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Introduction: The assessment of the severity of fruit disease is crucial for the

optimization of fruit production. By quantifying the percentage of leaf disease, an

effective approach to determining the severity of the disease is available.

However, the current prediction of disease degree by machine learning

methods still faces challenges, including suboptimal accuracy and

limited generalizability.

Methods: In light of the growing application of large model technology across a

range of fields, this study draws upon the DINOV2 visual large vision model

backbone network to construct the DINOV2-Fruit Leaf Classification and

Segmentation Model (DINOV2-FCS), a model designed for the classification

and severity prediction of diverse fruit leaf diseases. DINOV2-FCS employs the

DINOv2-B (distilled) backbone feature extraction network to enhance the

extraction of features from fruit disease leaf images. In fruit leaf disease

classification, for the problem that leaf spots of different diseases have great

similarity, we have proposed Class-Patch Feature Fusion Module (C-PFFM),

which integrates the local detailed feature information of the spots and the

global feature information of the class markers. For the problem that the model

ignores the fine spots in the segmentation process, we propose Explicit Feature

Fusion Architecture (EFFA) and Alterable Kernel Atrous Spatial Pyramid Pooling

(AKASPP), which improve the segmentation effect of the model.

Results: To verify the accuracy and generalizability of the model, two sets of

experiments were conducted. First, the labeled leaf disease dataset of five fruits

was randomly divided. The trained model exhibited an accuracy of 99.67% in

disease classification, an mIoU of 90.29%, and an accuracy of 95.68% in disease

severity classification. In the generalizability experiment, four disease data sets

were used for training and one for testing. The mIoU of the trained model

reached 83.95%, and the accuracy of disease severity grading was 95.24%.
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Discussion: The results demonstrate that the model exhibits superior

performance compared to other state-of-the-art models and that the model

has strong generalization capabilities. This study provides a new method for leaf

disease classification and leaf disease severity prediction for a variety of fruits.

Code is available at https://github.com/BaiChunhui2001/DINOV2-FCS.
KEYWORDS

DINOV2, deep learning, fruit disease recognition, semantic segmentation,
smart agriculture
1 Introduction

In the contemporary globalized food supply chain, fruits occupy

a pivotal position in the human diet. Fresh fruits, in particular, are

highly esteemed for their alluring aroma and distinctive flavor

(Wang et al., 2022). Fruit diseases represent a significant

challenge for the fruit industry, accounting for significant

economic losses annually. Timely identification of fruit diseases

helps control infections and ensure optimal productivity (Khan

et al., 2022). However, traditional fruit disease detection methods

are susceptible to subjective judgement and experience differences

of the inspector, leading to inconsistent and low accuracy of

detection results (Khattak et al., 2021). Deep learning-based fruit

disease detection methods not only significantly increase detection

speed and accuracy, but also further optimise and enhance the

ability of disease identification through continuous data

accumulation and learning (Shoaib et al., 2023).

The development and implementation of autonomous plant

disease detection has been made easier by the ongoing advancements

in artificial intelligence technologies. A study (Atila et al., 2021)

employed the EfficientNet model to identify diseases of plant leaves,

with the objective of enhancing diagnostic accuracy and efficiency. By

contrasting it with advanced convolutional neural network models, the

study demonstrated that EfficientNet performs well in classifying plant

leaf images, thereby validating its potential for automated diagnosis of

plant diseases. The RIC-Net (Zhao et al., 2022) was developed on the

foundation of the Inception and residual structure fusion models, with

an enhanced Convolutional Block Attention Module (CBAM)

integrated for the purpose of enhancing the efficacy of plant leaf

disease classification. The DFN-PSAN (Dai et al., 2024) model

demonstrated high performance in identifying diseases of plants

through the application of weather data augmentation techniques on

three datasets derived from real agricultural scenarios. The topic of

plant disease identification has already reached a mature state of

application for deep learning techniques.

Precisely determining the extent of plant diseases is vital from the

standpoint of application. This is because the detection of disease

severity assists farmers in making informed decisions to mitigate
02
losses due to disease infection. A study (Zeng et al., 2020) created a

HLB-infected citrus leaf image dataset, expanded the original training

dataset with a deep convolutional generative adversarial network, and

trained six different deep learning models to perform severity

detection. A unique three-branch Swin Transformer classification

network (TSTC) was designed in another study (Yang et al., 2023)to

diagnose plant diseases and their severity independently and

concurrently. However, these plant disease severity estimates are

based on simple classification networks, which are less effective and

weakly interpretable. In practice, calculating the percentage of leaf

diseased area is a crucial step in assessing the severity of the disease

(Madden et al., 2007). A study (Goncalves et al., 2021) trained six

semantic segmentation models for the purpose of recognizing and

estimating the severity of plant leaf diseases with an accuracy

comparable to that of commercial software. This was achieved

without the need to manually adjust the segmentation parameters

or remove complex backgrounds from the images. Another study

(Hu et al., 2021) employed a support vector machine to segment the

lesion in order to better identify the disease and offered an elliptical

restoration approach to fit and restore the whole size of the occluded

or damaged tea leaves. Researchers presented a deep learning and

fuzzy logic based approach to establish an automated technique for

grapevine black measles disease identification and severity analysis (Ji

andWu, 2022). To address the problem of cucumber downy mildew,

researchers proposed a two-stage segmentation framework to

calculate the percentage of leaf disease area (Wang et al., 2021).

The resulting accuracy of the disease severity classification was

92.85%. Nevertheless, all of these works have trained models just

for a single plant disease, thus leading to limited generalization.

As computer vision technology advances, large vision models

find extensive use in several domains. SAM (Kirillov et al., 2023), a

powerful model designed for segmentation tasks, has been developed

to achieve zero-sample migration to a variety of tasks through cueing

engineering. It has demonstrated excellent performance on a range of

image segmentation tasks, which has contributed to the advancement

of the computer vision field. However, the considerable

computational expense of SAM represents a significant obstacle to

its broader deployment in industrial settings. FastSAM (Zhao et al.,
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2023), MobileSAM (Zhang et al., 2023a), and MobileSAMv2 (Zhang

et al., 2023b) employ model parameter reduction and accelerate

inference techniques to mitigate this challenge. DINO (Caron et al.,

2021) employs a novel contrast learning method to enhance its visual

generic representation. This method compares the features of the

original image with those of a randomly cropped image, resulting in

highly satisfactory outcomes. DINOv2 (Oquab et al., 2023) is a

method for pre-training an image encoder on a large image dataset

in order to obtain visual features with semantic meaning. These

features can be employed for a diverse range of visual tasks without

the necessity for further training to achieve performance levels

comparable to those of supervised models. In the application of

large vision models, MedSAM (Ma et al., 2024) was demonstrated to

have significantly enhanced segmentation performance on medical

images by fine-tuning SAM. SAMRS (Wang et al., 2024) dataset

developed using SAM and existing remote sensing datasets. The

powerful feature extraction capability of large vision models can

better assist agricultural disease detection. Nevertheless, there hasn’t

been any information on the use of large vision models in plant

disease detection, particularly for classification and severity estimate.

In this study, we constructed the model DINOV2-FCS for leaf

disease classification and severity prediction of a variety of fruits

based on the DINOV2 large vision model backbone network. The

contributions of this study are as follows:
Fron
1. We constructed the model DINOV2-FCS for leaf disease

classification and severity prediction of a variety of fruits

based on the DINOV2 large vision model backbone

network. This approach has been shown to have good

generalization ability.

2. In order to enhance the training of the model, the leaf and

lesion regions in the 2010 images were meticulously labeled.

3. An improvement to the MLP decoder has been proposed,

namely Explicit Feature Fusion Architecture (EFFA), which

fuses explicit feature information and multilevel feature

information and improves the segmentation accuracy of

the model.

4. We have proposed Alterable Kernel Atrous Spatial Pyramid

Pooling (AKASPP), which fuses contextual and detailed

edge information from different sensory fields in order to

enhance adaptability to varying sizes and shapes of lesion

targets and to align with the edge details of leaves

and lesions.

5. We have proposed Class-Patch Feature Fusion Module (C-

PFFM), which fuses local detailed feature information from
tiers in Plant Science 03
patch tokens and global feature information from class token,

resulting in improved classification accuracy of the model.
2 Materials and methods

2.1 Datasets

This study collected 2,010 images related to five different fruit

foliar diseases: apple black rot, cedar apple rust, grape black measles,

grape black rot, and strawberry leaf scorch. These images were

obtained from the public PlantVillage dataset (Hughes and Salathé,

2015), which consists of images captured in an indoor laboratory

setting and is widely used for crop and plant disease research. We

increased the number of images to 8,040 using data augmentation

techniques, and all images were accurately labeled. The precise

number of images for each disease is presented in Table 1. The

procedure for processing the dataset was as follows:
1. Uniform image size: The selected images were resized to

512×512 pixels, consistent with the input specifications of

the model, by using the resize method of the Image class in

the Pillow library (version 10.2.0).

2. Data labeling: The leaf and lesion areas in the images were

manually labeled with high accuracy using LabelMe

(version 3.16.7). Each image was categorized into three

regions: background, leaf, and lesion, represented by black,

green, and red, respectively. The labeled images serve as a

benchmark for evaluating the accuracy of the segmentation

model. Figure 1A shows a selection of images from the

dataset, alongside their accurately labeled counterparts.

3. Data augmentation: To simulate various lighting

conditions and disturbances, data augmentation was

applied to the original images by introducing random

noise, applying blurring operations, and adjusting

brightness. Specifically, NumPy (version 1.24.4) was used

to generate Gaussian-distributed noise, which was added to

the images. Various blurring algorithms from the OpenCV

library (version 4.9.0.80) were applied, and brightness was

randomly adjusted using a factor generated by NumPy.

This enhanced the diversity of the dataset. Figure 1B shows

examples of the augmented images.

4. Data splitting: To train the model and evaluate its

performance, the dataset was randomly divided into
TABLE 1 Statistics on the number of datasets.

Apple black rot Cedar apple rust Grape
black measles

Grape black rot Strawberry
leaf scorch

Original 441 417 419 404 329

Enhanced 1323 1251 1257 1212 987

Total 1764 1668 1676 1616 1316
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training and test sets with a 7:3 ratio. To ensure

reproducibility, the random seed was set to 0.
In practice, calculating the percentage of leaf diseased area is a

crucial step in assessing the severity of the disease. Nevertheless,

there is as yet no uniform grading scale for the severity of disease.

Guided by the experience of experts as well as references to the

literature (Wang et al., 2021), this study graded the severity of leaf

disease to facilitate a better assessment of model performance.

illustrates the grading strategies employed to assess the severity of

leaf disease. Table 2 illustrates the grading strategies employed to

determine leaf disease severity.
tiers in Plant Science 04
2.2 Model structure

In this study, a model, DINOV2-FCS, is constructed based on the

DINOV2 large vision model for the purpose of classifying and

segmenting diseased leaves of fruits. The DINOv2 model generates

generalized visual features through pre-training on a large amount of

well-curated data, which are effective across different image

distributions and tasks without the need for fine-tuning. The

DINOv2-FCS model uses the DINOv2-B (distilled) as the

backbone. The DINOv2-B model adopts the ViT-B/14 architecture

and consists of 12 consecutive Transformer Blocks. In this study, the

classification and segmentation modules are designed separately to

accomplish fruit leaf disease classification and severity prediction,

respectively, using the features obtained from the backbone.

In the classification module, this study proposes Class-Patch

Feature Fusion Module (C-PFFM) as a method of fusing patch

tokens and class token for effective feature fusion. C-PFFM is

demonstrated to more effectively utilise the features generated by

the backbone for disease classification of fruit leaves, and to

enhance the model’s classification accuracy. In the segmentation

module, the following methods are proposed: Explicit Feature

Fusion Architecture (EFFA) and Alterable Kernel Atrous Spatial

Pyramid Pooling (AKASPP). EFFA fuses explicit feature

information and multilevel feature information. AKASPP fuses
TABLE 2 Grading strategies for the severity of leaf disease.

Disease grade Proportion of disease spots in leaves P

Level 0 0

Level 1 0<P ≤ 10%

Level 2 10%<P ≤ 20%

Level 3 20%<P ≤ 40%

Level 4 40%<P ≤ 60%

Level 5 60%<P ≤ 100%
FIGURE 1

(A) Sample dataset annotation; (B) Sample data augmentation.
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contextual information and detailed edge information from

different sensory fields. These modules greatly enhance the

segmentation performance. The overall model structure is

shown in Figure 2.
2.3 Class-patch feature fusion module

In VIT (Dosovitskiy et al., 2020), the classifier typically inputs

the class token to a fully connected layer, after which the

classification result is obtained. The advantage of this approach is

that the classifier is constructed in a straightforward manner, the

number of parameters is minimal. However, utilising the class token

as the sole input to the classifier will result in the omission of a
Frontiers in Plant Science 05
substantial quantity of local, detailed feature information. To

address this issue, Class-Patch Feature Fusion Module (C-PFFM)

is proposed in this study. C-PFFM effectively fuses the local detail

feature information of patch tokens and the global feature

information of class token, thereby enhancing the model’s

classification accuracy. The operation procedure of C-PFFM is

illustrated in Equation 1.

H = (1 − a) · avgpoolXp + a · Xc

a = CBS((avgpoolXp + Xc))

(
(1)

Xp denotes patch tokens feature; Xc denotes class token feature;

avgpool denotes global average pooling operation; CBS denotes

Convolution + BN + Sigmoid; X denotes output feature map;
FIGURE 3

Structure of C-PFFM.
FIGURE 2

(A) Represents the overall structure of DINOV2-FCS; (B) represents the structure of CAM; (C) represents the structure of Transformer Block.
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The final two layers of the backbone feature extraction network,

patch tokens feature Xp and class token feature Xc, are initially

identified. Feature W is obtained by performing a global average

pooling operation on feature  Xp and summing feature Xc element

by element. The global average pooling operation is illustrated in

Equation 2 The feature W is then subjected to convolution and BN

operations to obtain the channel weights a via the Sigmoid

operation. Feature Xp is subjected to element-by-element matrix

dot-multiplication with the channel weights (1 − a) and the feature.
The obtained features are subjected to element-by-element

summing operation to obtain the patch tokens and class token

fusion feature. The structure of C-PFFM is depicted in Figure 3.

Xavgpool =
1

H �WoH
i=1oW

j=1Xði,jÞ (2)

X denotes the feature map; H denotes the height of the feature

map; W denotes the width of the feature map; Xavgpool denotes the

feature after global average pooling.

Class token contains long-range global feature information and

is often used as input features for classifiers. However, the rich local

detailed feature information contained in patch tokens should not

be ignored. In particular, in the task of classifying fruit leaf diseases,

there is a great similarity between leaf spots of different diseases. If

the detailed features are ignored and only the global features are

focused on, it will lead to poor classification accuracy of the model.

Local information typically encompasses fine structural and local

features within an image, whereas global information encompasses

the overall context and background knowledge. The effective fusion

of the two enables the model to learn a complete and representative

feature, thereby enhancing its ability to comprehend the input data

and its classification performance.
2.4 Explicit feature fusion architecture

SegFormer (Xie et al., 2021) is a straightforward and effective

semantic segmentation framework for Transformer. This approach

avoids complex decoder design and fuses information from different

layers. For semantic segmentation tasks, these feature information are

multi-layered global feature information and lack explicit feature

information, which makes it difficult to segment some tiny targets.

CFPNet (Quan et al., 2023) proposes an Explicit Visual Center (EVC)

that focuses on aggregating local corner-region features of an image

to enhance the feature representation.In this study, Explicit Feature

Fusion Architecture (EFFA) is proposed. The output features from

each of the four stages of the DINOV2 backbone are input into the

MLP layer to obtain global feature information at multiple levels.

Subsequently, the features from the last layer of the DINOV2

backbone are inputted into the EVC to obtain explicit feature

information. The explicit feature information is integrated into the

global feature information of each layer through a summing

operation with the global feature information of multiple layers.

Finally, the multilevel feature information is spliced according to the

channels and fused by a channel attention. The specific structure of

EFFA is illustrated in Figure 2.
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The image of leaf disease exhibits a multitude of spots of varying

sizes. When the model performs segmentation, it is not uncommon

that disease spots are incompletely segmented or subtle spots are

directly ignored. EVC provides a powerful feature enhancement

mechanism for the model. This mechanism enables semantic

segmentation models to recognize and localize objects in an

image with greater accuracy, particularly in the context of images

comprising multiple segmented objects, such as those depicting leaf

diseases. The EFFA proposed in this study fuses explicit feature

information into global feature information at each level,

subsequently fusing multilevel feature information. Multi-level

fusion can exploit the complementarity between the underlying

and higher-level features to enhance the feature representation. The

lowest-level features typically comprise local details and texture

information about the image, whereas the highest-level features

encompass more abstract semantic information. These multilevel

features integrate explicit feature information from EVC.
2.5 Alterable kernel atrous spatial
pyramid pooling

In fruit leaf images, there are numerous spots with intricate

shapes and varying sizes that can significantly impact the

segmentation performance of the model. A Pyramid Pooling

Module (PPM), comprising a set of pooling blocks with distinct

scales, has been proposed in PSPNet (Zhao et al., 2017) based on the

concept of pyramid pooling. The PPM provides a comprehensive

global representation encompassing the interrelationships between

diverse scales and subregions, thereby minimizing the loss of

contextual information. DeepLabv2 (Chen et al., 2017a) proposed

Atrous Spatial Pyramid Pooling (ASPP) to fuse multi-scale

information. In light of this, DeepLabv3 (Chen et al., 2017b) and

DeepLabv3+ (Chen et al., 2018) have enhanced the ASPP module,

achieving notable outcomes. These modules employ diverse scales

of receptive fields for fusion, addressing the issue of varying target

sizes in images. However, in the context of fruit leaf disease images,

the spot targets are also characterised by intricate shapes and

indistinct edges. In this study, a novel approach, AKASPP, is

proposed for the fusion of contextual and detailed edge

information from different receptive fields. This approach is based

on inflated convolution and AKConv (Zhang et al., 2023).

Expansion convolution offers the potential to provide a larger

sensory field than conventional convolution. Conventional

convolution permits the construction of a receptive field of size K �
K when the convolution kernel size is K. In contrast, inflated

convolution provides a receptive field as illustrated in Equation 3

Alterable Kernel Convolution (AKConv) is a new type of

convolutional operation that allows convolution kernels to have

an arbitrary number of parameters and an arbitrary sampling shape.

In contrast to traditional convolution operations, which are

typically constrained to fixed-size windows and fixed sample

shapes, AKConv defines the initial position of an arbitrarily sized

convolution kernel through a novel coordinate generation

algorithm and introduces offsets to accommodate alterations in
frontiersin.org
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the target shape. In semantic segmentation tasks, AKConv can

facilitate more precise local feature extraction and enhanced edge

detail fitting, thereby enhancing the accuracy and detail of

segmentation.

RF = ((r − 1)(K − 1) + K)2 (3)

RF denotes the receptive field of the convolution kernel;r

denotes the expansion rate of the expansion convolution; K

denotes the convolution kernel size;

In this study, AKASPP is proposed for fruit leaf disease images

with complex spot shapes, blurred edges, and different sizes.
Frontiers in Plant Science 07
Figure 4 illustrates the specific structure of AKASPP. AKASPP is

capable of fusing contextual and detailed edge information from

different receptive fields. In order to capture features under different

receptive fields, expansion convolution with different expansion

coefficients is employed. This enables the model to capture a

sufficiently wide range of contextual information at different

scales, thereby improving the recognition of targets of varying

sizes. AKConv permits the convolutional kernel to have an

arbitrary sampling shape, which differs from the traditional fixed

square sampling shape. This flexibility allows the convolutional

kernel to adapt more effectively to the varying shapes of spot targets,

and to be sufficiently flexible to capture image features and fit the

edge details of leaves and spots, thus improving performance.

AKASPP effectively fuses this feature information to better

segment different sizes and shapes of spot targets, and to better

handle the edge portions of leaves and spots.
2.6 Loss functions

The cross-entropy loss function is used in this work as the loss

function when the classification module is being trained. The cross-

entropy loss function is shown in Equation 4. Figure 5A illustrates

the variation of loss during the training of the classification model.

The loss curve gradually becomes smooth after 5000 iterations.

L =   −  
1
N o

N−1
n=0 ylog(p) (4)

L denotes the indicated cross-entropy loss; y denotes the true

label of the pixel; p denotes the prediction result of the pixel; N

denotes the number of difficult samples.

Unbalanced categories or a lack of challenging examples are

common issues in semantic segmentation tasks, which can impair

model performance. In the fruit leaf disease scene segmentation job,

for instance, the disease spot category might only cover a minority

of the space, but the leaf category might represent the majority.

Insufficient performance in predicting other categories may result

from the model’s training primarily focusing on the leaf category.

Online Hard Sample Mining (OHEM) can assist the model in
FIGURE 5

(A) Training classification of losses over iterations; (B) Training segmentation of losses over iterations.
FIGURE 4

Structure of ASPP.
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focusing on difficult and rare samples, thereby improving overall

performance (Shrivastava et al., 2016). In this study, the cross-

entropy loss function of the semantic segmentation module

includes OHEM. The loss function in this study is shown in

Equations 5–7. Figure 5A illustrates the variation of loss during

the training of the segmentation model. The loss curve gradually

becomes smooth after 100000 iterations.

lCE =  −ylog(p) (5)

lHard =   lCE ,   lCE > 0:7 (6)

LohemCE =  
1
MoM−1

m=0 lHard (7)

lCE denotes cross-entropy loss; y denotes the true label of the

pixel; p denotes the prediction result of the pixel; lHard denotes the

loss of difficult samples; LohemCE denotes the loss function in the

OHEM combined with the cross-entropy loss function; M denotes

the number of difficult samples.
3 Experimental results

3.1 Disease classification results

The classification module of the model proposed in this study

achieved a ACC of 99.67% and a Macro F1 of 99.67% on the test set.

Figure 6 presents the evaluation results of five distinct plant disease

classification algorithms, including precision, recall, and F1 score.

The diseases are presented from left to right in the following order:

apple black rot, cedar apple rust, grape black measles, grape black

rot, and strawberry leaf scorch. For each disease, the values of the
Frontiers in Plant Science 08
three evaluation metrics are nearly identical, indicating that the

model proposed in this study has high accuracy in recognizing these

specific plant diseases. Figure 7 depicts a confusion matrix plot for

the purpose of evaluating the performance of a classification model.
FIGURE 7

Confusion matrix for classification results.
FIGURE 8

Histogram of semantic segmentation results.

FIGURE 6

Histogram of classification results.
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The x-axis represents the predicted labels, the y-axis represents the

true labels, the diagonal of the matrix represents the number of

correct disease predictions, and the rest of the matrix represents

misclassifications. As illustrated in the figure, the model exhibited a

high degree of accuracy in classifying diseased leaves in the test set,

correctly identifying the vast majority of samples. Only a small

number of samples were misclassified. For instance, in the sample

pertaining to apple black rot, there were 529 correctly classified

samples, with only 1 misclassified as strawberry leaf scorch. Among

the samples of grape black rot, 483 were correctly classified, while 6

were misclassified as grape black measles due to the high degree of

similarity between the two grape diseases. Nevertheless, the model

achieved satisfactory results. In conclusion, the DINOV2-FCS

proposed in this study is an excellent tool for the classification of

fruit leaf diseases.
3.2 Semantic segmentation results

The semantic segmentation module of the model proposed in

this study achieved a mIoU of 90.29, a PA of 98.13%, and a Macro

F1 of 94.61% on the test set. Figure 8 presents the outcomes of the

evaluation of the semantic segmentation algorithm for three

categories, including three evaluation metrics: IoU, PA, and F1.

The IoU, PA, and F1 for the background category are 0.99, the leaf

category is 0.96, 0.98, and 0.98, respectively, and the disease

category is 0.77, 0.89, and 0.87, respectively. The data in Figure 8

indicates that the background category achieved the best evaluation

results, the leaf category was the next best, and the disease category

had the worst evaluation results. This phenomenon can be

attributed to the fact that in images where the background and

leaves tend to occupy the majority of pixels, the disease only

occupies a small number of pixels. This results in a significant

imbalance in the number of samples, which impedes the network’s

ability to learn sufficient information about the pixels in the disease

category. As illustrated in Figure 9, the vast majority of pixels are

correctly categorized, with only a small number of pixels not being

correctly classified. The figure also demonstrates that the disease

category has a relatively small number of pixels compared to the

other categories. In conclusion, the DINOV2-FCS proposed in this

study demonstrates satisfactory performance in the segmentation of

leaf diseases.
Frontiers in Plant Science 09
3.3 Results of leaf disease
severity prediction

In this study, the fruit leaf disease severity was categorized into

five classes. The model proposed in this work exhibited 95.68%

accuracy in grading prediction on the test set. As illustrated in

Figure 10, the model employed in this study demonstrated

satisfactory performance in predicting the severity of fruit leaf

disease. The proximity between the ratio of diseased spot area to

total leaf area predicted by the model and the true label was high,

with a difference of less than 0.40% observed even in individual

samples where the prediction grading was erroneous. Consequently,

the model in this study exhibited satisfactory capacity for the

measurement of fruit leaf disease severity.
3.4 Comparison of other models

In order to evaluate the performance of the classification

module of DINOV2-FCS proposed in this study, four state-of-

the-art mainstream classification models, namely ResNet (He et al.,

2016), VIT, ConvNext (Liu et al., 2022), and Swin (Liu et al., 2021),

have been selected for comparison. The evaluation metrics chosen

are ACC, Macro F1, and Params. It should be noted that these

models freeze the backbone network during training as

DINOV2-FCS.

Table 3 shows a comparison of the performance of different

models on the fruit leaf disease classification task, where our model

performs best with 99.67% ACC and Macro F1, and the same

number of covariates is about 0.87 × 108. This indicates that the

model proposed in this study achieves top level accuracy and F1

score while maintaining relatively compact parameter scales,

outperforming all the benchmark models compared. Figure 11

shows scatter plots of the ACC and Params counts of the
FIGURE 9

Confusion matrix of semantic segmentation results.
TABLE 3 Classification performance of different models.

Model ACC/% Macro F1/% Params

ResNet101 92.28 92.42 0.43×108

VIT(Base) 97.51 95.57 0.86×108

ConvNext(Base) 98.46 98.50 0.88×108

Swin(Base) 99.29 99.31 0.87×108

Ours 99.67 99.67 0.87×108
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different models, with five points representing five different models.

By observing the position of the points in the plot, we can see that

our model performs very well in terms of Params and ACC,

outperforming the other four models. In summary, the

classification module of DINOV2-FCS proposed in this study is

the most outstanding in terms of performance, not only achieving

the highest accuracy and F1 score, but also comparable to the Swin

base version in terms of model complexity, showing a very high

level of efficiency and optimization.

In order to evaluate the performance of the semantic

segmentation module for DINOV2-FCS proposed in this study,

we selected seven advanced mainstream semantic segmentation

models, namely FCN (Long et al., 2015), Deeplabv3+, SETR (Zheng

et al., 2021), SegMenter (Strudel et al., 2021), SegFormer,

MaskFormer (Cheng et al., 2021) and Mask2Former (Cheng

et al., 2022). The comparison is performed. The evaluation

metrics chosen are mIoU, PA, Macro F1 and Params. It should

be noted that these models are trained with and without backbone
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network freezing, respectively, and DINOV2-FCS proposed in this

study freezes the backbone network during training.

Table 4 shows the performance comparison of several semantic

segmentation models on different evaluation metrics, where

asterisks denote the freezing of the backbone network, and the

model DINOV2-FCS proposed in this study, which leads in all

metrics, with 90.29% of mIoU, 94.61% of Macro F1, 98.13% of PA,

and 1.50 × 108 of Params, reflecting the effectiveness and progress of

the model design. Figure 12 shows the scatter plots of mIoU and

Params for different models, where each color represents one

model. In the models, circles represent training without freezing

the backbone network, triangles represent training with freezing the

backbone network, and pentagram represents the model proposed

in this study. By observing the position of the pentagram in the

figure, we can see that our model outperforms the other models in

terms of Params and mIoU. In the case of freezing the backbone

network, all the other models show performance degradation, but

the model proposed in this study still outperforms all the models in
FIGURE 11

Scatterplot of ACC and Params for different models.
FIGURE 12

Scatterplot of mIoU and Params for different models.
FIGURE 10

(A) Represents the samples with correct prediction of leaf disease severity grading; (B) represents the samples with incorrect prediction of leaf
disease severity grading.
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terms of performance in the case of freezing the backbone network.

In summary, this study proposes that the semantic segmentation

module of DINOV2-FCS has the best performance, not only
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achieving the highest mIoU, Macro F1 and PA. Meanwhile, the

Params is smaller than that of SETR, which demonstrates its

superiority in semantic segmentation tasks.

In Figure 13, the models Mask2Former, SegFormer,

Maskforme, Deeplabv3+, and FCN, which exhibited superior

performance on the dataset, are presented for comparison with

the models in this study. It can be observed that although they also

achieved satisfactory results, instances were identified where a

considerable number of lesions were not entirely segmented, and

even numerous fine lesions were not detected. In contrast, the

model proposed in this study is not subject to the same limitations

when segmenting fruit leaf disease images, and the overall

segmentation effect is superior. This is due to the powerful feature

extraction capability of DINOV2 and the improvement of the

model by the characteristics of the disease spots in this study.
4 Discussions

4.1 Effectiveness of DINOV2
backbone network

In order to verify the feature extraction capability of the

DINOV2 trunk feature extraction network, we performed

principal component analysis (PCA) on the patch features

extracted by the DINOV2 model. The features of the input image

extracted by this model were subjected to PCA dimensionality

reduction in order to map the high-dimensional features to the

three-dimensional space. The background and foreground portions
TABLE 4 Segmentation performance of different models.

Model mIoU/
%

Macro
F1/%

PA/
%

Params

FCN(R101) 83.83 90.30 96.79 0.66×108

FCN(R101)* 77.53 85.34 95.46 0.66×108

Deeplabv3+(R101) 84.32 90.66 96.86 0.60×108

Deeplabv3+(R101)* 82.48 89.31 96.49 0.60×108

SETR(VIT-L) 80.28 87.60 96.06 3.04×108

SETR(VIT-L)* 72.42 80.47 94.55 3.04×108

SegMenter(VIT-B) 82.38 89.23 96.47 1.02×108

SegMenter(VIT-B)* 79.92 87.37 95.84 1.02×108

SegFormer(MIT-B5) 87.96 93.15 97.59 0.82×108

SegFormer(MIT-B5)* 82.11 89.01 96.46 0.82×108

MaskFormer(R152) 86.03 91.88 97.12 0.76×108

MaskFormer(R152)* 83.34 89.96 96.60 0.76×108

Mask2Former(SwinB) 89.39 94.07 97.81 1.07×108

Mask2Former
(SwinB)*

87.10 92.60 97.34 1.07×108

Ours* 90.29 94.61 98.13 1.50×108
(“*” indicates that the backbone network was frozen during model training.)
FIGURE 13

Segmentation effect of different models.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1475282
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Bai et al. 10.3389/fpls.2024.1475282
of the image were then judged based on the results of PCA, with the

principal components of the foreground portion being

renormalized in order to highlight them. The visualization

facilitates comprehension of the feature extraction effect of the

DINOv2 model on the image, as well as the structure and

distribution in the feature space after dimensionality reduction by

PCA. As illustrated in Figure 14, the DINOV2 model exhibits high

performance in distinguishing between foreground and background

regions in the image, and in delineating the boundaries of the main

objects in the picture. Moreover, the DINOV2 backbone feature

extraction network has not encountered these images prior to

extraction, and the backbone feature extraction network remains

fixed throughout the training process of this working model. This

indicates that the DINOV2 backbone feature extraction network is

well-suited for the extraction of features in images of fruit leaves

affected by disease.
4.2 Effectiveness of C-PFFM

In order to verify the effectiveness of the C-PFFM proposed in

this study, ablation experiments are designed to test the

effectiveness of the C-PFFM. In the classification module,

DINOV2 is used as the backbone feature extraction network in

the first group, and one fully connected layer is used as the classifier.

The second experimental group, which combined C-PFFM, was

constituted on the basis of the first group. The evaluation metrics

used are ACC, Macro F1, and Params. The results of the ablation

experiments are presented in Table 5. We performed multiple

replicated experiments on the proposed models. For the

classification model, we selected one of the most important

metrics, ACC, to conduct an ANOVA, and the results show that

the p-value is 3.8×10-4, and the difference is statistically significant.
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As illustrated in the accompanying table, the C-PFFM proposed in

this study has demonstrably enhanced the model’s predictive

capabilities. The benchmark model in the first group achieved an

ACC of 97.80%, a Macro F1 of 97.86%, and a Params value of 0.86 ×

108. In the second group, the C-PFFMwas introduced, which represents

an effective fusion of local detail feature information from the patch

tokens and global feature information from the class token. This

resulted in an enhancement of the classification accuracy of the

model. The model achieved an ACC of 99.67%, a Macro F1 of

99.67% and 0.87×108 for the Params. The model’s accuracy was

significantly enhanced with the same number of parameters. This is

due to the fact that in the initial set of experiments, only the class token

was utilized as input to the fully connected layer, and the class token

contains global feature information over long distances. In the context of

classifying fruit leaf diseases, there is a notable similarity between the leaf

spots of different diseases. This can result in suboptimal model

classification accuracy if detailed features are overlooked and only

global features are prioritized. The C-PFFM proposed in this study

effectively integrates these features, leading to a notable

performance improvement.
4.3 Effectiveness of segmentation modules

In order to ascertain the efficacy of the proposed enhancements

to the segmentation module in this study, ablation experiments
TABLE 5 Classification module ablation experiment.

C-PFFM ACC/% Macro F1/% Params

First group × 97.80 97.86 0.86×108

Second group √ 99.67 99.67 0.87×108
fro
FIGURE 14

Visualization of principal component analysis of DINOV2 generated features.
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have been designed to assess the impact of these improvements. In

the segmentation module, the DINOV2 network is employed as the

backbone feature extraction network in the first group, resulting in

the generation of a segmented image through up-sampling using

the MLP decoder. The second experimental group, which combined

EFFA, was constituted on the basis of the first group. The third

experimental group, which combined AKASPP, was constituted on

the basis of the first group. The fourth experimental group, which

combined EFFA and AKASPP, was constituted on the basis of the

first group. The evaluation indexes are mIoU, Macro F1, PA, and

Params. The results of the ablation experiments are presented in

Table 6. We performed multiple replicated experiments on the

proposed models. For the semantic segmentation model, we

selected one of the most important metrics, MIoU, for ANOVA,

and the results showed that the p-value was 1.5×10-5, and the

difference was statistically significant.

As illustrated in the accompanying table, the proposed

enhancements to the segmentation module have demonstrably

enhanced the model’s performance. The mIoU of the benchmark

model in the first group reached 84.56%, the Macro F1 reached

90.81%, the PA reached 96.98%, and the Params was 0.90 × 108. The

incorporation of the EFFA into the second group, which fuses

explicit feature information with multilevel feature information,

resulted in an mIoU of 88.46%, a Macro F1 of 93.45%, and a PA of

97.77%. Additionally, the Params increased to 1.37 × 108. Despite

an increase in the number of parameters, there was a notable

improvement in accuracy, with an increase of 3.9% in the mIoU.
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This is attributed to the incorporation of explicit feature

information from EVC into multilevel features, which enables the

model to simultaneously consider the details and semantic

information, thereby enhancing its ability to comprehend the

image content. The addition of AKASPP to the third group

enables the fusion of contextual and detail edge information from

different sensory fields, resulting in an mIoU of 89.22%, a Macro F1

of 93.94%, and a PA of 97.93%, with a Params of 1.37 × 108. With a

modest increase in the Params, the mIoU was enhanced by 4.66%,

which can be attributed to the fact that the fruit leaf disease image

spots exhibit complex shapes, fuzzy edges, and varying sizes.

AKASPP effectively fuses contextual and detailed edge

information from disparate sensory fields, enabling more precise

segmentation of diverse spot targets of varying sizes and shapes, as

well as enhanced processing of leaf and spot edge components. The

fourth group incorporated both EFFA and AKASPP, based on the

findings of the first group. This resulted in an mIoU of 90.29%, a

Macro F1 of 94.61%, a PA of 98.13%, and a Params of 1.50×108,

which achieved the optimal performance.
4.4 Validation of model
generalization capabilities

In order to assess the model’s ability to generalize, four of the

five labeled fruit leaf disease datasets were used as the training set,

with one dataset reserved for the test set. The training set includes
TABLE 6 Segmentation module ablation experiment.

EFFA AKASPP mIoU/% Macro F1/% PA/% Params

First group × × 84.56 90.81 96.98 0.90×108

Second group √ × 88.46 93.45 97.77 1.37×108

Third group × √ 89.22 93.94 97.93 1.03×108

Fourth group √ √ 90.29 94.61 98.13 1.50×108
FIGURE 15

(A) Represents the samples with correct prediction of leaf disease severity grading; (B) represents the samples with incorrect prediction of leaf
disease severity grading.
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images of four diseases: apple black rot, cedar apple rust, grape black

measles, and strawberry leaf scorch. The test set includes images of

grape black rot. The semantic segmentation module achieved an

mIoU of 83.95% and the fruit leaf disease severity reached the

grading accuracy of 95.24%, thereby verifying the strong

generalization ability of the model. As illustrated in Figure 15, the

model exhibited strong generalization ability. The model

demonstrated effective performance in segmenting diseases that

had never been encountered before. The proximity between the

ratio of diseased area to total leaf area predicted by the model and

the true label was high, and the difference was minimal even in

individual samples where the prediction was incorrectly graded.
5 Conclusion

In this study, we constructed the model DINOV2-FCS for leaf

disease classification and severity prediction of a variety of fruits

based on the DINOV2 large vision model backbone network. The

model addresses the shortcomings of current models in disease

severity prediction, namely their lack of accuracy and limited

generalizability. DINOV2-FCS employs DINOv2-B (distilled) as

the backbone feature extraction network to enhance the extraction

of features from fruit diseased leaf images. In the context of fruit leaf

disease classification, where the leaf spots of different diseases

exhibit considerable similarity and the loss of detail information

is a significant issue, we propose Class-Patch Feature Fusion

Module (C-PFFM), which fuses the local detail feature

information of patch tokens and the global feature information of

class token. This results in an improvement in the classification

accuracy of the model. In light of the fact that the model frequently

fails to complete the segmentation of lesions, including those that

are subtle, and that lesions are often ignored entirely, we have

enhanced the MLP decoder and proposed EFFA, which fuses

explicit feature information and multi-level feature information.

This has led to an improvement in the segmentation accuracy of the

model. Furthermore, we have proposed AKASPP, which fuses

contextual information and detailed edge information from

different sensory fields, thereby enabling better adaptation to the

varying sizes and shapes of lesion targets and the edge details of

leaves and lesions. To verify the accuracy and generalizability of the

model, two sets of experiments were conducted. First, the labeled

leaf disease dataset of five fruits was randomly divided. The trained

model exhibited an accuracy of 99.67% in disease classification, an

mIoU of 90.29%, and an accuracy of 95.68% in disease severity

classification. These results demonstrate superior performance

compared to other state-of-the-art models. In the generalizability

experiment, four disease data sets were used for training and one for

testing. The mIoU of the trained model reached 83.95%, and the

accuracy of disease severity grading was 95.24%. The strong

generalization ability of the model was verified. The subsequent

stage of the process involves the augmentation of the dataset with
Frontiers in Plant Science 14
respect to both species diversity and environmental diversity,

thereby aligning it with more realistic scenarios. Furthermore, the

model was tested on an NVIDIA GeForce RTX 3090 graphics card,

achieving an inference speed of 21.56 frames per second (F/S). The

next phase of the project will focus on refining the model to enable

its deployment on mobile devices. This will support agricultural

workers by assisting with disease identification in the field.
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