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Editorial on the Research Topic

Plant secondary metabolite biosynthesis
Introduction

Plant secondary metabolites (PSM) are a diverse group of compounds that contribute

to many important biological and ecological functions. They are synthesized by plants to

interact with the biotic and abiotic environments, playing roles in plant defense, growth,

and development (Erb and Kliebenstein, 2020). Additionally, PSM have widespread

applications in human industries, including food additives, cosmetics, dyes, insecticides,

and drugs. The biosynthesis of PSM is complex and dynamic, with more than one million

PSM estimated to be present in terrestrial and aquatic plants (Afendi et al., 2012). Despite

their diversity, plants produce limited quantities of PSM in a metabolic cost-saving way.

This has limited their commercial production, and the overexploitation of source plants has

raised concerns about their sustainability and highlighted the need for advanced research.

Recent advances in genomics (Siadjeu and Pucker, 2023), transcriptomics (Voelckel

et al., 2017), metabolomics (Li et al., 2024), and other omics technologies have

revolutionized our understanding of plant biology, enabling the discovery of new PSM

and their biosynthetic pathways. Functional genomics approaches, such as genome-wide

association studies (Luo et al., 2020), transcriptome analysis (Liu et al., 2021), and gene

editing (Nasti and Voytas, 2021), have facilitated the identification and characterization of

genes involved in the biosynthesis of PSM. Metabolic engineering and synthetic biology

approaches have enabled the manipulation of plant secondary metabolism to improve the

yield and quality of specific metabolites of interest or to produce them in heterologous

cultures (Zhang et al., 2022). These advances have created new opportunities for the

sustainable production and utilization of PSM.

This Research Topic on Plant Secondary Metabolite Biosynthesis illustrates a

comprehensive and up-to-date view of the biosynthesis, regulation, and biotechnological

production of PSM, and to promote interdisciplinary and cross-disciplinary research

collaborations in this field for sustainable and efficient utilization of these

valuable compounds.
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Identifying and characterizing novel
genes involved in the biosynthesis
of PSM

Combining bioinformatics method, gene quantitative analysis,

and evolutionary analysis, Wang et al. retrieve 103 BAHD genes

from the Ginseng Genome Data resource. Phylogenetic analysis

indicates that these BAHD genes are clustered in three clades. Most

PgBAHDs contain cis-acting elements associated with abiotic stress

response and plant hormone response. Among them, 34 PgBAHDs

are clustered with genes that display malonyl transferase activity.

Seven PgBAHDs (PgBAHD4, PgBAHD45, PgBAHD65, PgBAHD74,

PgBAHD90, PgBAHD97, and PgBAHD99) are designated as the

potential candidates involved in the biosynthesis of malonyl

ginsenosides based on co-expression analysis. To fully elucidate

the biosynthetic pathways of orobanchol derivatives in Fabaceae

plants, Homma et al. probe the metabolomic pathways downstream

of orobanchol in cowpea, barrel medic, and pea via substrate

feeding experiment after different enzyme inhibitor (fluridone,

uniconazole-P, and prohexadione) treatment. Subsequently, DOX

and BAHD acyltransferases responsible for converting orobanchol

to their derivatives are mined from the public dataset and screened

using co-expression analysis. Enzymatic assays of heterologously

expressed proteins reveal that the DOX in barrel medic converts

orobanchol to medicaol, the DOX and BAHD acyltransferase in pea

convert orobanchol to fabacol and acetylated fabacol, the favacol

acetyltransferase and its homolog in cowpea acetylate orobanchol.

These findings shed light on the molecular mechanisms underlying

the structural diversity of strigolactones.

Hendrickson et al. characterize series of terpene synthases

(TPS) from Medicago truncatula, a model legume. Thirty-nine

MtTPS candidates are obtained from the Mt4.0v1 genome in

Phytozome (tps://phytozome-next.jgi.doe.gov). They assess the

MtTPS activity using a modular metabolic engineering system in

E. coli and characterize the resultant metabolite using GC-MS.

Analyses of the resultant metabolite reveal the production of an

assortment of sesquiterpenes. This work also establishes the gene-

to-metabolite relationships for sesquiterpene synthase in M.

truncatula. To explore the glycosylation step for rutin

biosynthesis in Solanum melongena, Gan et al. identify 195 UDP-

glycosyltransferase (UGT) candidate genes from the S. melongena

genome V4.0 (ttps://solgenomics.net). These UGT genes are

classified into 17 subgroups and the members of Groups A, B, D,

E, and L are associated with flavonol biosynthesis. A hierarchical

clustering analysis of gene expression profiles reveals that the

expression patterns of SmUGT genes in Clusters 7-10 are closely

related to those of rutin biosynthetic pathway genes. Among them,

SmUGT89B2 is verified to encode the final enzyme in rutin

biosynthesis via virus-induced gene silencing and transient

overexpression assay in eggplant. Rosmarinic acid (RA) is one of

the major bioactive components of Prunella vulgaris. Yan et al.

identified 51 RA biosynthesis-related genes from the chromosome-

level genome of P. vulgaris. Bioinformatic analyses and gene

expression pattern indicate that 17 of them could be involved in

RA biosynthesis. In vitro enzymatic assay reveals that PvRAS3
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catalyzes the condensation of p-coumaroyl-CoA and caffeoyl-CoA

with pHPL and DHPL, and PvRAS4 only catalyzes the

condensation of p-coumaroyl-CoA with pHPL and DHPL.

Generation of pvras3 homozygous mutants through CRISPR/Cas9

technology and subsequent chemical compound analysis confirm

that PvRAS3 is the main enzyme catalyzing the condensation of acyl

donors and acyl acceptors during RA biosynthesis in P. vulgaris.

This work supports the existence of at least four RA biosynthetic

pathways, with the role of PvRAS4 appears minor in this plant.
Developing and employing innovative
biotechnological techniques to
improve the yield of PSM

Zheng et al. assemble a high-quality genome of Fagopyrum

dibotrys. Based on evolutionary relationship analysis, the authors

speculate that F. dibotrys has originated in the high-altitude Tibetan

Plateau region. The homologues of genes involved in the

biosynthesis of flavonoids are annotated. This study could reveal

the genetic background and facilitate the cultivation of high-

yielding F. dibotrys varieties. Li et al. employ single-cell RNA

sequencing to profile the transcriptomes of protoplasts derived

from Gynostemma pentaphyllum shoot apexes and leaves.

Examining gene expression patterns across various cell types

reveal that genes related to gypenoside biosynthesis are

predominantly expressed in mesophyll cells. They also explore the

impact of transposable elements (TE) on G. pentaphyllum

transcriptomic landscapes. This study not only provides new

insights into the spatiotemporal organization of gypenoside

biosynthesis and TE activity in shoot apexes and leaves, but also

offers valuable cellular and genetic resources for improving the yield

of gypenoside in G. pentaphyllum.

Mentha spicata (spearmint) possesses peltate glandular

trichomes (PGT) where valuable essential oils are produced.

Reddy et al. identify a novel non-canonical Aux/IAA gene,

MsIAA32, from spearmint, which lacks the TIR1-binding domain

and regulates the development of PGT. Using yeast two-hybrid

studies, two canonical Aux/IAAs (MsIAA3, MsIAA4) and an ARF

(MsARF3) are identified as the preferred binding partners of

MsIAA32. The possible role of MsIAA32 in non-glandular

trichome formation is confirmed by ectopic expression in

Arabidopsis. Undoubtedly, identifying new gene targets

controlling PGT numbers in spearmint will provide new ways to

increase volatile/scented PSM production. Dendrobine, a

noteworthy alkaloid found in Dendrobium nobile, possesses

valuable pharmaceutical potential. Sarsaiya et al. develop

innovative approaches to enhance dendrobine production by

utilizing endophytic fungi. Using test bottles (EGTB), the

experimental group (12-month-old D. nobile seedling), co-

cultured with Trichoderma longibrachiatum (MD33), displays a

2.6-fold denrobine increase (1804.23 ng/ml) compared to the

control group (685.95 ng/ml). Co-culturing D. nobile seedlings

with T. longibrachiatum MD33 in the temporary immersion

bioreactor systems (EGTIBS) leads to a substantial 9.7-fold
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dendrobine increase (4415.77 ng/ml) compared to the control

(454.01 ng/ml) after 7 days. Scaling up the TIBS approach for

commercial dendrobine production could provide an accessible

platform for dendrobine production.

Phoebe zhennan is widely cultivated in China and the price of

nanmu wood is expensive. Yang et al. explore the composition and

content of essential oil and fragrance compounds in P. zhennan

wood at different tree ages. The yield of essential oil from 30a wood is

significantly greater than that from 10a and 80a wood. In total, 596

(LC) and 76 (GC) features are annotated using chromatography-

coupled mass spectrometry in the essential oil and wood. This

research determines that the main components of the wood

fragrance are sesquiterpenoids. The types and relative contents of

sesquiterpenoids from wood increase with tree age. These results

suggest that choosing wood from trees of a suitable age will

significantly improve the yield of essential oil. Qin et al.

successfully improve the seed tocopherol concentration by altering

chlorophyll metabolism. They find that RNAi suppression of

CHLSYN coupled with homogentisate phytyltransferase (HPT)

overexpression increase tocopherol concentration by more than

two-fold in Arabidopsis seeds. Additional three-fold increase in

seed tocopherol are observed by engineering homogentisate

production via overexpression of bacterial TyrA, which encodes

chorismate mutase/prephenate dehydrogenase. They further

increase total tocochromanol concentration by overexpression of

the gene for hydroxyphenylpyruvate dioxygenase. These

biofortification approaches shift metabolism towards increased

amounts of tocotrienols relative to tocopherols. This study

provides a theoretical basis for genetic improvement of total

tocopherol concentrations in green oilseeds.
Plant secondary metabolite
biosynthesis, the road ahead

The number of PSM is still expanding due to the diversity of

plant species and the rapid advances in analytical technology.

Undoubtedly, PSM has served as a natural compound resource

for human industries. But there is a contradiction between the

insatiable human needs for PSM and the existing chemical-based

production methods, such as plant source-dependent extraction

and sophisticated chemical synthesis. Metabolic engineering and

synthetic biology approaches have been verified as one of the best

ways for PSM manufacture. These innovative biotechnological

techniques depend on fully elucidating the biosynthetic pathway

and biochemically charactering the gene elements responsible for

PSM biosynthesis one by one. In recent years, characterization and

heterologous reconstitution of the biosynthetic pathway for several

valuable PSM including artemisinic acid, thebaine, colchicine, and

baccatin III have been reported. These findings are intriguing and
Frontiers in Plant Science 03
encouraging for researchers focusing on PSM biosynthesis.

However, there is still a long way to go. A huge number of

biosynthetic steps for PSM remain unknown. Thousands of gene

elements responsible for PSM biosynthesis remain uncharacterized.

Modern omics technologies, novel gene manipulation approaches,

and artificial intelligence technology has expanded our knowledge

on PSM biosynthesis and will facilitate the biomanufacture of

valuable PSM.
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