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toth.viktor@blki.hu

RECEIVED 05 August 2024

ACCEPTED 22 November 2024
PUBLISHED 08 January 2025

CITATION
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Common reed (Phragmites australis) is a cosmopolitan species, though its

dieback is a worldwide phenomenon. In order to assess the evolutionary role

of phenotypic plasticity in a successful plant, the values and plasticity of

photophysiological traits of Phragmites australis were investigated in the Lake

Fertő wetlands at 5 sites with different degrees of reed degradation and along a

seasonal sequence. On the one hand, along the established ecological

degradation gradient, photophysiological traits of Phragmites changed

significantly, affecting plant productivity, although no consistent gradient-type

trends were observed. Gradual changes within a season in the values of

photosynthetic traits were observed that were recorded in both degraded and

stable stands, suggesting a universal response to seasonally changing

environmental conditions that could not be overridden by the ecological

gradient. On the other hand, reed plants exposed to different levels of

degradation showed comparable physiological plasticity; there was no

difference in trait variability between stable and degraded stands. This relatively

uniform plasticity is likely to contribute to the resilience of reed plants by

providing a wider range of adaptive traits under different conditions. In

contrast, the 150-200% gradual change in photophysiological trait plasticity

with senescence in Phragmites was also demonstrated, reflecting a more

dynamic response of the photosynthetic apparatus to seasonal changes.

Senescence affected the plasticity of plant traits independently of their

degradation status, suggesting a more universal nature of seasonal changes.

This research shows that under conditions of conservative resource use

determined by stressful habitats, trait values respond to conditions, while trait

plasticity shows minimal changes. Furthermore, phenological sequence

significantly influenced both the values and the plasticity of the photosynthetic

traits studied. Our results underline the impact of ecological degradation on reed

physiology and highlight the importance of understanding both trait values and

plasticity in plant responses to environmental and seasonal change.
KEYWORDS

phenotypic plasticity, Phragmites degradation, reed photophysiology, trait
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1 Introduction

The natural world exhibits considerable temporal and spatial

variability, and in order to be successful organisms must evolve the

ability to adapt to these changing conditions. Common reed

(Phragmites australis (Cav.) Trin ex Steud – referred to in this

text as Phragmites and reed), is a widespread perennial emergent

aquatic plant that can dominate vast areas by forming extensive

monocultures in its habitats and can be found in wetland and

aquatic habitats around the world. Its cosmopolitan distribution

highlights its remarkable ability to acclimate and adapt to a wide

range of environmental conditions, from pristine wetlands to

anthropogenically altered ecosystems. Phragmites not only

possesses a wide range of competitive traits (Kettenring et al.,

2012; Eller et al., 2014), but also a significant plasticity of these

traits that determines the success of the species under very different

environmental conditions (Vretare et al., 2001; Mozdzer and

Zieman, 2010; Eller et al., 2017). This success of the common

reed in different habitats underlines the importance of

understanding the trait variability of successful species in relation

to environmental gradients and developmental stages (Clevering

and Lissner, 1999; Meyerson et al., 2016; Eller et al., 2017), thus

making it an interesting subject to study the adaptability of plants as

well as facilitating its effective conservation and management.

While genetic diversity remains the key component of

biodiversity, structuring, functioning and stabilising ecosystems

(Salo and Gustafsson, 2016; Carvalho et al., 2019), knowledge of

the effects of phenotypic plasticity (trait variability) on growth and

functioning of wetland plants remains limited (Chambers et al.,

2008). The plastic response of Phragmites to various extreme

conditions serves to increase the success of the species

(Clevering et al., 2001; Vretare et al., 2001; Engloner, 2009),

although the functional value of this plasticity, its evolutionary

role, has not been fully explored and thus understood. The

importance and role of phenotypic plasticity in organismal

adaptation to environmental change is probably related to its

dynamic nature. Researchers have investigated various

mechanisms underlying phenotypic plasticity, and experimental

evidence has shown that phenotypic plasticity can enable

organisms to adjust their morphology and physiology in

response to environmental cues, thereby enhancing their fitness

and survival (Ghalambor et al., 2007; Valladares et al., 2007;

Nicotra et al., 2010).

Although phenotypic plasticity is intrinsic to organisms, it is not

static and can be modulated by various factors. Research has shown

that phenotypic plasticity can change over time, even within weeks,

with factors such as senescence or seasonal variation influencing its

expression (Nicotra et al., 2010; Stotz et al., 2021). Studies have

shown that as organisms age, their capacity for phenotypic plasticity

may decrease due to physiological changes or reduced

environmental sensitivity. In addition, phenotypic plasticity can

vary within a year in response to seasonal cues such as changes in

temperature, photoperiod or resource availability (Nicotra et al.,

2010; Stotz et al., 2021). These environmental fluctuations can

trigger phenotypic adaptations, resulting in temporal shifts in the
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expression of plastic traits. Thus, phenotypic plasticity exhibits a

dynamism that is shaped by both intrinsic and extrinsic factors,

highlighting its adaptability in facilitating organismal responses to

changing environmental conditions.

Studying functional traits and their plasticity in an otherwise

successful plant could be useful in unravelling the mechanisms

behind its adaptability and ecological success (Ackerly et al., 2000;

Reich et al., 2003). Photosynthesis is a fundamental physiological

process that directly influences plant growth and productivity, and

patterns of intraspecific trait variation could provide valuable insights

into the role of photosynthetic traits in evolutionary adaptation (Arntz

and Delph, 2001; Maire et al., 2015). By studying how photosynthetic

traits vary along ecological gradients and across phenological

sequences, we can gain insights into the adaptive strategies used by

populations to cope with different environmental challenges (McKown

et al., 2013; Fajardo and Siefert, 2016).

Understanding the dynamics of photosynthetic traits in

Phragmites australis populations with different ecological and

phenological backgrounds contributes to the understanding of

how divergence in photosynthetic traits could lead to

evolutionary advantages for species and, consequently, have

broader ecological and conservation goals (Lessmann et al., 2001;

Mészáros et al., 2003; Tóth, 2016). Common reed has been shown to

be able to adapt to very different environments by maintaining a

higher photosynthetic capacity in different habitats compared to

other species (Lessmann et al., 2001; Engloner, 2009; Eller et al.,

2017). This higher rate allows reeds to fix more carbon, giving them

a significant advantage in terms of biomass production and species

expansion. Chlorophyll fluorescence techniques are convenient, fast

and important tools in plant physiology studies, as they provide a

non-invasive way to monitor the photosynthetic performance of

plants (Roháček et al., 2008; Kalaji et al., 2016; Tóth, 2018; Tóth

et al., 2019). As an early indicator of stress manifestation in plants, it

can be used to determine and understand heterogeneity in leaf

photochemical efficiency (Li et al., 2004; Stratoulias et al., 2015;

Tóth, 2016, 2018) and can provide useful information on leaf

photosynthetic performance.

The phenomenon of reed die-back has been observed across

numerous lakes throughout Europe, with over 35 cases documented

(Ostendorp, 1989; van der Putten, 1997), though some areas of

North America experiencing similar phenomena (Reed and

Cahoon, 1992; Visser et al., 1999). The die-back was primarily

attributed to human interventions that altered the natural

environments of these aquatic ecosystems. The common reed has

experienced large-scale declines, especially in areas where

hydrological regimes, water quality, or land use have been

modified by anthropogenic activities. The most pronounced

impacts have been observed in lakes that have undergone water-

level regulation, eutrophication, and habitat fragmentation, with

reed beds breaking up, reduced vitality, and eventual loss of large

sections of reed cover.

In response to the alarming prevalence and severity of reed die-

back, the European project EUREED was initiated (van der Putten,

1997; Brix, 1999). The project’s objective was to analyse the

mechanisms regulating the growth dynamics and stability of reed-
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dominated ecosystems, develop models and predictions of the

impact of human activities and climate change, and devise

management strategies for reed die-back (van der Putten, 1997;

Brix, 1999). The project identifies a number of factors contributing

to the dieback of Phragmites in Europe, including eutrophication,

water management practices, genetic diversity constraints,

mechanical disturbances, pollution and climate change. It seems

important that these factors are addressed through integrated

management strategies if reed ecosystems across the continent are

to be conserved and restored (van der Putten, 1997; Brix, 1999,

1999; Čıž́ková et al., 2000).

Hungarian lakes have not been exempt from the die-back

tendency, as Lake Fertő and other lakes and wetlands in Hungary

experienced significant reed disappearance during the same period

(Dinka et al., 2010; Tóth, 2016). Human activities, including water

regulation, urbanisation and inadequate reed management

practices, have been identified as contributing factors for

Hungarian lakes too. The loss of reed stands in these areas has

not only resulted in a reduction in habitat availability for a diverse

range of species, thereby impacting the ecosystem services they

provide, but it remains a significant challenge for the conservation

of European wetlands. This research aimed to understand changes

in photosynthetic traits along an ecological gradient and

developmental stages within a season. This study proposes a

hypothesis that differences between the studied reed stands

(ecological gradient) will have a significant effect on the values
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(a1) and plasticity (a2) of the studied photosynthetic traits. It further

hypothesised that seasonal changes (phenological sequence) will

have a significant effect on the values (b1) and plasticity (b2) of the

studied photosynthetic traits.
2 Materials and methods

2.1 Study area

Lake Fertő/Neusiedl is a large water body (309 km2) on the

border of Hungary and Austria (N47.71, E16.73 - Figure 1). It is an

endorheic lake with a relatively small catchment area of 1120 km².

The lake is shallow: the average depth is 0.7 metres, while the

average depth of the pelagic parts is 1.4 metres. Lake Fertő can be

divided into two distinct parts: the pelagic (open water) zone and

the wetland area; the water quality and environmental conditions in

each zone are unique. The 85% of the Hungarian part of the lake is

covered with reeds, although the overall coverage of the lake is lower

(55% or about 170 km2). Over time, the ecological status of the reed

beds has deteriorated, particularly in the Hungarian section (Dinka

et al., 2004, 2010). This deterioration has been caused by both

natural and anthropogenic factors. Natural causes include

senescence (most reed stands are more than a decade old and

may be subject to dieback), zonation related to water depth (areas of

waterlogged reed stands without direct freshwater inflow often have
FIGURE 1

(A) Location of Lake Fertő (blue polygon) in Central Europe between Hungary (grey colour) and Austria. (B) Position of sampling points in the reed
beds (green colour) of Lake Fertő. The numbering indicates the degree of degradation of the reed stands: F1 - stable site, F2 - terrestrial stable site,
F3 - moderately degraded site, F4 - severely degraded site, F5 - dieback site. The artificial canal structure of the wetland is indicated by blue lines
within the green reed stands.
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high dissolved organic matter content) and successional changes

(drying up of parts of the wetland and transition to grassland).

However, anthropogenic factors such as inappropriate reed

management practices and infrastructure development are likely

to be the main drivers of this degradation.

Over the past 20 years, local water authorities have attempted to

rehabilitate the reed stands by reconstructing canals within the

wetlands to improve water supply to isolated reed stands (Figure 1).

Unfortunately, the technology used in these reconstructions has

been ineffective. The combination of these factors has resulted in

significant habitat variability, with reed stands in the Hungarian

part of Lake Fertő now showing varying degrees of degradation.

The aim of this manuscript is not to detail the factors causing

this degradation, but rather to quantify its effects using Phragmites

morphology as a proxy to encapsulate the effects of degradation.

Although the quality of the reed beds has changed over the study

period, the data presented are of scientific value not only at a local

scale but also to macrophyte ecologists worldwide.
2.2 Macrophyte morphology and study
site characterisation

To accurately categorise the selected sites ecologically, the

morphological characteristics of the reed plants at each site were

assessed during the peak vegetation period of the previous year

(August 2019) and used as a proxy to describe the degree of

degradation at these sites. At each sampling site 15 Phragmites

plants were randomly collected cutting them either at water surface

or sediment level. Stem height was determined from cut surface to

the tip of the top leaf with a measuring tape. Water depth was

measured at each site and added to plant height. Diameter in the

middle of the basal internode of each reed stem was measured with

a vernier calliper, green and dry leaves of each plant were counted,

number of nodes was determined. Plant density was measured three

times at each site using a 50 x 50 cm quadrat. The initial point of

quadrat placement was randomly selected and subsequent quadrats

were placed at 6 m intervals along a marked rope. All green

Phragmites plants within each quadrat were counted.

Based on these data and experience of previous years reed

stands of Lake Fertő were divided into 5 degradational categories

(F1-F5) described as follows:
Fron
• The stable reed stand (F1) in Lake Fertő was highly

monospecific, with vegetation that was tall, dense, and

homogeneous (Figure 1). The stand was continuously

exposed to wave action. The water depth on the water

side of the stand ranged from 50 to 100 cm, and new reed

vegetation grew vigorously along the water’s edge.

• The sampling site at the terrestrial edge of Lake Fertő’s

wetland (Figure 1 - F2) contained approximately 5-10%

non-Phragmites species. The reed plants within this stand

exhibited significant height, density, and uniformity. The

water depth throughout the extent of the reed stand at the

sampling site was uniform, ranging from 10 to 30 cm.
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• The mildly degraded sampling site F3 was located in the

centre of the wetland of Lake Fertő and was characterised by

its monospecific nature, consisting mainly of Phragmites

species (Figure 1). The reed plants within this stand

exhibited remarkable height and density. However, small

patches with no reed growth were observed in the otherwise

homogeneous reed stand. The landscape was further

marked by the construction of water management canals

by the water authorities around the sampling site. At the

sampling site, the reed stand maintained a consistent water

depth of 0-20 cm throughout its extent.

• The moderately degraded sampling site F4 was situated in

the centre of the wetland of Lake Fertő and had a species

composition of 5-10% other than Phragmites (Figure 1).

Within this stand, the reed plants were smaller and thinner,

and the area was less densely populated, with frequent 10-

20 square metre patches without vegetation. Water

management canals were also present in the vicinity of

the site. The water depth at the site ranged from 20-40 cm.

• The die-back reed stand of the wetland of Lake Fertő

(Figure 1 - F5) was result of a high level ecological

degradation. Approximately 70% of the area was without

any vegetation (0 plants m-2), while the remaining area was

covered by 0.1-0.5 m2 patches of clumped reeds of extreme

density of approximately 300-400 individuals per square

metre. The reed plants within these patches were small and

thin. Near the sampling site, artificial canals were

reconstructed 10 years ago to rehabilitate the area, and

the water depth remained consistently low, ranging from 0

to 30 cm throughout the affected area.
2.3 Macrophyte
photophysiological measurements

Using the above site categorisations, chlorophyll fluorescence

parameters were measured in 2020 and 2021 using a chlorophyll

fluorometer (PAM-2500, Heinz Walz GmbH, Germany) between

9:00 and 15:00. Measurements were performed at least once a

month between April and October. Plants were randomly selected

using a marked rope with evenly spaced knots at 3 metre intervals,

and a plant was selected nearest to the knot. However, preference

was given to selecting average looking, intact plants. For sites F1-F4,

measurements were taken along the waterward part of the reed

stand, ~4 metres into the stand. At site F5, the reeds were clumped

at varying distances, so it was decided to select the six closest

clumped reeds within a manageable distance (less than 30 by 30

metres). The study areas at each site were deliberately minimised to

reduce environmental variability and ensure more uniform

conditions. At each site chlorophyll fluorescence measurements

were made on the youngest, largest intact leaves. During this, light

response curves [i.e., the electron transport rate (ETR) of the

photosystem II (PSII) as a function of photosynthetically active

radiation (PAR)] were measured. After dark adaptation (20
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minutes), emitted initial fluorescence yield (Fo) and maximal

fluorescence yield (Fm) resulting from a pulse of a saturated light

(630 nm, intensity 3000 mmol m−2 s−1) were determined. From

these, the photochemical PSII efficiency (Fv/Fm), coefficient of

photochemical quenching (qP), and coefficient of non-

photochemical quenching (qN) were calculated (Table 1). The

measured leaves were exposed to 11 actinic lights for a duration

of 15 seconds, at 630 nm, with an intensity of between 5 and

787 mmol m−2 s−1, and the ETR values were measured after each

illumination step with a new pulse of saturated (3000 μmol m-2 s-1)

light. Exponentially saturating curves (Eilers and Peeters, 1988)

were fit to the light response data, and the maximum ETR

(ETRmax), theoretical saturation light intensity (Ik), and

maximum quantum yield for whole chain electron transport (a)
were retrieved using formula from this study (Genty et al., 1989).
2.4 Statistics

Several statistics were used in this study using R statistical software

(R Development Core Team, 2012). Descriptive statistics, including

means, standard deviations and ranges, were calculated to provide a

general overview of the data. One-way ANOVA was used to compare

the means of photosynthetic traits between reed stands classified into

different degradation levels (F1-F5). The assumptions of normality and

homogeneity of variances were tested using Shapiro-Wilk and Levene’s

tests. Two-way ANOVA was used to analyse the effects of two factors

(e.g. degradation level and seasonality) on photosynthetic traits. The

assumptions of normality and homogeneity of variances were also

tested using Shapiro-Wilk and Levene’s tests. Pearson product-

moment correlation was used to examine relationships between

photosynthetic traits and their plasticity, and between site

degradation eigenvalue and month of the year, assuming normality

of residuals (tested with the Shapiro-Wilk test) and homoscedasticity

(checked visually with residual plots). Where assumptions of ANOVA

or Pearson correlation were violated, log transformations were used to

normalise the data and stabilise variances.

The plasticity of photophysiological responses in this study was

quantified using the coefficient of variance (CV), which is a

statistical measure of the relative variability of a parameter. The

CV expresses the extent of variability in relation to the mean of the

parameter. For each photophysiological trait measured at a specific

spot (F1-F5) on a given date (month), the CV was calculated as

follows:
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s
m

� �
,

where s - is the standard deviation of the measured parameters,

while μ - is the mean value of the measured parameter (Schlichting

and Levin, 1984).
3 Results

3.1 Site characterisation

The selected reed stands of Lake Fertő were arranged along a

degradation gradient based on their morphological parameters

(Table 2; Figure 2). Some of the recorded traits showed clear

signs of Phragmites degradation, especially height, diameter,

biomass and leaf biomass (Table 2), while other parameters were

not affected by degradation. The changes in morphological

parameters across the degradation gradient were not equidistant

or linear, as F1, F2 and F3 showed significant similarity, whereas F4

and F5 were more affected by degradation. For example, the average

stem height of reeds in F1, F2 and F3 stands was 326, 295 and 280

cm respectively, while plants in degraded (F4) and dieback (F5)

stands were 34% and 48% smaller than those in F1 (Table 2).

Similar trends were observed for basal diameter, number of nodes,

and average plant biomass (Table 2).

The variation in plant density between sampling sites also reflected

the response of plants to the different ecological conditions of their

stands. Higher densities (F1 = 67 plants m-2, F2 = 79 plants m-2)

indicated optimal conditions and more established stands, whereas the

lower densities of site F3 (61 plants m-2) indicated an established, but

slightly disturbed and less dense reed stand compared to F1 and F2.

The F4 and F5 sites (48 and 7 plants m-2, respectively) indicated that

reed plants were responding to developing challenges and significant

ecological degradation.

The dry biomass of green Phragmites plants in the wetlands of Lake

Fertő varied significantly between 0.2 and 1.9 kg m-2. Higher biomass

values (F1 = 1.6, F2 = 1.9, F3 = 1.8 kg m-2) indicate more productive

areas in the favourable conditions of the stable stands, while in the

degraded and dieback areas of F4 and F5 the lower values (0.7 and 0.2

kg m-2, respectively) indicated a substantial decrease in the overall

productivity of the plants due to the suboptimal conditions.

The principal component analysis showed that the reed stands

at sampling sites F1, F2 and F3 were grouped together, while F4 and
TABLE 1 Fluorescence parameters derived from PAM fluorometry, including equations for minimum (F0) and maximum (Fm) fluorescence yields,
apparent (Fs) and maximum (Fm′) fluorescence values, irradiance (I) and empirical absorption factor (AF=0.84).

Parameter Name Equation Reference

Fv/Fm maximum quantum efficiency of PSII (Fm − F0)/Fm (Schreiber, 1998)

qP photochemical quenching (Fm’−Fs)/(Fm’−F0′) (Titus and Adams, 1979)

qN non-photochemical quenching 1−(Fm’−F0’)/(Fm−F0) (Titus and Adams, 1979)

ETR electron transport rate (Fm’−Fs)/(Fm’)·I·AF·0.5 (Schreiber et al., 1995)
Further details can be found in the cited literature.
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F5 were separated from this group to varying degrees, although only

sampling site F5 exhibited difference (Figure 2). The eigenvalues

using Component 1 of the PCA of each site with the assigned

degradation level (F1 - stable reed stand, etc., F5 - dying reed stand)

were used in the correlation analysis (Figure 2; Table 3).
3.2 Photophysiology data

The photophysiological traits of Phragmites plants were

significantly affected by both their ecological (level of degradation)

and phenological status, as well as their interaction (Figure 3; Tables 3,

4). The studied photophysiological traits described the potential

photosynthetic efficiency of reed plants from different stands as it
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was affected by the process of reed degradation: minor, though

significant effects were connected to the degradation of the reed

stands (Figure 3; Supplementary Figure S1; Table 4), suggesting a

reduction in the efficiency of light absorption and electron transport

and resulting in lower potential photosynthetic rates. Parallel to this,

gradual increase in qN (non-photochemical quenching) showed the

increased disbalance in photochemical and non-photochemical

processes of the degraded stands, for example increased intensity of

photoprotection processes (Figure 3D).

The photophysiological parameters also exhibited significant

seasonal changes that exceeded the effects caused by degradation

(Figure 3; Supplementary Figure 2; Tables 3, 4). Except for qN, all

major photophysiological parameters started from high values in

spring and gradually decreased towards the end of the season, as
FIGURE 2

Principal components analysis of morphological traits of studied reed stands from August of 2019. Convex hulls show the data distribution at each
study site (F1 – stand is a stable stand, F2 – semi-terrestrial stand, F3 and F4 – degrading sites, F5 – is the die-back site), percentage of explained
variation are shown on the graph axis, biplots (green lines) represent a projection of the original, morphological axes (variables) onto
the scattergram.
TABLE 2 Biometric properties of Phragmites australis plants from the studied reed stands in Lake Fertő in August of 2019 (n=15).

Water
depth (cm)

Height (cm) Diameter
(mm)

Green leaf Node
number

Biomass (g) Leaf
biomass (%)

F1 74 ± 13 252.7 ± 17.1 7.2 ± 1.8 11.6 ± 0.6 20.6 ± 5.4 23.5 ± 3.4 32.1 ± 0.8

F2 27 ± 34 268.6 ± 44.5 7.7 ± 0.6 9.5 ± 2.7 19.7 ± 8.1 24.1 ± 5.2 27.5 ± 5.0

F3 11 ± 7 269.9 ± 57.5 7.6 ± 1.1 12.4 ± 4.3 22.0 ± 4.9 29.4 ± 11.6 31.4 ± 3.1

F4 23 ± 18 190.2 ± 16.7 7.1 ± 0.4 12.5 ± 3.8 19.1 ± 5.2 14.3 ± 3.9 32.1 ± 5.8

F5 6 ± 8 163.05 ± 8.1 5.1 ± 0.6 11.0 ± 2.6 16.9 ± 4.5 9.6 ± 2.0 29.6 ± 4.9

ANOVA

F 30.6 15.8 2.4 1.6 25.1 3.2

P <0.001 <0.001 0.059 0.180 <0.001 0.019
F1 and F2 are stable aquatic and terrestrial stands, F3 and F4 are stands at different degree of degradation, while F5 is a die-back stand.
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seasonal senescence caused a decrease in light absorption and electron

transport efficiency of the plants (Figures 3B, C, E). Specifically,

ETRmax, Ik and qP decreased by 57%, 51% and 45%, respectively,

regardless of the ecological status of the reed stands (Figures 3B, C, E;
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Supplementary Figure 2; Tables 3, 4). The likelihood of experiencing

oxidative stress increased with plant age, resulting in a decrease in the

maximum quantum efficiency of PS II (Fv/Fm) from 0.80 to 0.76 (a 5%

decrease) (Figure 3F). To protect against this oxidative stress and to

mitigate the excess energy absorption resulting from the decreased light

absorption efficiency, non-photochemical quenching (qN) increased

by approximately 23% (Figure 3D).
3.3 Plasticity of photophysiological data

Plasticity of the studied photophysiological traits (Figure 4;

Supplementary Figure S3; Table 5) were not affected by the different

degradation level of the reeds stands. Generally, sites F1, F2 and F3

exhibited the highest variability in most cases, while plants in the

degraded reed stands (F4 and F5) had the lowest variability (Figure 4).

It is worth noting that ETRmax and Ik exhibited the highest variability

overall, at approximately 0.3, while Fv/Fm showed the lowest variability,

at approximately 0.05.

The plasticity of the photophysiological traits mostly showed an

increasing seasonal trend (Figure 4; Supplementary Figure S4;

Table 5). In most cases, trait variability within the season nearly
FIGURE 3

Expression of photophysiological traits of Phragmites australis in Lake Fertő during the study period (2020-2021) at sites with different degrees of
degradation (F1 - stable to F5 - dying reeds). The figure shows the monthly averages of twelve measurements per site. Panel (A) shows the
photosynthetic efficiency of photosystem II (a, the initial slope of the light curve), (B) shows the maximum electron transport rate (ETRmax), (C)
shows the light saturation point (Ik, the light intensity at which ETRmax is reached), (D) shows the non-photochemical quenching (qN, indicating
thermal dissipation of excess light energy), (E) shows photochemical quenching (qP, reflecting the fraction of open reaction centres), and panel (F)
shows the maximum quantum yield of photosystem II (Fv/Fm, a measure of photosynthetic performance and stress level).
TABLE 3 Pearson product moment correlation (correlation coefficient
and its significance - rp) between the studied photophysiological
parameters (data) of Phragmites australis plants and their variability (cv)
with the site eigenvalue (site, n=84) and the month of year (n=12).

Data CV

Site Month Site Month

a 0.366 -0.74 -0.767 0.758

ETRmax 0.892 -0.968 0.713 0.691

Ik 0.486 -0.978 0.872 0.964

qP 0.484 -0.927 0.718 0.898

qN -0.783 0.891 0.539 -0.841

Fv/Fm -0.090 -0.809 0.375 0.866
The shown parameters are the maximum electron transport capacity (ETRmax), the theoretical
saturation light intensity (Ik), the non-photochemical quenching (qN), the photochemical
quenching (qP), maximum quantum efficiency of PSII (Fv/Fm) of Phragmites australis plants.
The significance of the correlations.
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doubled, although the increase in photochemical quenching and the

maximum quantum efficiency of PS II was even higher (qP – 172%,

Fv/Fm – 143%). The plasticity of non-photochemical quenching

(qN) decreased, indicating a significant reduction in variability of

this parameter by the end of vegetation season (Figure 4D). In the
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background of majority of temporal variability were the seasonal

changes of ETRmax, qP, Ik and qN (Supplementary Figures S5–S9).

The stability in annual mean photophysiological traits is shown on

Supplementary Figure S10.
4 Discussion

The symptoms of reed dieback around the world are very similar,

i.e. retreat from deep water, increased inhomogeneity and clumping,

reduction in stem density, size and diameter, and premature senescence

of plants (Armstrong et al., 1996; van der Putten, 1997; Armstrong and

Armstrong, 1999; Brix, 1999; Tóth, 2016). In this work, the studied reed

stands of Lake Fertő were categorised into stages of degradation based

on their morphological appearance, plant density and stand

homogeneity. The result of the categorisation was not equidistant, as

e.g. the stable (F1 - deep water stand and F2 - terrestrial stand) and the

moderately degraded (F3) reed stands were somewhat similar and were

grouped in a related ecotype. The F3 stand provided an excellent

example of the resilience of Phragmites, i.e. how reed stands can recover

under the right conditions: the previously degraded (inhomogeneous,

smaller) F3 reed stand changed its appearance due to the low water
FIGURE 4

Plasticity of photophysiological traits of Phragmites australis in Lake Fertő during the study period (2020-2021) at sites with different degrees of
degradation (F1 - stable to F5 - dying reeds). Plasticity was calculated as coefficient of variation (cv). Figures show average of 2 sets of
measurements (2020 and 2021) per site per month. Panel (A) shows the cv of the photosynthetic efficiency of photosystem II (a, the initial slope of
the light curve), (B) shows the cv of the maximum electron transport rate (ETRmax), (C) shows the cv of the light saturation point (Ik, the light intensity
at which ETRmax is reached), (D) shows the cv of the non-photochemical quenching (qN, indicating thermal dissipation of excess light energy), (E)
shows the cv of photochemical quenching (qP, reflecting the fraction of open reaction centres), and panel (F) shows the cv of the maximum
quantum yield of photosystem II (Fv/Fm, a measure of photosynthetic performance and stress level).
TABLE 4 Two-way ANOVA of photophysiological traits of Phragmites
australis plants in the wetlands of Lake Fertő.

Site Month Interaction

a 8.17*** 11.88*** 4.12***

ETRmax 8.30*** 88.98*** 2.79***

Ik 10.13*** 59.56*** 2.15**

qP 3.20* 90.60*** 2.16**

qN 7.52*** 14.58*** 1.92*

Fv/Fm 4.15** 9.35*** 1.91*
F-test values and significance are shown (Fp). The measured traits are the maximum electron
transport capacity (ETRmax), the theoretical saturation light intensity (Ik), the non-
photochemical quenching (qN), the photochemical quenching (qP), maximum quantum
efficiency of PSII (Fv/Fm) of Phragmites plants. The significance of the correlations: *p<0.05,
**p<0.01, ***p<0.001.
Main factors: sites (degradation level) and months.
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levels of Lake Fertő in 2020 and 2021. This led to an improvement of

the ecological conditions in the surroundings of F3 and consequently to

an improvement of the photophysiological parameters measured.

Although these environmental conditions led to an improvement in

the moderately degraded reed stands, the degraded (F4) and dying (F5)

stands were not affected and showed no signs of regeneration in 2020

and 2021.

Along the established ecological gradient, photophysiological

traits of Phragmites changed in a well-defined pattern making a1

hypothesis supported. The differences between sites were

significant, but not equidistant, thus no prominent trends along

the studied ecological gradient were identified, except for maximum

electron transport capacity (ETRmax). This apparent stability of

photophysiological traits and their independence from reed stand

degradation may be due to the large genetic variation of the

Phragmites (Lambertini et al., 2008; Engloner and Major, 2011;

Eller et al., 2017) paired with a high trait plasticity of plants

(Clevering et al., 2001; Eller and Brix, 2012; Tóth, 2016), while

data of the research suggest also a compensatory effect of

phenological changes in reed populations.

On the contrary, notable seasonal variations in the

photosynthetic traits were recorded (b1 - supported), and these

trends were consistent both in degraded and stable reed stands.

Along the growing season, significant decrease (or increase in the case

of non-photochemical quenching - qN) in monthly averages,

regardless of degradation level were observed, suggesting a

universal response of reed photophysiological traits to changing

seasonal environmental conditions. Although Phragmites plants in

the Fertő wetlands have been exposed to very similar dynamic

changes in environmental conditions from April to October for

millennia, the autumn changes cause stress that is compensated by

adjustments in photosynthetic parameters in all reed stands

regardless of the degree of degradation. The pattern of changes

may be driven by seasonal shift of environmental factors such as

temperature, light quantity and quality, etc., which have a strong

influence on photophysiological traits.

Despite differences in habitat quality and structural characteristics

between degraded and stable stands, reed plants of Lake Fertő exhibited

considerable and comparable photophysiological plasticity (a2 – not
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supported), allowing them to adapt to different environments and

maintain a relatively constant level of photosynthetic performance

under changing ecological conditions. The photophysiological

plasticity of Phragmites plants often involves mechanisms such as

altering photosynthetic rates and/or modulating enzyme activities to

optimise resource use efficiency (Lessmann et al., 2001; Pagter et al.,

2005; Tóth, 2016, 2018). In addition, it cannot be excluded that genetic

diversity within the reed population of Lake Fertő may increase

resilience by providing a wider range of adaptive traits. This genetic

variation allows some clones to possess traits that confer resilience to

specific environmental stressors associated with degradation, such as

changes in sediment redox potential, permanent inundation, or

other stresses.

A significant increase in the plasticity of photophysiological

parameters with seasonal senescence in Phragmites plants in Lake

Fertő suggests a dynamic response of the photosynthetic apparatus and

makes the b2 hypothesis of this study true. Senescence is a natural

physiological process in plants in which older tissues degrade or

transform during the later stages of the plant life cycle (Gan and

Amasino, 1997; Liu et al., 2016; Woo et al., 2019). During senescence,

stochastic changes may occur in the chloroplasts and photosynthetic

system of older leaves, leading to the increased plasticity in

photochemical parameters observed in this study, although the

nature of the observed trend in plasticity (Supplementary Figure S4)

may imply an unknown deterministic background. This, combined

with seasonal changes in environmental conditions (such as lower

temperatures in autumn and changes in optical properties), may

contribute to the increased plasticity observed with senescence.

Meanwhile, other environmental, plant physiological, genetic and

phenotypic factors that may be associated with degraded Phragmites

stands do not significantly affect the plastic response of reed plants.

This suggests a very specific mechanism of regulation of Phragmites

plasticity, primarily driven by plant senescence and independent of the

degradation status of reed stands.
5 Conclusion

It is consistent with the literature suggesting that certain groups

of Phragmites are able to acclimate to specific environmental

changes due to the increase of their phenotypic plasticity (Eller

et al., 2017; Ren et al., 2020). The data from the study showed that

the values of the studied photosynthetic traits of reed were indeed

lower in the degraded and die-back sites. The observed reduction of

photosynthetic trait values in degraded reed stands underlines the

detrimental effects of ecological degradation on plant physiological

processes. Contrary to the initial hypothesis, the analysis showed

that the plasticity of the traits studied were not statistically

significantly different between the degraded and more stable reed

stands. The lack of significant differences in plasticity between

degraded and stable reed stands suggests that phenotypic

flexibility may not vary significantly with ecological stability.

These findings highlight the refined responses of common reed to

ecological gradients, and emphasise the importance of considering

both trait values and plasticity in understanding plant responses to

environmental change.
TABLE 5 Two-way ANOVA of plasticity of photophysiological traits of
Phragmites australis plants in the wetlands of Lake Fertő.

Site Month

a 0.51 1.26

ETRmax 0.55 3.57*

Ik 1.33 3.12*

qP 0.32 2.87*

qN 1.74 4.85*

Fv/Fm 1.73 5.01*
Plasticity was calculated as coefficient of variation. Main factors: sites (degradation level,
n=84) and months (n=12). F-test values and significance are shown (FP). The measured traits
are the maximum electron transport capacity (ETRmax), the theoretical saturation light
intensity (Ik), the non-photochemical quenching (qN), the photochemical quenching (qP),
maximum quantum efficiency of PSII (Fv/Fm) of Phragmites plants. The significance of the
correlations: *P<0.05.
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Eller, F., Skálová, H., Caplan, J. S., Bhattarai, G. P., Burger, M. K., Cronin, J. T., et al.
(2017). Cosmopolitan species as models for ecophysiological responses to global
change: the common reed Phragmites australis. Front. Plant Sci. 8, 1833.
doi: 10.3389/fpls.2017.01833

Engloner, A. I. (2009). Structure, growth dynamics and biomass of reed (Phragmites
australis) – A review. Flora - Morphology Distribution Funct. Ecol. Plants 204, 331–346.
doi: 10.1016/j.flora.2008.05.001
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