for

the effective identification of seed varieties. Although this

identification method achieves good results, acquiring

hyperspectral data is expensive and the processing involved is

complex, making it difficult to realize large-scale applications. In

response to the large number of studies on computer vision, most

scholars are unable to simultaneously satisfy higher accuracy, lower

number of parameters, and lower computational effort. To address

these limitations, this study proposes a convolutional neural

network model for mung bean seed recognition based on an

image dataset of mung bean seeds, which is faster and more

affordable relative to spectra by improving the lightweight

network model MobileNetV2 (Sandler et al., 2018).

MobileNetV2 is chosen as the base model for the improved

model mainly based on its comprehensive advantages.

MobileNetV2 is a lightweight convolutional neural network

designed for mobile and embedded vision applications, which

incorporates innovative techniques such as depth convolution,
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inverted residual structure, and linear bottleneck layer to achieve

efficient computational performance and excellent model

performance. The main contributions and innovations of this

paper are as follows.
Fron
1. In this study, a deep convolution module i.e. DMS block

(DWConv-Mish-Sigmoid) is proposed for mung bean

seeds and is introduced in the mid-stage of bottleneck to

improve the feature extraction and network representation

capabilities of the model. This enables it to capture and

communicate image features more efficiently.

2. The ECA block was introduced in the later stages of the

bottleneck (Wang et al., 2020). The attention mechanism

strengthens the focus on the channel information and

further enhances the ability of the model to capture more

precise and detailed features, thus improving the efficiency

of model recognition.

3. This study enhances the generalization ability and accuracy

of the model in the prediction stage by introducing the

Mish activation function (Misra, 2019), which enables it to

better process the input data and make more

accurate predictions.

4. At the same time, this study proposes a learning rate

dynamic adjustment strategy for mung bean seeds, i.e.,

“95-Gradient”, so that the model can complete convergence

and fitting while obtaining higher accuracy.
2 Materials and methods

2.1 Data acquisition and pre-processing

All samples in this experiment were provided by the Jilin

Academy of Agricultural Sciences, China. A total of eight

different varieties of mung beans were collected in this study,

details of which are shown in Table 1. The imaging system as

shown in Figure 1A consisted of a NikonD7100 camera with an 18-

105mm lens, two lights controlled by a light source control system,

a carrier table placed at the bottom to hold the mung bean seeds,

and the camera was shot from vertical. During data collection, 200
tiers in Plant Science 04
mung bean seeds of the same variety were first randomly selected

and arranged in a 10 × 20 grinding apparatus. Then, without seeds

overlapping or adhering, they were inverted on a black absorbent

cloth and their RGB images were acquired by the camera.

The process of data preprocessing is shown in Figure 1B, using

the threshold segmentation method. Firstly, based on taking the

original image to obtain its grayscale image, and then selecting an

appropriate threshold value to divide the pixels in the image into

two categories (target and background), in this study, the threshold

value is set to 0.4, and all the ones below 0.4 are set to 0 (black), and

all the ones above 0.4 are set to 1 (white), which results in a binary

image. The binary image is multiplied pixel by pixel with the

original image so that only the pixels in the mask image with a

value of 1 (representing the target region) are retained in the

original image, while the pixels with a value of 0 (representing the

background region) are set to black. Finally, the edges of the mung

bean seeds are then extracted using the contour extraction

algorithm based on the pixel distribution of the image with the

background removed to extract the target region.

The effect of each variety of mung bean seeds after segmentation

is shown in Figure 1C, where (a) to (h) respectively represent Labels

in Table 1, which shows that different varieties of mung bean seeds

have high similarity, which means that it poses a greater challenge

to the classification performance of the model. In this experiment,

useless images need to be eliminated after photographing the seeds,

such as those that are blurred, damaged, or do not meet the

experimental requirements at all, which may interfere with the

training and evaluation process of the model and lead to the model

learning erroneous or irrelevant features, and these images not only

fail to provide valuable information for the model but also may

degrade the model’s performance.
2.2 Data enhancement and
dataset segmentation

Data enhancement is a very effective technique to generate more

training samples by applying a series of transformations to the

original image. Data enhancement not only increases the diversity

of the dataset but also helps the model learn more different features,

thus improving its generalization ability. Data enhancement enables
TABLE 1 Source of dataset varieties in this study.

Label Variety Name Code Name Varietal Origin Number of seeds

a BaoLu.201323-3 BLC Baoding Academy of Agricultural Sciences 1106

b No. 07 GLu GL07C Hebei Academy of Agriculture and Forestry Sciences 930

c No. 13 GLu GL13C Hebei Academy of Agriculture and Forestry Sciences 925

d No. 05 JiLu JL05C Jilin Academy of Agricultural Sciences 965

e No. 09 JiLu JL09C Jilin Academy of Agricultural Sciences 975

f No. 10 JiLu JL10C Jilin Academy of Agricultural Sciences 690

g No. 11 JiLu JL11C Jilin Academy of Agricultural Sciences 834

h No. 06 JiLu JL06C Jilin Academy of Agricultural Sciences 975
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the model to better adapt to various data variations (e.g., lighting,

noise) in the real world by simulating these variations. This helps to

improve the robustness of the model in complex environments or

under different conditions, making it more reliable in real-world

applications. For deep learning models, more training samples

mean more learning opportunities, which helps to improve the

accuracy and stability of the model. In this study, four data

enhancement methods were selected, which are increasing

brightness, adding noise, image mirroring, and image rotation.

In this study the ImageEnhance.Brightness class from the PIL

library was used to enhance the brightness of the image by setting

the brightness variable to 2. This value represents the multiple of the

enhancement, meaning that the brightness of the image was increased

to two times the original brightness. The np.random.normal function is

also used to generate Gaussian distributed random numbers withmean

1 and standard deviation 1.5, which are considered as noise and added

to the original image. At the same time, image mirroring and rotating

are also based on the functions in PIL, setting the appropriate

mirroring direction and rotation angle to generate the corresponding

image and save it to the corresponding folder. Figure 2 shows the effect

of each enhancement method, and these treatments tested the model’s

ability to recognize mung beans under exposure conditions, its ability

to deal with noise, and its ability to recognize mung beans at different

angles, respectively.

After removing the useless images, data enhancement is

performed and the enhanced dataset is randomly divided into a
Frontiers in Plant Science 05
training set, validation set, and test set in the ratio of 8:1:1, the

details of which are shown in Table 2. There is a significant

imbalance in the number of samples of the eight mung beans in

our dataset. An unbalanced dataset may lead to poor predictive

performance of the model for a smaller number of samples.

However, this study significantly expands the number of datasets

through data enhancement, which can effectively compensate for

this shortcoming.
2.3 Model building

2.3.1 Convolution in this study
As shown in Figure 3, where the number of input and output

channels are C_in and C_out respectively, K×K is the kernel size of

the convolution, and the size of the image is H×W. DWConv

(Depthwise Convolution) processes each channel of the input

feature map separately, which reduces the number of convolution

kernels compared to Conv (Standard Convolution). This

significantly reduces the number of parameters and reduces the

model complexity. DWConv performs only a single-channel

convolution operation for each channel, so the computational

effort is relatively small, compared to normal convolution which

requires all channels to be processed at the same time, and the

computational effort is much larger. Due to the reduction in the

number of parameters and computation, using DWConv can
FIGURE 1

Image preprocessing process, (A) is image capture system, (B) is image segmentation process, (C) is image segmentation effect display. [The labels in
(C) represent those in Table 1].
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improve the efficiency of the model while maintaining reasonable

performance, which is especially important in applications where

resources are limited or real-time response is required, such as

mobile devices or edge computing scenarios. Their parameters and

FLOPs (Floating Point Operations) computational details are

shown in Table 3, where G is the size of the group. The main

difference between DWConv and GConv is that when G is greater

than 1 and less than C_in, then it is a group convolution, when C_in

is equal to G, it is a deep convolution, and when G is equal to 1 it is a

standard convolution.
Frontiers in Plant Science 06
2.3.2 Mish activation function and ReLU6
activation function

A comparison of the graphs of the Mish and ReLU6 activation

functions and the graphs of their derivatives is shown in Figure 4,

where the Mish activation function is a smooth nonlinear function,

in contrast to ReLU6, which is segmented linear. The smoothness

implies that Mish is differentiable throughout the entire domain of

definition, which helps the optimization algorithm to be more stable

and efficient during the training process. In addition, the Mish

function is non-monotonic, which makes it potentially more
TABLE 2 Data enhancement and segmentation details.

Label Code Name Original Image Effective Image After Enhancement Training Set Validation Set Test Set

1 BLC 1106 1034 5170 4136 517 517

2 GL07C 930 881 4405 3524 440 441

3 GL13C 925 839 4195 3356 419 420

4 JL05C 965 860 4300 3440 430 430

5 JL09C 975 917 4585 3668 458 459

6 JL10C 690 685 3425 2740 342 343

7 JL11C 834 808 4040 3232 404 404

8 JL06C 975 954 4770 3816 477 477

/ Total 7400 6978 34890 27912 3487 3491
fr
The label in the table represents the label of each category when the model is trained.
FIGURE 2

Demonstration of the effect of the data enhancement method. [Where (A-H) represent the labels in Table 1].
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expressive than monotonic ReLU6 when dealing with complex

nonlinear data. The ReLU6 activation function has a gradient of 0

when the input is negative, which may lead to gradient vanishing

problems, especially in deep neural networks. The formula of its

activation function is shown in Table 4.

2.3.3 Loss function (Cross Entropy Loss)
The loss function used in this study is Cross Entropy Loss, Cross

Entropy Loss is robust to the probability distribution predicted by

the model. Even if the model has a small deviation in the predicted

probability of some categories, it will not affect the overall loss too

much. This makes the model more stable during training and less

susceptible to noise or outliers. The binary classification Cross

Entropy Loss is shown below:

L =  −½y log p + (1 − y) log (1 − p)� (1)

Where y denotes the sample label and p denotes the probability

that the corresponding sample label is predicted to be positive. In

the multiclassification task, each sample may have more than one

possible category, and the model output is the probability

distribution of each sample belonging to each category, Cross

Entropy Loss can measure the distance between the probability

distribution of the model output and the true labels, to guide the
Frontiers in Plant Science 07
model optimization. The multicategory Cross Entropy Loss formula

is shown below:

L =  −o
M

c=1
yc log pc (2)

where pc  denotes the probability that the label is predicted to be c.

2.3.4 DMS block and bottleneck
In this study, a depthwise convolution block i.e. DMS block

(DWConv-Mish-Sigmoid) is proposed for mung bean seeds as

shown in Figure 5A. Firstly, a down-sampling operation is

performed on the input data through the pooling layer to reduce

the spatial size of each feature map, which reduces the

computational effort of the subsequent layers and thus reduces

the complexity of the overall block. Immediately after that, two 3×3

DWConv to extract features from the input data, and at the end

residual joins are introduced. Two different types of activation

functions, Mish and Sigmoid, are used in the DMS block, to

introduce different nonlinear properties, which help the network

to learn more complex and abstract feature representations.

Figure 5B demonstrates the bottleneck in MobileNetV2 with

stride=1, and Figure 5C demonstrates the bottleneck with stride=2.

The bottleneck structure significantly enlarges the number of input

channels by introducing the 1x1Conv, followed by the

3x3DWConv, and finally by the 1x1Conv to narrow the number

of channels. This bottleneck design significantly reduces the

computational complexity of each layer while maintaining a high

feature representation and feature extraction capability. This

structure also allows the network to better capture and represent

abstract features in the image, thus improving the model’s

performance in the mung bean seed recognition task. The

introduction of the bottleneck structure allows the design of a

deeper-level network without adding too many parameters and

computational overhead. This flexibility allows MobileNetV2 to be
FIGURE 3

Schematic of Standard Convolution(Conv) and Depthwise Convolution/Group Convolution(DWConv/GConv).
TABLE 3 Conv and DWConv/GConv comparison of parameters
and FLOPs.

Type of
Convolution

Parameters FLOPs

Conv K2 � C _ in� C _ out K2 � C _ in� H �W � C _ out

GConv
K2 � C _ in

G
� C _ out K2 � C _ in

G
� H �W � C _ out

DWConv
K2 � C _ in

C _ in
� C _ out K2 � C _ in

C _ in
� H �W � C _ out
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extended and adapted to the task of mung bean seed classification

and recognition while maintaining the efficiency and performance

of the model.

2.3.5 ECA (Efficient Channel Attention) block
The attention mechanism plays a crucial role in deep learning to

efficiently and accurately filter out valuable information from

massive data, which is very beneficial for various image

processing tasks. Therefore, in this study, we introduce an

attention mechanism called ECA (Efficient Channel Attention).

The ECA block adaptively adjusts the weights of the channel

features so that the network can better focus on the essential

features. Most mung bean seeds have similar shapes and textures,

which makes it difficult to extract detailed features from the

network. The ECA block helps to improve feature differentiation

and suppresses unimportant features, thus reducing the risk of

overfitting. Ultimately, the feature representation is enhanced and

the generalization ability of the model is improved without

significantly increasing the computational cost. The structure of

the ECA block is shown in Figure 6.
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The ECA block first performs global average pooling of input

feature mappings of size H × W × C to obtain feature information

during forward propagation. Then, new weights w are generated by

one-dimensional convolution of size K and Sigmoid activation

function to complete the inter-channel information interaction, as

shown in Equation 3.

w =  s (C1Dk(y)) (3)

where C1Dk Denotes a one-dimensional convolution with

kernel size k and s denotes the Sigmoid activation function. As

shown in Equation 4, the number of channels C is proportional to

the one-dimensional convolution with the kernel of k.

C =   2(g *k−b) (4)

Therefore, we can obtain the final kernel size k as shown in

Equation 5.

k = log2 (C)
g + b

g

���
���
odd

(5)

Where t is the nearest odd number to tj jodd , g is 2, and b is 1.

2.3.6 MobileNetV2 and HPMobileNet
The improvement process of the model is shown in Figure 7,

where Figure 7A shows the original structure of the MobileNetV2

model, Figure 7B shows the structure of the bottleneck in the

MobileNetV2 model, and Figure 7C shows the bottleneck structure

of the improved model, HPMobileNet, where BN stands for the

batch normalization layer, which replaces the ReLU6 activation

function is replaced by the Mish activation function. In bottleneck,

the first convolution has the role of upscaling, using the second

convolution (DWConv) for feature extraction and then

downscaling by the third convolution, the DMS block is put

behind the second batch normalization to extract more features

in conjunction with DWConv. The ECA block is placed after the

last batch normalization in the bottleneck to make it gather features

among the previously extracted feature information, which helps
FIGURE 4

(A) Shows the graph of Mish’s activation function and its derivatives, and (B) Shows the graph of ReLU6’s activation function and its derivatives.
TABLE 4 Details of the activation function formula used in this study.

Activation Functions Formulas

ReLU6

f (x) =

0,     x ≤ 0

x, 0 < x ≤ 6

6,     x > 6

8>>>><
>>>>:

Mish f (x) = x � tanh   (softplus(x))

Tanh
f (x) =

ex − e−x

ex + e−x

Softplus f (x) = ln   (1 + ex)

Sigmoid f (x) =
1

1 + e−x
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the model to focus on the most important parts of the input data,

thus improving the performance of the model.

The parameter settings within the HPMobileNet model are

shown in Table 5, which uses a similar parameter structure to

MobileNetV2, where t is the expansion factor, c is the output

feature matrix depth channel, n is the number of repetitions of the

bottleneck, bottleneck here refers to the inverted residual structure,

and s is the step size.
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2.4 Model evaluation indicators

In the field of machine learning, confusion matrices are often

used to compare the results of model classification in supervised

learning. Each column of the matrix represents the predicted class

and each row represents the actual class. Take the binary

classification problem as an example, define that the actual result

is positive and the predicted result is positive, denoted as TP; if the
FIGURE 6

Structure of the efficient channel attention block.
FIGURE 5

(A) Shows the structure of the DMS block, (B) shows the bottleneck in MobileNetV2 with stride=1, and (C) shows the bottleneck with stride=2.
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actual result is negative, the predicted result is positive, denoted as

FP; if the actual result is positive, the predicted result is negative,

denoted as FN; and if the actual result is negative, the predicted

result is negative, denoted as TN. The specific structure of the

confusion matrix is shown in Supplementary Table S1.

Accuracy (Acc), precision (P), recall (R), and F1 score (F1) can

be computed from the data in the confusion matrix and used as

evaluation metrics for assessing the classification performance of
Frontiers in Plant Science 10
the model. The formulas and short descriptions of these evaluation

metrics are shown in Table 6.
2.5 Hyperparameter information for
model training

This study provides information on the specific experimental

parameters used in training the new network model proposed in

this paper. We set the input size of the dataset to 224 × 224, the

number of training rounds to 100, the optimizer to use SGD, and

the batch size to 64. details are shown in Supplementary Table S2.

If the learning rate is set too high or too low, it can have a big

impact on the model’s learning process. If the learning rate is set too

high, the advantage is that the model may update the weights faster

and thus explore the space of possible solutions faster. But then, the

disadvantage is also obvious that the model may miss the optimal

solution because the step size is too large, leading to oscillations or

even divergence during the training process, making it difficult to

converge to a stable solution. On the contrary, if the learning rate is

set too low, although the model can converge more stably, the speed

of convergence may be very slow, the advantage is that the model may

adjust the weights more finely to get a more accurate solution, but the

disadvantage is also obvious, the training process will become very

time-consuming, and the model may be more likely to fall into the

local optimal solution, and cannot find the global optimal solution.

Therefore, it is very important to set the appropriate learning rate, so

we choose the gradient decay strategy to dynamically adjust the
TABLE 5 Details of parameter settings within the HPMobileNet model.

Input Operator t c n s

2242 × 3 conv2d – 32 1 2

1122 × 32 bottleneck 1 16 1 1

1122 × 16 bottleneck 6 24 2 2

562 × 24 bottleneck 6 32 3 2

282 × 32 bottleneck 6 64 4 2

142 × 64 bottleneck 6 96 3 1

142 × 96 bottleneck 6 160 3 2

72 × 160 bottleneck 6 320 1 1

72 × 320 conv2d 1×1 – 1280 1 1

72 × 1280 avg pool × 7 – – 1 –

1 × 1 × 1280 conv2d 1 × 1 – k – –
FIGURE 7

The improved model, (A) is the structure of MobileNetV2, (B) is the structure of bottleneck in MobileNetV2, (C) is the structure of bottleneck
in HPMobileNet.
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learning rate during the training process to achieve better training

results, the initial learning rate is set to 0.01, and the learning rate is

set to decay every 2 rounds, and the decay rate is set to 0.95, which is

named as “95-Gradient “.
2.6 Experimental
environment configuration

This experiment was deployed on a computer with an Intel(R)

Xeon(R) Gold 6246R CPU (3.4GHZ) and NVIDIA Quadro RTX

8000 GPU (48GB) with Windows 10 operating system, with

software configuration installed as Anaconda 3-2021.11-windows

version with PyCharm compiler and given PyTorch 1.2.1 with built-

in Python 3.8.3 programming language, and all the algorithms are

run in the same environment as shown in Supplementary Table S3.
3 Results

3.1 Removal of unwanted images and data
enhancement from the model

MobileNetV2 is used as the base model to explore the

classification results of the original image dataset, the dataset after

removing the useless images, and the dataset after data

enhancement, as shown in Table 7. The results show that the

accuracy of the original image is only 76.02%, and the loss

reaches 0.685. After removing the useless images, the accuracy is

slightly improved to 77.81%, and the loss is also slightly reduced to

0.632, which indicates that the blurred, damaged, or completely

non-compliant images do interfere with the training and evaluation

process of the model and lead to the model to learn the wrong or

irrelevant features. These images not only fail to provide valuable
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information for the model but also reduce the performance of the

model. After performing data enhancement, the accuracy rate was

substantially increased to 86.92% and the loss was reduced to 0.354.

This indicates that the use of data enhancement can effectively

expand the diversity of data and enhance the generalization ability

of the model. Therefore, the data-enhanced mung bean samples

were used for the next experiment.
3.2 Comparison of experimental results

3.2.1 Learning rate dynamic adjustment strategy
vs. selected learning rates

The attenuation effect of the learning rate dynamic adjustment

strategy “95-Gradient “ is shown in Figure 8A. The learning rate

adjustment strategy of decaying every two rounds helps the model to

converge gradually during the training process. At the beginning of

training, a larger learning rate can help the model approach the

optimal solution quickly. As the training progresses, the gradual

decrease of the learning rate allows the model to search near the

optimal solution with a smaller step size, which improves the

accuracy and stability of convergence. Taking MobileNetV2 as

the base model, as shown in Figure 8B, the model is first compared

with three representative learning rates, and the results show that “95-

Gradient” obtains the highest accuracy and the lowest loss, which are

86.92% and 0.354 respectively. Meanwhile, from Figure 8C, it can be

seen that when the learning rate is equal to 0.01 and 0.001, the

accuracy of the model fluctuates continuously during the training

process, which may be because the optimal solution is missed because

of the too-large step size, resulting in continuous oscillation or even

dispersion during the training process, and it is difficult to converge to

a stable solution. When the learning rate is equal to 0.0001, the model

cannot converge to the global optimal solution because the step size is

too small, resulting in the model falling into the local optimal solution

during the training process, which makes the accuracy lower. This

problem can be effectively solved by adding the “95-Gradient”, as the

training progresses, the learning rate gradually decreases, and the

model can reduce the step size when approaching the optimal

solution to avoid excessive fluctuations. As a result, the

convergence curve will become smoother in the later stage and

gradually converge to the optimal solution.

This result shows that the learning rate dynamic adjustment

strategy proposed in this study not only improves the convergence
TABLE 6 Calculation formulas of each indicator.

Evaluation
indicators

Formulas Brief Description

Accuracy (Acc)
Acc =  

TP + TN
TP + FP + FN + TN

The ratio of the number of correctly predicted positive and negative samples to the total number of samples.

Precision (P)
P =  

TP
TP + FP

The ratio of the number of correctly predicted positive samples to the total number of samples predicted to
be positive.

Recall (R)
R =  

TP
TP + FN

The ratio of the number of correctly identified positive samples to the total number of actual
positive samples.

F1-score (F1)
F1 =  

2TP
2TP + FP + FN

The reconciled mean of precision and recall.
TABLE 7 Comparison of results between original images, effective
images, and after data enhancement.

Data Set Data Volume Acc (%) Loss

Original Images 7400 76.02 0.685

Effective Images 6978 77.81 0.632

After Data Enhancement 34890 86.92 0.354
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speed of the model but also enhances the stability of the model,

which enables the model to achieve satisfactory performance in

fewer iterations. However, large fluctuations also occur in the early

stage of model training, and this problem is solved by changing the

structure of the model. It can be concluded that the “95-Gradient”

plays a crucial role in model training.

3.2.2 Comparison results of different
activation functions

MobileNetV2 is used as the base model and compared with

other common activation functions. Figure 9 shows that the Mish

activation function achieves the highest accuracy while achieving

the lowest loss, with an improvement of 3.67% in accuracy and a

reduction of 0.067 in loss, relative to the activation function ReLU6

used in the original model. This result suggests that the Mish

activation function enables the neural network model to learn

and represent more complex functional relationships by

introducing nonlinear elements, thus enhancing the expressive

and fitting capabilities of the model to maximize the differences

between categories, such as the color, shape, and texture of mung

bean seeds, enabling the extraction of challenging and detailed

features. In this study, the advantage of the Mish activation function
Frontiers in Plant Science 12
is fully utilized to obtain better generalization performance and

recognition results of the model, which significantly improves the

model’s classification performance for mung bean seeds.

3.2.3 Comparative results of different
attention mechanisms

Using MobileNetV2 as the base model, the ECA block and DMS

block are compared with several other common attention

mechanisms, respectively, and they are put into the same position

as the ECA block to compare their performances respectively, and

the results are shown in Figure 10, the ECA block and DMS block

achieved the highest accuracy rate, 91.8%, and 91.11% while

obtaining the lowest loss of 0.248 and 0.264, respectively. This

result suggests that the ECA block and DMS block focus more on

enhancing the network’s ability to model inter-channel

dependencies by considering the importance of each channel

globally. In a lightweight network such as MobileNetV2, the ECA

block and DMS block can maximize the model’s ability in complex

feature extraction and improve the network’s focus on key features,

which further improves the model’s performance. The ECA

attention mechanism utilizes a one-dimensional convolution to

capture local cross-channel interactions, which is designed to take
FIGURE 8

"95-Gradient " effect contrast, (A) shows the attenuation diagram of "95-Gradient", (B) Comparison of accuracy and loss between "95-Gradient" and
several other commonly used learning rates, and (C) is loss curves for different learning rates on the validation set.
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into account the characteristics of each channel while also being

able to extract inter-channel dependencies. By learning the

importance of each channel relative to the others, the ECA block

can dynamically adjust the intensity of the channel’s response,

thereby enhancing the model’s feature representation and hence

its accuracy.
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3.2.4 Comparison results with classical network
models on the test set

To validate the effectiveness and sophistication of the network

model HPMobileNet proposed in this study, this study firstly uses

the model accuracy, model parameters, model floating point

operations per second (FLOPs), and the weight size of the model
FIGURE 10

Comparative accuracy and loss results for different attention blocks.
FIGURE 9

Comparative accuracy and loss results for different activation functions.
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as the evaluation metrics of the model performance. We compare

the new network model with eight classical network models

(ResNet50, ResNeXt50, Res2Net50, MobileNetV3_S, GhostNet,

RepVggNet_B0, ConvNext_T, and FasterNet_T0) to evaluate

their performance. The details are shown in Table 8.

The results show that the accuracy of HPMobileNet reaches

94.01%, which is ahead of other network models, with only 2.370M

parameters, which is second only to MobileNetV3_S’s 1.528M, and

only 0.329G FLOPs, which is second only to MobileNetV3_S’s

0.061G and GhostNet’s 0.155G, and the size of the weights

generated by the network model is only 18.4MB, which is second

only to MobileNetV3_S’s 11.8MB. Overall, the comprehensive ability

of the network model proposed in this study achieves the best results,

with both high accuracy and low time and space complexity, and its

overall strength is ahead of other classical network models.

To compare the performance of model recognition more

intuitively, this study visualizes and analyzes the comparison

models, as shown in Supplementary Figure S1, which shows more

clearly that HPMobileNet obtains the highest accuracy rate and is

ahead of other models.

As shown in Figure 11 confusion matrices of different models,

when comparing the confusion matrices of the other eight models,

it can be noticed that each model performs differently on the

classification task. Looking at the confusion matrix of

HPMobileNet, we can see that the values on the diagonal line are

relatively high, which means that the model performs well in

correctly classifying mung bean seeds. The higher values on the

diagonal line indicate that the model has a higher prediction

accuracy for the corresponding category. Meanwhile, relatively

low values on the off-diagonal line mean that the model

misclassified samples into other categories less often. In contrast,

the confusion matrices of the other eight models show different

degrees of variation. The other models have lower values on the

diagonal of the confusion matrix relative to HPMobileNet,

suggesting that they are not as accurate as HPMobileNet on the

classification task. Most of the models perform poorly on specific

categories, as can be seen in the figure for the eighth category and

the second category. However, the classification ability of

HPMobileNet relative to the other models in the eighth category
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and the second category is not as good as the other models.

Category and the second category, but HPMobileNet has

significantly higher classification ability on the eighth category

and the second category compared to the other models. This

result shows that the improved model has a clear advantage in

classification performance.

The precision, recall, and F1-scores of each network model on the

eight categories were derived from the confusion matrix as shown in

Table 9. The precision of HPMobileNet on each category was 0.937,

0.940, 0.922, 0.950, 0.943, 0.985, 0.936 and 0.912. The recall was

0.950, 0.891, 0.933, 0.961, 0.973, 0.948 and 0.912 respectively. 0.891,

0.933, 0.961, 0.956, 0.973, 0.948 and 0.912 respectively. The F1 scores

are 0.943, 0.915, 0.927, 0.955, 0.949, 0.979, 0.942 and 0.912

respectively. The results show that the optimal results are obtained

for each category of the HPMobileNet, which can be concluded that

the network model proposed in this study shows excellent

performance on several categories of mung bean seeds, especially

on the GL07C and JL06C categories, where its accuracy and F1-score

are significantly better than other classical models, showing its

potential and advantages in complex tasks.
3.3 Results of ablation experiments

To assess the effects of the DMS block, ECA block, and Mish

activation function on model performance, ablation experiments

were conducted in this study using MobileNetV2 as the base

network model. As shown in Table 10, the results indicate that

the performance of each metric model is improved when these three

modules are integrated separately, thus improving its applicability

to mung bean seed variety classification. In addition, the

simultaneous integration of these modules further improved the

accuracy of the model, while ensuring that the parameters and

FLOPs of the model did not increase substantially, and the accuracy

was indeed improved by 6.61% relative to the original model by

only 0.136M and 0.003G, respectively. Overall, the comprehensive

performance of the model has been substantially improved,

providing more reliable and accurate classification results for

mung bean seeds.
TABLE 8 Comparative results of different models.

Model Acc (%) Params (M) FLOPs (G) Weight Size (MB)

ResNet50 (He et al., 2016) 87.71 23.524 4.132 179

ResNeXt50 (Xie et al., 2017) 89.00 22.996 4.286 175

Res2Net50 (Gao et al., 2019) 87.34 14.327 2.394 109

MobileNetV3_S (Howard et al., 2019) 89.20 1.528 0.061 11.8

GhostNet (Han et al., 2020) 87.48 3.912 0.155 30.1

RepVggNet_B0 (Ding et al., 2021) 89.46 14.547 3.428 111

ConvNeXt_T (Liu et al., 2022) 65.63 27.805 4.455 212

FasterNet_T0 (Chen et al., 2023) 85.91 2.635 0.339 20.2

HPMobileNet(Our) 94.01 2.370 0.329 18.4
The bold values represent the results of the algorithm HPMobileNet proposed in this study.
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3.4 Comparative results before and after
model improvement

To further validate the recognition ability of HPMobileNet and the

original model, a comparison of the confusion matrices of the models

before and after the improvement is given in this study. As shown in

Figure 12, the improved networkmodel effectively reduces the error rate

of each category, especially significantly reduces the misclassification of

the second category of mung bean seeds as the seventh category of

mung bean seeds, the third category of mung bean seeds as the eighth

category, and the fifth category of seeds as the first category of seeds.
Frontiers in Plant Science 15
Macroscopically, the values on the diagonal have also improved

significantly with darker colors, which indicates that the model’s

recognition accuracy on all categories has improved significantly. In

addition, the overall structure of the confusion matrix has become

clearer, with a higher degree of differentiation between categories. In

summary, the improved model can better extract features from mung

bean seeds and shows more excellent performance, thus significantly

reducing the recognition error rate and providing more reliable and

accurate classification results for related applications.

The precision, recall, and F1-score of the model classification

results can be obtained from the confusion matrix as shown in
FIGURE 11

Comparison of confusion matrix for different models, (A) is the confusion matrix of ResNet50, (B) is the confusion matrix of ResNeXt50, (C) is the
confusion matrix of Res2Net50, (D) is the confusion matrix of MobileNetV3_S, (E) is the confusion matrix of GhostNet, (F) is the confusion matrix of
RepVggNet_B0, (G) is the confusion matrix of ConvNeXt_T, (H) is the confusion matrix of FasterNet_T0, and (I) is the confusion matrix of HPMobileNet.
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T
ABLE 10 Specific details of the results of the ablation experiment.

DMS block Mish ECA block Acc (%) P (Avg) R (Avg) F1 (Avg) Params (M) FLOPs (G)

87.40 0.873 0.876 0.873 2.234 0.326

√ 88.08 0.880 0.883 0.880 2.370 0.329

√ 89.66 0.896 0.897 0.896 2.234 0.326

√ 92.04 0.921 0.921 0.920 2.234 0.327

√ √ 91.78 0.918 0.919 0.918 2.370 0.329

√ √ 92.29 0.923 0.924 0.922 2.370 0.329

√ √ 92.75 0.927 0.928 0.927 2.234 0.327

√ √ √ 94.01 0.941 0.941 0.949 2.370 0.329
F
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The bold values represent the results of the algorithm HPMobileNet proposed in this study.
√ represents the selected improved method.
TABLE 9 Detailed comparison of Precision, Recall, and F1-score of different models in each category.

Model Label 1 2 3 4 5 6 7 8

Index BLC GL07C GL13C JL05C JL09C JL10C JL11C JL06C

ResNet50

P 0.891 0.892 0.869 0.910 0.893 0.939 0.844 0.791

R 0.890 0.696 0.881 0.930 0.921 0.985 0.927 0.821

F1 0.890 0.782 0.875 0.920 0.907 0.948 0.884 0.806

ResNeXt50

P 0.914 0.856 0.846 0.914 0.895 0.964 0.878 0.853

R 0.925 0.785 0.919 0.924 0.945 0.931 0.904 0.795

F1 0.919 0.819 0.881 0.919 0.919 0.947 0.891 0.823

Res2Net50

P 0.875 0.833 0.866 0.908 0.908 0.944 0.850 0.813

R 0.907 0.748 0.893 0.887 0.895 0.965 0.891 0.807

F1 0.891 0.788 0.879 0.897 0.901 0.954 0.870 0.810

MobileNetV3_S

P 0.895 0.862 0.902 0.946 0.874 0.932 0.875 0.846

R 0.907 0.805 0.900 0.924 0.910 0.953 0.912 0.828

F1 0.901 0.833 0.901 0.935 0.892 0.942 0.893 0.837

GhostNet

P 0.892 0.827 0.840 0.944 0.847 0.957 0.905 0.789

R 0.892 0.825 0.886 0.882 0.950 0.928 0.862 0.791

F1 0.892 0.826 0.862 0.912 0.896 0.942 0.883 0.790

RepVggNet_B0

P 0.923 0.835 0.895 0.916 0.871 0.965 0.876 0.873

R 0.909 0.828 0.869 0.908 0.968 0.953 0.918 0.816

F1 0.916 0.831 0.882 0.912 0.917 0.959 0.897 0.844

ConvNeXt_T

P 0.718 0.487 0.677 0.692 0.624 0.743 0.680 0.547

R 0.729 0.417 0.519 0.824 0.851 0.889 0.669 0.381

F1 0.723 0.449 0.588 0.752 0.720 0.809 0.674 0.449

FasterNet_T0

P 0.910 0.800 0.808 0.872 0.847 0.952 0.870 0.809

R 0.839 0.755 0.924 0.919 0.933 0.936 0.881 0.707

F1 0.873 0.777 0.862 0.895 0.888 0.944 0.875 0.755

HPMobileNet

P 0.937 0.940 0.922 0.950 0.943 0.985 0.936 0.912

R 0.950 0.891 0.933 0.961 0.956 0.973 0.948 0.912

F1 0.943 0.915 0.927 0.955 0.949 0.979 0.942 0.912
f

The bold values represent the results of the algorithm HPMobileNet proposed in this study.
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Table 11. The results show that the improved model improves all

the metrics of the eight types of mung bean seeds compared to the

original model. The precision of each type of mung bean seed grain

was improved by 0.044, 0.105, 0.096, 0.019, 0.102, 0.043, 0.066, and

0.06. Meanwhile, the recall was improved by 0.058, 0.113, 0.028,

0.046, 0.017, 0.042, 0.063, and 0.152, respectively. In addition, the

F1 scores were improved by 0.052, 0.11, 0.063, 0.032, 0.062, 0.043,

0.065 and 0.109. These results indicate that the improved network

model exhibits better recognition performance in mung bean seed

image classification.

To better analyze the results before and after the improvement,

this study visualized the data in the table, as shown in Figure 13, it

can be seen more clearly that the precision difference between the

model categories before the improvement is large, and the

recognition ability of the model is poor. After the model

improvement was completed, the precision and recall of each

category reached a relatively high level, which led to the F1 scores

also being greatly improved and showing a more balanced

distribution. The recognition accuracies of all categories are

improved compared with the pre-improvement period, and the
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differences in recognition accuracies between different categories

are reduced, indicating that the overall performance of the model

has been significantly improved, and the adaptability and

generalization ability of the model in each category have been

enhanced. For some categories with lower recognition accuracies

before improvement (e.g., category 2 and category 8), the model

gives more attention and optimization to improve their recognition

accuracies significantly after improvement, so the overall

performance of the model has been greatly improved.

Figure 14A shows the loss curve and accuracy curve on the

validation set before and after the model improvement. The

accuracy curve before the model improvement still has large

fluctuations at the beginning of the training period, but then the

growth rate gradually slows down and stabilizes at the end of the

training period, although the model can finally reach a relatively

stable level of accuracy with the “95-Gradient”. Although the model

can eventually reach a relatively stable level of accuracy with the

“95-Gradient”, there are still large fluctuations in the pre-training

period of the model, and there may be an overall risk of overfitting.

In contrast, the accuracy curve of the improved model shows a more
FIGURE 12

Visualization of the confusion matrix before and after model improvement, (A) is the confusion matrix of MobileNetV2, (B) is the confusion matrix
of HPMobileNet.
TABLE 11 Comparative results of Precision, Recall, and F1-score for each category on the test set before and after model improvement.

Label Name
P R F1

Before After Before After Before After

1 BLC 0.890 0.934 0.892 0.950 0.891 0.943

2 GL07C 0.835 0.940 0.778 0.891 0.805 0.915

3 GL13C 0.826 0.922 0.905 0.933 0.864 0.927

4 JL05C 0.931 0.950 0.915 0.961 0.923 0.955

5 JL09C 0.841 0.943 0.939 0.956 0.887 0.949

6 JL10C 0.942 0.985 0.931 0.973 0.936 0.979

7 JL11C 0.870 0.936 0.885 0.948 0.877 0.942

8 JL06C 0.852 0.912 0.760 0.912 0.803 0.912
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significant upward trend, with the accuracy increasing rapidly at the

early stage of training, and then continuing to maintain a stable

growth trend, finally reaching the highest accuracy level and

stabilizing. Meanwhile, the loss curve of the pre-improved model
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fluctuates more in the early stage of training, although it gradually

flattens out in the later stage of training, which indicates that the

model encounters optimization difficulties in the training process,

and it is difficult to further reduce the loss. In addition, the final
FIGURE 13

Visualized comparison results of Precision, Recall, and F1-score before and after model improvement, (A) denotes Precision comparison, (B) denotes
Recall comparison, and (C) denotes F1-score comparison.
FIGURE 14

Comparison of accuracy curve, loss curve, and heat map before and after model improvement. (A) It shows the comparison of loss curves and accuracy
curves on the validation set before and after model improvement. (B) It presents the heat feature maps before and after model improvement.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1474906
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Song et al. 10.3389/fpls.2024.1474906
value of the loss curve is relatively high, indicating that the model

has limited fitting ability and may have overfitting or underfitting

problems. The improved loss curve, on the other hand, shows a

more desirable downward trend. In the early stage of training, the

loss value decreases rapidly, then stabilizes gradually and fluctuates

less in the pre-training period. This indicates that the improved

model is more stable in the optimization process and can reduce the

loss more effectively. Eventually, the lower value of the loss curve

indicates that the fitting ability of the model has been significantly

improved and can better adapt to the training data. By comparing

the loss curves and accuracy curves before and after the

improvement, we can see a significant improvement in the

optimization ability and accuracy of the improved model.

To more intuitively analyze the effectiveness of the improved

model in classifying mung bean seeds, this study used the

visualization tool Grad-CAM (Selvaraju et al., 2017). Grad-CAM

visualizes the image regions that the model focuses on during the

prediction process by calculating the gradients of the feature

mappings for the target class, multiplying these gradients with the

feature mappings to obtain the weights, and ultimately generating a

heat map. The original image is shown in the first row, while the

second and third columns show the Grad-CAM mapped images

before and after the model improvement. The spectrum from blue

to red indicates the degree of contribution.

The experimental results are shown in Figure 14B. Before the

model improvement, the model may focus more on the local features

of the seeds, probably because the model does not have enough ability

to extract the global features of the whole image. As a result, the heat

map mainly focused on the local area of mung bean seeds, which

caused the model to prioritize certain local features and ignore the

overall features in the prediction process. However, after the model’s

improvement, the model’s focus on channel information increased,

enhancing its ability to capture global features. This enabled the

model to better focus on the entire mung bean seed grain

characteristics rather than just localized features during the

prediction process. Thus, the comprehensive improvements in this

study enhanced the feature extraction capability of the mung bean

seed grain classification model, enabling it to more accurately localize

valuable regions in mung bean seed grain images.
4 Discussion

The HPMobileNet proposed in this study is more efficient, less

expensive, and more suitable for large-scale applications compared

to traditional methods such as chemical and spectroscopic

techniques. The accuracy is higher and the number of parameters

is lower compared to classical and advanced deep learning

algorithms. Despite the excellent experimental results obtained in

this study, there are still some limitations that need to be verified in

future studies.

Limitations of the dataset: The present study was conducted

only on different varieties of mung bean and did not cover the same

variety of mung bean grown in different regions or different

varieties of mung bean grown in the same region. There are

many effects of different geographic environments on the external
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phenotype of mung bean, such as moisture, temperature, light, and

other factors, which are also affected by human factors, and more

attention should be paid to the effects of objective factors on the

external phenotype of mung bean in subsequent studies.

Limitations of crop types: This study focused only on the mung

bean dataset, and the performance of the model on other crops has

not been explored.

Limitations of model generalization: The ability of the model to

generalize to different crops and environments remains to be

fully verified.

In future studies, further parametric optimization of the model

can be implemented in conjunction with the properties of

MobileNetV4 (Qin et al., 2024). In data preprocessing, a new

method for removing specular highlights from grayscale images

(Xu et al., 2022) is applied to improve the algorithm’s ability to

analyze and process images. Blind super-resolution (Xia et al., 2024)

can also be achieved by meta-learning and Markov chain Monte

Carlo simulation to make the original mung bean image more high-

definition, which makes a corresponding basis for further analyzing

the texture information of mung beans. The algorithms proposed in

this study can be further embedded into target detection algorithms,

such as YOLOv11 (Khanam and Hussain, 2024), to realize real-time

monitoring of video streams with multiple targets for classification

and identification. Meanwhile, the wireless charging flexible in-situ

optical sensing (Zhang et al., 2024) can also be applied to the

monitoring of mung beans in future research, which will in turn

enable real-time data collection and thus improve the practical

deployment of the model in smart agricultural systems.
5 Conclusion

In this study, the application of the improved network model

HPMobileNet in mung bean seed classification is deeply explored.

Important improvements are made in this study for theMobileNetV2

model, which introduces the efficient feature extraction module ECA

block and the efficient residual block DMS block proposed in this

study, respectively, and at the same time, the ReLU6 activation

function is replaced with the Mish activation function. It is shown

through extensive experimental validation that this integration not

only drastically improves the accuracy of the model for mung bean

seed classification, but also ensures that the FLOPs and parameters do

not increase significantly, making HPMobileNet an ideal choice for

resource-constrained environments. In the comparison experiments,

the superiority of the learning rate dynamic adjustment strategy

proposed in this study is verified, the performance of the ECA block

and DMS block is verified, the efficiency of the Mish activation

function is verified, and HPMobileNet is compared with eight other

classical network models, and the results are shown through

exhaustive performance evaluation and comparative analysis.

HPMobileNet achieves optimal results for each integration, while

HPMobileNet shows significant advantages in several key indicators,

which are not only reflected in the accuracy of classification and

recognition but also in its lightweight and high efficiency, which

makes this network model have a broad application prospect in

agricultural production, variety identification and other fields.
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HPMobileNet cannot only be applied in the field of mung bean

production but also be extended to the classification and quality

inspection of other food and agricultural products, providing efficient

and precise technical support for agricultural production. In summary,

the rapid and accurate classification of different varieties of mung bean

seeds based on HPMobileNet has significant application potential and

practical value and provides new solutions and possibilities for

automation and intelligence in the process of agricultural production.
Data availability statement

The original contributions presented in the study are included

in the article/Supplementary Material. Further inquiries can be

directed to the corresponding authors.
Author contributions

SS: Funding acquisition, Methodology, Project administration,

Resources, Supervision, Visualization, Writing – review & editing.

ZC: Writing – original draft, Conceptualization, Data curation,

Software, Validation, Visualization. HY: Conceptualization,

Funding acquisition, Investigation, Project administration,

Validation, Writing – review & editing. MX: Data curation,

Formal analysis, Methodology, Supervision, Visualization, Writing

– review & editing. JL: Formal analysis, Methodology, Validation,

Visualization, Writing – review & editing.
Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. This
Frontiers in Plant Science 20
research was supported by The Natural Science Foundation of

Jilin Province (YDZJ202101ZYTS148).
Acknowledgments

We would like to thank the Smart Agriculture Research

Institute of Jilin Agricultural University for its equipment support

and the reviewers for their valuable suggestions. Meanwhile, we

thank the Jilin Academy of Agricultural Sciences, China, for

providing support for the data samples.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fpls.2024.1474906/

full#supplementary-material
References
Acquah, C., Ohemeng-Boahen, G., Power, K. A., and Tosh, S. M. (2021). The effect of
processing on bioactive compounds and nutritional qualities of pulses in meeting the
sustainable development goal 2. Front. Sustain. Food Syst. 5, 681662. doi: 10.3389/
fsufs.2021.681662

Barrio-Conde, M., Zanella, M. A., Aguiar-Perez, J. M., Ruiz-Gonzalez, R., and
Gomez-Gil, J. (2023). A deep learning image system for classifying high oleic
sunflower seed varieties. Sensors 23, 15. doi: 10.3390/s23052471

Bellemare, M. F., and Lim, S. (2018). In all shapes and colors: Varieties of contract
farming. Appl. Econ. Perspect. Policy 40, 379–401. doi: 10.1093/aepp/ppy019

Bi, C., Hu, N., Zou, Y., Zhang, S., Xu, S., and Yu, H. (2022). Development of deep
learning methodology for maize seed variety recognition based on improved swin
transformer. Agronomy 12, 1843. doi: 10.3390/agronomy12081843

Chen, J., Kao, S.-H., He, H., Zhuo, W., Wen, S., Lee, C.-H., et al. (2023). “Run, don’t
walk: chasing higher FLOPS for faster neural networks,” in Proceedings of the IEEE/
CVF conference on computer vision and pattern recognition. 12021–12031. Available
online at: https://www.arxiv.org/abs/2303.03667v1.

Dahiya, P., Linnemann, A., Van Boekel, M., Khetarpaul, N., Grewal, R., and Nout, M.
(2015). Mung bean: Technological and nutritional potential. Crit. Rev. Food Sci. Nutr.
55, 670–688. doi: 10.1080/10408398.2012.671202

Ding, X., Zhang, X., Ma, N., Han, J., Ding, G., and Sun, J. (2021). “Repvgg: Making vgg-
style convnets great again,” in Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition. 13733–13742. Available online at: https://www.arxiv.org/abs/2101.
03697v3.
Feng, M. Q., Leung, R. Y., and Eckersley, C. M. (2020). Non-contact vehicle weigh-
in-motion using computer vision. Measurement 153, 107415. doi: 10.1016/
j.measurement.2019.107415

Ganesan, K., Xu, B., and Wellness, H. (2018). A critical review on phytochemical
profile and health promoting effects of mung bean (Vigna radiata). Food Sci. Human
Wellnes 7, 11–33. doi: 10.1016/j.fshw.2017.11.002

Gao, S.-H., Cheng, M.-M., Zhao, K., Zhang, X.-Y., Yang, M.-H., and Torr, P. (2019).
Res2net: A new multi-scale backbone architecture. EEE Trans. Pattern Anal. Mach. Intell.
43, 652–662. doi: 10.1109/TPAMI.34

Ge, Y., Song, S., Yu, S., Zhang, X., and Li, X. (2024). Rice seed classification by
hyperspectral imaging system: A real-world dataset and a credible algorithm. Comput.
Electron. Agric. 219, 108776. doi: 10.1016/j.compag.2024.108776

Han, K.,Wang, Y., Tian, Q., Guo, J., Xu, C., and Xu, C. (2020). “Ghostnet:More features
from cheap operations,” in Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition. 1580–1589. Available online at: https://www.arxiv.org/abs/1911.
11907v2.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision and pattern
recognition. 770–778. Available online at: https://www.arxiv.org/abs/1512.03385v1.

He, L., Hu, Q., Yu, Y., Yu, Y., Yu, N., and Chen, Y. (2023). Discrimination of mung
beans according to climate and growing region by untargeted metabolomics coupled
with machine learning methods. Food Control 153, 109927. doi: 10.1016/j.foodcont.
2023.109927
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fpls.2024.1474906/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fpls.2024.1474906/full#supplementary-material
https://doi.org/10.3389/fsufs.2021.681662
https://doi.org/10.3389/fsufs.2021.681662
https://doi.org/10.3390/s23052471
https://doi.org/10.1093/aepp/ppy019
https://doi.org/10.3390/agronomy12081843
https://www.arxiv.org/abs/2303.03667v1
https://doi.org/10.1080/10408398.2012.671202
https://www.arxiv.org/abs/2101.03697v3
https://www.arxiv.org/abs/2101.03697v3
https://doi.org/10.1016/j.measurement.2019.107415
https://doi.org/10.1016/j.measurement.2019.107415
https://doi.org/10.1016/j.fshw.2017.11.002
https://doi.org/10.1109/TPAMI.34
https://doi.org/10.1016/j.compag.2024.108776
https://www.arxiv.org/abs/1911.11907v2
https://www.arxiv.org/abs/1911.11907v2
https://www.arxiv.org/abs/1512.03385v1
https://doi.org/10.1016/j.foodcont.2023.109927
https://doi.org/10.1016/j.foodcont.2023.109927
https://doi.org/10.3389/fpls.2024.1474906
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Song et al. 10.3389/fpls.2024.1474906
Howard, A., Sandler, M., Chu, G., Chen, L.-C., Chen, B., Tan, M., et al. (2019).
“Searching for mobilenetv3,” in Proceedings of the IEEE/CVF international conference on
computer vision. 1314–1324. Available online at: https://www.arxiv.org/abs/1905.02244v5.

Huang, Z., Wang, R., Cao, Y., Zheng, S., Teng, Y., Wang, F., et al. (2022). Deep
learning based soybean seed classification. Comput. Electron. Agric. 202, 107393.
doi: 10.1016/j.compag.2022.107393

Kanwal, K., Zafar, M., Khan, A. M., Mahmood, T., Abbas, Q., Ozdemir, F. A., et al.
(2022). Implication of scanning electron microscopy and light microscopy for oil
content determination and seed morphology of Verbenaceae. Microsc. Res. Tech 85,
789–798. doi: 10.1002/jemt.23950

Khanam, R., and Hussain, M. (2024). YOLOv11: an overview of the key architectural
enhancements. Arxiv.

Li, Z., Keel, S., Liu, C., He, Y., Meng, W., Scheetz, J., et al. (2018). An automated
grading system for detection of vision-threatening referable diabetic retinopathy on
the basis of color fundus photographs. Diabetes Care 41, 2509–2516. doi: 10.2337/
dc18-0147

Li, J., Xu, F., Song, S., and Qi, J. (2024). A maize seed variety identification method
based on improving deep residual convolutional network. Front. Plant Sci. 15, 1382715.
doi: 10.3389/fpls.2024.1382715

Liu, Z., Mao, H.,Wu, C.-Y., Feichtenhofer, C., Darrell, T., and Xie, S. (2022). “A convnet
for the 2020s,” in Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition. 11976–11986. Available online at: https://arxiv.org/abs/2201.03545.

Liyanage, R., Kiramage, C., Visvanathan, R., Jayathilake, C., Weththasinghe, P.,
Bangamuwage, R., et al. (2018). Hypolipidemic and hypoglycemic potential of raw,
boiled, and sprouted mung beans (Vigna radiata L. Wilczek) in rats. Food Biochem. 42,
e12457. doi: 10.1111/jfbc.2018.42.issue-1

Loddo, A., Loddo, M., and Di Ruberto, C. (2021). A novel deep learning based
approach for seed image classification and retrieval. Comput. Electron. Agric. 187, 11.
doi: 10.1016/j.compag.2021.106269

Ma, S., Li, Y., and Peng, Y. (2023). Spectroscopy and computer vision techniques for
noninvasive analysis of legumes: A review. Comput. Electron. Agric. 206, 107695.
doi: 10.1016/j.compag.2023.107695

Mehdizadeh, S. A., Noshad, M., and Hojjati, M. (2024). A modified sequential
wavenumber selection-discriminant analysis with bayesian optimization strategy for
detection and identification of chia seed oil adulteration using raman spectroscopy.
Talanta. 277, 126439. doi: 10.1016/j.talanta.2024.126439

Misra, D. (2019). Mish: A self regularized non-monotonic activation function.

Mukasa, P., Wakholi, C., Faqeerzada, M. A., Amanah, H. Z., Kim, H., Joshi, R., et al.
(2022). Nondestructive discrimination of seedless from seeded watermelon seeds by
using multivariate and deep learning image analysis. Comput. Electron. Agric. 194, 10.
doi: 10.1016/j.compag.2022.106799

Naik, N. K., Sethy, P. K., Behera, S. K., and Amat, R. J. (2024). A methodical analysis
of deep learning techniques for detecting Indian lentils. J. Agric. Food Res. 15, 100943.
doi: 10.1016/j.jafr.2023.100943
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