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Phytopathogens represent an ongoing threat to crop production and a

significant impediment to global food security. During the infection process,

these pathogens spatiotemporally deploy a large array of effectors to sabotage

host defense machinery and/or manipulate cellular pathways, thereby facilitating

colonization and infection. However, besides their pivotal roles in pathogenesis,

certain effectors, known as avirulence (AVR) effectors, can be directly or indirectly

perceived by plant resistance (R) proteins, leading to race-specific resistance. An

in-depth understanding of the intricate AVR-R interactions is instrumental for

genetic improvement of crops and safeguarding them from diseases.

Magnaporthe oryzae (M. oryzae), the causative agent of rice blast disease, is an

exceptionally virulent and devastating fungal pathogen that induces blast disease

on over 50 monocot plant species, including economically important crops.

Rice-M. oryzae pathosystem serves as a prime model for functional dissection of

AVR effectors and their interactions with R proteins and other target proteins in

rice due to its scientific advantages and economic importance. Significant

progress has been made in elucidating the potential roles of AVR effectors in

the interaction between rice and M. oryzae over the past two decades. This

review comprehensively discusses recent advancements in the field ofM. oryzae

AVR effectors, with a specific focus on their multifaceted roles through

interactions with corresponding R/target proteins in rice during infection.

Furthermore, we deliberated on the emerging strategies for engineering R

proteins by leveraging the structural insights gained from M. oryzae

AVR effectors.
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Introduction

Plants, being sessile, are constantly besieged by a plethora of

phytopathogens such as fungi, bacteria, viruses, oomycetes and

nematodes, which are capable of causing extensive damage to

agrosystems, ecosystems, and human livelihoods (Milgroom,

2015). Unlike animals, plants are devoid of an adaptive immune

system and specialized mobile immune cells to fend off the

numerous potential threats posed by these pathogens (Spoel and

Dong, 2012). Instead, they have evolved a sophisticated two-tiered

innate immune machinery, composed of pathogen/microbe-

associated molecular patterns (PAMPs/MAMPs)-triggered

immunity (PTI) and effector-triggered immunity (ETI), which is

fundamental for their survival in nature (Jones and Dangl, 2006;

Boller and Felix, 2009; Macho and Zipfel, 2014). Highly conserved

PAMPs/MAMPs, such as bacterial flagellin, peptidoglycan (PGN),

lipopolysaccharide (LPS) and fungal chitin, are recognized by plant

cell surface-localized pattern-recognition receptors (PRRs). This

recognition triggers basal immune responses known as PTI,

which serves as the first tier of plant immunity thwarting

pathogen proliferation (Nürnberger et al., 2004; Jones and Dangl,

2006; Block et al., 2008). Plant PRRs are classified as either

transmembrane receptor-like kinases (RLKs) or receptor-like

proteins (RLPs), which possess highly variable ectodomains for

the detection of a wide range of ligands (Ngou et al., 2021). To

circumvent PTI, adapted phytopathogens deliver an arsenal of

virulence factors known as effectors into plant apoplast or

cytoplasm, where they suppress immune responses and create a

favorable niche for pathogenesis, leading to effector-triggered

susceptibility (ETS) (Boller and He, 2009). As a counter response,

plants employ intracellular immune receptors, called resistance (R)

proteins, to detect certain pathogen effectors, referred to as

avirulence (AVR) effectors, either through direct interactions or

indirect interactions. This recognition triggers effector-triggered

immunity (ETI), which represents the second tier of plant

immunity (Dodds et al., 2018). Among the diverse types of R

proteins, nucleotide-binding, leucine rich-repeat receptors (NLRs)

represent the largest group and they share a multi‐domain

architecture typically composed of a central nucleotide‐binding

(NB‐ARC) domain, a C‐terminal leucine-rich repeat (LRR)

domain, and either a coiled‐coil (CC) domain, RPW8-like CC

domain, or a Toll/interleukin‐1 receptor (TIR) at N-terminus,

and are thus called CNLs, RNLs or TNLs, respectively (Takken

and Goverse, 2012). CNLs and RNLs are found in both dicot and

monocot plant species, while TNLs are absent in monocots (Shao

et al., 2016; Liu et al., 2021a). Notably, RNLs as helpers act

downstream of sensor NLRs, transducing immune signals rather

than sensing AVR effectors (Jubic et al., 2019). Consistent with their

specific roles in immunity, RNLs are usually characterized by a

relatively low copy number in plant genomes (Zhong and Cheng,

2016). Furthermore, many NLRs contain additional noncanonical

domains called the integrated domains (ID), such as the heavy

metal-associated (HMA) domain, BED domain, RIN4/NOI domain

or WRKY domain, which serve as baits to trap AVR effectors or

monitor their activities (Cesari et al., 2014; Wu et al., 2015a;

Duxbury et al., 2016; Kroj et al., 2016; De la Concepcion et al.,
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2022; Shimizu et al., 2022). Direct binding of AVRs or AVR-host

target complexes to these IDs results in NLR activation and

initiation of immune responses (Cesari et al., 2014; Fujisaki et al.,

2015, 2017; Cesari, 2018; De la Concepcion et al., 2022). NLRs can

function as single entities, in pairs, or within intricate networks

(Adachi et al., 2019). In comparison to PTI, ETI elicits stronger

defense responses, and is usually associated with localized plant cell

death, termed the hypersensitive response (HR), to limit the spread

of phytopathogens into neighboring uninfected cells (Jones and

Dangl, 2006; Duxbury et al., 2021). To counteract ETI,

phytopathogens are subject to either loss of function or

production of the altered forms of their AVR effectors under

selective forces. These adaptations allow them to evade

recognition by R proteins or the target proteins (Stergiopoulos

and de Wit, 2009). The ‘zig-zag-zig’ model, which depicts the

relationship between PTI, ETS, and ETI, is the most widely used

and concise model to date (Jones and Dangl, 2006). However, this

model is increasingly being challenged. Firstly, AVR effectors are

not always detected by NLRs, but can also be recognized by PRRs

(Thomas et al., 1997). Secondly, PTI and ETI were initially

considered as two separate and sequential branches of the plant

immune system mediated by different receptors with distinct

ligands perceived and activation modes in the model, but they

actually share many downstream immune responses, such as

mitogen-activated protein kinase (MAPK) cascades activation,

Ca2+ flux, reactive oxygen species (ROS) burst and phytoalexins

production (Jones and Dangl, 2006; Tsuda and Katagiri, 2010; Yu

et al., 2017; Lolle et al., 2020; Lu and Tsuda, 2021; Liu et al., 2023b).

Recently, accumulating evidence has revealed crosstalk between ETI

and PTI, indicating that these two branches of the immune system

are not entirely independent. Instead, they can synergistically

enhance each other, thereby eliciting more robust immune

responses against pathogen infections (Ngou et al., 2021; Pruitt

et al., 2021; Tian et al., 2021; Yuan et al., 2021). The findings imply a

much more intricate and interconnected nature of plant immune

responses than previously hypothesized.

Given the pivotal role of AVR effectors in adapted

phytopathogens, a profound comprehension of their mode of

action is potentially conductive to conceptualize novel strategies

for sustainable management of plant diseases. In this review, taking

the phytopathogenic fungus Magnaporthe oryzae (M. oryzae), the

causal agent of globally important rice blast disease, as an example,

we elaborate the dual nature of functions of AVR effectors in rice

blast resistance/susceptibility. We present updated findings on the

molecular interactions betweenM. oryzae AVR effectors and rice R/

target proteins, as well as the underlying structural basis. We also

present recent progress in genetic engineering of R proteins to

produce robust resistance in rice based on the structural knowledge.
M. oryzae and rice blast disease

Rice (Oryza sativa L.) is a staple cereal food crop for over 3.5

billion people around the world and sustainable rice production is

crucial in ensuring global food security (Khush, 2013; Muthayya

et al., 2014). Besides, rice cultivation is the major source of income
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and employment for more than 200 million smallholder farmers in

rice-growing regions (Tonini and Cabrera, 2011). Over decades, rice

production has witnessed a remarkable surge, attributed to the

adoption of innovative agro-technologies including exploitation of

semi-dwarf gene, utilization of heterosis and improvements in

farming management practices (Ma and Yuan, 2015). In 2022,

world rice production was approximately 776.5 million tons,

marking a significant increase of 3.6 times compared to the

production levels in 1961 (FAO, https://www.fao.org/faostat/en/).

However, it is insufficient to meet the projected demands of

continuously increasing global population, which is expected to

reach 9.7 billion by 2050 (Hu et al., 2022a). This challenge is further

exacerbated by the shrinkage of arable land and escalating influence

of various biotic (pests, weeds, diseases, etc.) and abiotic factors

(drought, cold, acidity, heat, salinity, etc.) (Sandhu et al., 2020).

Among the biotic constraints, diseases caused by phytopathogens

accounting for extensive yield losses represent a significant threat to

rice production. A wide array of rice diseases caused by fungi,

bacteria, viruses and nematodes have been recorded (Slough, 1985).

Notably, blast disease, caused by the filamentous ascomycete fungus

Magnaporthe oryzae B.C. Couch (anamorph: Pyricularia oryzae

Cavara), is undoubtedly the most devastating disease of rice (Wang

et al., 2014). It is also known as an ancient disease with records

dating back to the 17th century in China (Couch et al., 2005).

Nowadays, this notorious disease has a widespread distribution

across rice-growing regions globally (Kato, 2001; Skamnioti and

Gurr, 2009). Rice blast disease is responsible for average rice yield

losses of about 10% to 30% per year, which could fulfill the annual

rice consumption of 60 million people (Dean et al., 2005). Under

favorable conditions, its regional epidemics can be more

destructive, leading to yield loss up to 100% (Dean et al., 2012).

In a survey from phytopathologists worldwide, M. oryzae was

ranked first in the Top 10 scientifically and economically fungal

pathogen list (Dean et al., 2012).

M. oryzae is a complex species with a broad host range. It is

capable of plaguing more than 50 Poaceae and Cyperaceae species,

including agriculturally important crop species such as rice (Oryza

sativa), wheat (Triticum aestivum), maize (Zea maydis), barley

(Hordeum vulgare), foxtail millet (Setaria italica) and finger millet

(Eleusine coracana), as well as wild grasses such as weeping

lovegrass (Eragrostis curvula), ryegrass (Lolium perenne) and

goosegrass (Eleusine indica) (Khang et al., 2010; Hossain, 2022).

Phylogenetic analyses have shown that M. oryzae’s wide host range

is associated with intraspecific diversity (Couch et al., 2005;

Chiapello et al., 2015; Yoshida et al., 2016; Inoue et al., 2017;

Gladieux et al., 2018b). M. oryzae can be divided into several,

genetically differentiated lineages that are associated with a specific

or limited number of hosts (Gladieux et al., 2018a). All rice-

infecting isolates (Oryza lineage) belong to a genetic lineage

which is closely related to isolates infecting foxtail millet (Setaria

lineage) (Couch et al., 2005; Ceresini et al., 2018; Gladieux et al.,

2018a). Rice blast disease was thus inferred to emerge as a result of a

host shift from foxtail millet in the Middle Yangtze Valley of China

approximately 2,500 to 7,500 years ago (Couch et al., 2005). The

globally distributed rice-infecting isolates can be further subdivided

into four main lineages with one recombining lineage and three
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years ago (Zhong et al., 2018; Gladieux et al., 2018a, b; Latorre et al.,

2020; Thierry et al., 2022).

Almost all rice plant tissues at any growth stage can be attacked

by this pathogen (Wilson and Talbot, 2009; Fisher et al., 2012). M.

oryzae invades rice aerial tissues in a hemi-biotrophic manner, but it

adopts a biotrophic strategy to infect roots (Marcel et al., 2010).

During the infection of rice arial tissues,M. oryzae initially grows in

living host cells as a biotroph to suppress the host immunity (Yan

and Talbot, 2016). Subsequently, the invasive hyphae spread into

neighboring cells through plasmodesmata and the fungus switches

to a necrotrophic lifestyle. The initially infected host cells are

destroyed, enabling the fungus to utilize nutrients released from

the dead cells and sporulate from necrotic disease lesions on the leaf

surface (Yan et al., 2023). The newly formed conidia are dispersed

by wind or rain splashes, re-infecting healthy tissues and plants in

the vicinity.
Secretion of M. oryzae effectors
during host invasion

During the process of host invasion, M. oryzae undergoes

several morphogenetic transitions. Initially, the three-celled

conidium germinates to form a germ tube and differentiates into

a dome-shaped infection structure called appressoria after

perceiving physical and chemical cues on the leaf surface (Bourett

and Howard, 1990). Subsequently, a penetration peg emerges from

an appressorium for puncturing the host epidermal cell with huge

turgor pressure and it then differentiates into the narrow tubular

primary invasive hyphae (IH) and the bulbous secondary IH

(Dagdas et al., 2012). The IH are enclosed by a host-derived

plasma membrane termed the extra-invasive hyphal membrane

(EIHM) (Kankanala et al., 2007). Once filled with the bulbous IH,

the colonized host cells die. Meanwhile, the fungus protrudes into

the neighboring host cells through pit field sites containing

plasmodesmata, resulting in typical lesion formation and

transition of the fungus from biotrophic to the necrotrophic

phase (Martin-Urdiroz et al., 2016). During the biotrophic phase,

M. oryzae express and secretes a set of effectors around or into host

cells to modulate its cellular and metabolic processes, thereby

favoring successful invasion and proliferation within plant tissues

(Zhai et al., 2022). These effectors can thus be broadly categorized

into apoplastic effectors and cytoplastic effectors based on their

subcellular localizations in the host. Their deliveries are dependent

on different secretion pathways (Mentlak et al., 2012; Yan and

Talbot, 2016). Apoplastic effectors are delivered into the space

between the fungal cell wall and host plasma membrane via a

classical Golgi-dependent secretion pathway that can be blocked by

the pharmacological drug brefeldin A (BFA) (Giraldo et al., 2013;

Rocafort et al., 2020). Cytoplasmic effectors are secreted and

accumulate in an extended dome-shaped interfacial region known

as the biotrophic interfacial complex (BIC) near the tip of the first

bulbous cell (Khang et al., 2010; Giraldo et al., 2013; Oliveira-Garcia

et al., 2023). The cytoplasmic effectors within BIC are further

packaged in dynamic vesicle-like membranous effector
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compartments (MECs), which are bounded by the host plasma

membrane and CLATHRIN LIGHT CHAIN 1, a component of

clathrin-mediated endocytosis (CME) (Oliveira-Garcia et al., 2023).

Inhibition of CME by gene silencing or chemical treatments

prevents MEC formation and pathogenicity, which indicates that

CME facilitates the internalization of cytoplasmic effectors into host

cells (Oliveira-Garcia et al., 2023). The emergence of the BIC

structure is a feature of successful infection, but it is not observed

during incompatible reactions (Mosquera et al., 2009; Khang et al.,

2010; Jones et al., 2016; Shipman et al., 2017). Once internalized,

these cytoplasmic effectors execute function in the cytoplasm and/

or organelles of infected host cells, and even migrate to the adjacent

cells (Khang et al., 2010).
AVR effectors in M. oryzae

Molecular characterization of effectors stands as a fundamental

step for understanding pathogen pathogenesis and plant immunity.

Through genomic and transcriptomic analysis, researchers have

pinpointed hundreds of potential effector candidates in M. oryzae

(Dean et al., 2005; Soanes et al., 2008; Yoshida et al., 2009; Choi

et al., 2010; Chen et al., 2013; Dong et al., 2015; Yan et al., 2023; Liu

et al., 2023a). More than forty AVR genes have been genetically

identified and 18 have been molecularly characterized thus far,

including PWL1, PWL2, PWT3, PWT4, PWT7, AVR-Rmg8, AVR-

Pita, ACE1, AVR-Pia, AvrPii, AvrPiz‐t, Avr1‐CO39, AvrPib, AvrPi9,

AvrPi54, AVR-Pias, AVR-Mgk1 and Avr-Pik (Kang et al., 1995;

Sweigard et al., 1995; Orbach et al., 2000; Böhnert et al., 2004; Li

et al., 2009; Yoshida et al., 2009; Ribot et al., 2013; Zhang et al., 2015;

Wu et al., 2015b; Ray et al., 2016; Inoue et al., 2017; Anh et al., 2018;

Zhang et al., 2020b; Shimizu et al., 2022; Asuke et al., 2023; Sugihara

et al., 2023) (Table 1). PWL2 encoding a glycine-rich, hydrophilic

protein, is the first isolated M. oryzae AVR gene from Oryzae

isolates (Sweigard et al., 1995). It belongs to a gene family with three

other PWL (pathogenicity toward weeping lovegrass) genes (Kang

et al., 1995). Both PWL1 and PWL2 are two host-specificity

determinants conferring avirulence on weeping lovegrass but not

on rice. However, PWL3 and PWL4 are nonfunctional. PWL2 is a

core effector of the blast fungus, since it is ubiquitous in M. oryzae

and has undergone substantial copy number expansion (Zdrzałek

et al., 2024). PWT3, PWT4 and AVR-Rmg8 conditioning

avirulence of M. oryzae isolates from different hosts on wheat, are

able to trigger defense responses in wheat cultivars containing R

proteins Rwt3, Rwt4 and Rmg7/Rmg8, respectively (Takabayashi

et al., 2002; Vy et al., 2014; Inoue et al., 2017; Anh et al., 2018; Arora

et al., 2023). PWT3 homologs were found widely distributed across

both Triticum and non-Triticum isolates, while PWT4 homologs

showed limited distribution in some isolates. Wheat cultivars

without Rwt3, introduced to Brazil in the early 1980s, served as

springboards for host jumps of Lolium isolates containing PWT3 to

wheat, followed by loss of function of PWT3 due to the imposed

selection by cultivars with Rwt3 and wheat blast epidemics in South

America, Asia as well as Africa (Inoue et al., 2017). PWT7 from an

Avena isolate confers avirulence on wheat only at the seedling stage

(Asuke et al., 2023). AVR-Rmg8, identified from a Triticum isolate,
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Rmg8 in hexaploid wheat, conferring resistance at both the seedling

and heading stage (Anh et al., 2018). Among the 12 other AVR

genes displaying avirulence toward rice, ten code for small proteins

less than 200 amino acids (aa) with N-terminal signal peptides and

share low sequence similarity to other proteins of known function

in public databases. ACE1 and AVR-Pita are the two exceptions,

which encode larger proteins and contain known-function domains

or motifs. ACE1 is a secondary metabolism (SM) gene encoding a

non-secreted PKS-NRPS hybrid (polyketide synthase and non-

ribosomal peptide synthetase) enzyme (Böhnert et al., 2004).

AVR-Pita encodes a putative neutral zinc metalloprotease

(Orbach et al., 2000). The genetic instability of AVR genes in M.

oryzae is considered to be a common mechanism in gaining

virulence and causing rapid resistance erosion of their cognate R

genes (Huang et al., 2014). Different mechanisms including

insertion, point mutation, and deletion, as well as sexual mating

and parasexual recombination are responsible for the loss of

avirulence function of AVR genes (Noguchi et al., 2006;

Tsujimoto Noguchi, 2011; Hu et al., 2022b). Among the cloned

AVR genes of M. oryzae, AVR-Pita has been widely studied due to

its relatively high variability. For example, AVR-Pita was found to

be almost or completely absent in over half of the blast isolates in

the Sichuan Basin, China, and five haplotypes with avirulent

function were identified (Hu et al., 2022b). In an investigation of

M. oryzae isolates from Thailand, AVR-Pita was detected in only

around one third of them and six haplotypes of were identified with

one deletion and 12 amino acid substitutions (Sutthiphai et al.,

2022). Additionally, 40 AVR-Pita haplotypes were identified in

avirulent isolates collected from Southern US (Zhang et al.,

2020b). In contrast, AVR-Pi9 is much more stable and it can be

detected in all the M. oryzae samples in Sichuan and Yunan

province, China, as well as Thailand (Hu et al., 2022b; Sutthiphai

et al., 2022; Lu et al., 2023). Sequence analysis indicated that AVR-

Pi9 had a relatively low genetic diversity (Sutthiphai et al., 2022; Lu

et al., 2023).
Molecular interactions between
M. oryzae AVR effectors and rice
R/target proteins

The detection of AVR effectors by cognate R proteins occurs via

either direct or indirect interactions in Rice-M. oryae and other

pathosystems (Stergiopoulos and de Wit, 2009). Direct recognition

depends on physical binding of AVR effectors to the R proteins and

indirect recognition involves the perception of effector-induced

modifications of other host targets (usually termed guardees or

decoys) by R proteins. It is considered that guardees play certain

roles in plant immunity, while decoys specialize in trapping

effectors without immune function (Van der Hoorn and Kamoun,

2008; Khan et al., 2016; Ao and Li, 2022). NLRs, as the most

prevalent group of characterized R proteins in rice, function as

singletons or pairs (Xi et al., 2022). Among over 40 cloned rice R

genes, only Pid-2, pi21, Ptr, Pi65 and Pb4 encode non-NLR proteins
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(Devanna et al., 2022; Shimizu et al., 2022; Xiao et al., 2023; Fan

et al., 2024). Most of the rice NLR pairs are genetically linked in a

head-to-head orientation. One containing a noncanonical ID acts as

a sensor NLR (sNLR) to directly detect the presence of the AVR

effector(s), whereas the other one is a canonical NLR acting as a

helper (hNLR) to transduce signals to activate immunity (Lüdke

et al., 2022; Cadiou et al., 2023; Contreras et al., 2023). Singleton

NLRs are capable of mediating both AVR effectors perception and

downstream defense signaling initiation without relying on partner

NLRs. Recent studies have revealed an extremely complex picture of

M. oryzae AVR effectors and rice R/target proteins (Figure 1).
AVR effector vs. singleton NLR

Pita-AVR-Pita is the earliest studied pair of R-AVR in rice-M.

oryzae pathosystem and has long been accepted as a classic example

of direct AVR effector binding by NLR (Bryan et al., 2000; Jia et al.,

2000; Orbach et al., 2000). The mature form of AVR-Pita

containing 176 aa at the C-terminus was found to bind

specifically to the LRR region of Pita (Orbach et al., 2000). Single

amino acid substitutions in either the LRR region of Pita or protease

motif of AVR-Pita disrupt the physical interaction, resulting in

failure of defense response initiation. Ptr/Pita2 was later found to be

not only closely linked to Pita but also involved in Pita-mediated

resistance (Zhao et al., 2018; Meng et al., 2020). Ptr/Pita2 encodes

an atypical R protein with four Armadillo (ARM) repeats and its

disruption leads to a loss of resistance to some AVR-Pita containing

isolates, suggesting that it is required for the complete function of

Pita. However, a very recent study indicated that Pita is involved in

neither Pita resistance nor AVR-Pita detection (Xiao et al., 2024). It

also has no role in Ptr/Pita2-mediated resistance. The Pita

resistance is indeed provided by one of Ptr alleles, designated

PtrB, which recognizes a restricted set of AVR-Pita alleles

through an indirect way. PtrA can detect all natural AVR-Pita

alleles and confers Pita2 resistance. Additionally, AVR-Pita was

found to target OsCOX11, a cytochrome C oxidase (COX) assembly

protein, in rice mitochondria (Han et al., 2021). OsCOX11

participates in ROS metabolism and plays a negative role in rice

resistance. The AVR-Pita-OsCOX11 interaction increases the COX

activity in ROS metabolism, thereby inhibiting ROS accumulation

and suppressing rice innate immunity. Pi54-AvrPi54 is currently

the only case of direct interaction between AVR effector and

singleton NLR (Ray et al., 2016). Pi54 physically interacts with

AvrPi54 at the host plasma membrane, which restricts the

movement of AvrPi54 into nucleus for its virulence function

(Saklani et al., 2023).

Three other singleton NLRs Pib, Pi9 and Piz-t recognize their

cognate AVR effectors AvrPib, AvrPi9 and AvrPiz-t, respectively,

via indirect way. SH3P2, an SH3 domain-containing protein

mediates indirect AvrPib-Pib recognition (Xie et al., 2022).

SH3P2 functions as a ‘‘protector’’ to associate with Pib mainly at

clathrin-coated vesicles (CCV) in rice cells, which is an important

coated vesicle responsible for endocytosis and many post-Golgi

trafficking processes. The SH3P2-Pib association interferes with the

Pib homodimerization by disrupting CC domain self-association,
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thus maintaining Pib in static state under normal growth

conditions. Since SH3P2 associates with CCVs, which suggests

SH3P2 may possess conserved intracellular trafficking functions

and transfer Pib cargo to vacuoles for degradation, thereby

maintaining a low abundance of Pib in the absence of blast

fungus infection. Interestingly, it was found that SH3P2 also

associates with the CC domains of Pi2 and Pita, but it is unclear

whether SH3P2 affects resistance mediated by these two R proteins.

SH3P2 can also bind to AvrPib in CCVs with higher affinity. Upon

invasion of M. oryzae isolates containing AvrPib, the competitive

binding of AvrPib to SH3P2 releases Pib from the OsSH3P2-Pib

complex and alleviates the inhibition of Pib homodimerization, thus

eventually activates Pib-mediated resistance. ANIP1-OsWRKY62

module was recently found to be targeted by AvrPi9 and regulates

rice immunity in the presence/absence of Pi9 in distinct ways (Shi

et al., 2023). ANIP1 is a rice ubiquitin-like domain-containing

protein (UDP) subjected to 26S proteasome-mediated

degradation. Both AvrPi9 and Pi9 can directly interact with and

stabilize ANIP1 through disturbing its degradation. Moreover,

ANIP1 physically interacts with the rice WRKY transcription

factor OsWRKY62 and affects its abundance by promoting its

degradation. OsWRKY62 was also found to interact with AvrPi9

and Pi9. In the absence of Pi9, lower abundance of ANIP1 leads to

OsWRKY62 accumulation in rice plants and enhanced immunity

during infection by M. oryzae isolates without AvrPi9. When

infected by M. oryzae isolates with AvrPi9, ANIP1 is stabilized by

AvrPi9 that more efficiently promotes the degradation of

OsWRKY62, thus decreasing the immune response. In the

presence of Pi9, it binds to and stabilize ANIP1-OsWRKY62

module. They form a complex with unknown adaptor(s) to

maintain Pi9 in its inactive state under normal growth conditions.

Under invasion by non-AvrPi9 M. oryzae isolates, the forming
Frontiers in Plant Science 07
complex decreases plant immunity. Under invasion by M. oryzae

isolates carrying AvrPi9, AvrPi9 promotes the dissociation of

ANIP1 from Pi9, which further activate Pi9 and downstream

immune responses. In contrast to ANIP as a negative regulator of

rice immunity, the AvrPi9 interacting proteins OsRGLG5 and

PICI1 were found to positively regulate rice defense (Zhai et al.,

2022; Liu et al., 2023c). Both of these two proteins can be targeted

for degradation. OsRGLG5, encoding a functional RING-type E3

ubiquitin ligase, functions as a positive regulator of basal resistance,

but it is not required for Pi9-mediated blast resistance and no

physical interaction between OsRGLG5 and Pi9 was observed,

which suggested that OsRGLG5 may not be a guardee in the Pi9-

AvrPi9 interaction (Liu et al., 2023c). In response, OsRGLG5

ubiquitinates and subsequently degrades AvrPi9 through the 26S

proteasome pathway. The deubiquitinase PICI1, acts as an immune

hub for both PTI and ETI through the methionine-ethylene cascade

(Zhai et al., 2022). AvrPi9 was found to promote PICI1 degradation

in a proteasome-independent manner, which in turns promotes

methionine synthases OsMETS1 and OsMETS2 ubiquitination and

degradation, leading to reduced methionine and ethylene

biosynthesis, as well as comprised PTI. While NLRs, such as

PigmR, Pi9 and Pizt, protect PICI1 from AvrPi9 binding in a

competitive manner to reboot the methionine-ethylene-mediated

immunity. AvrPiz-t was reported to target 12 APIPs (AvrPiz-t

interacting proteins) in rice and the immune functions of several

APIPs including APIP4 (Bowman-Birk trypsin inhibitor protein),

APIP5 (bZIP transcription factor), APIP6 (Ring type E3 ubiquitin

ligase), APIP7 (plasma membrane potassium channel), APIP10

(RING-type E3 ubiquitin ligases) and APIP12 (homologue of

nucleoporin protein Nup98) have been well characterized (Park

et al., 2012, 2016; Wang et al., 2016; Tang et al., 2017; Shi et al., 2018;

Zhang et al., 2020a). AvrPiz-t can block the E3 ligase activity of
FIGURE 1

Molecular interactions between M. oryzae AVR effectors and R/target proteins in rice.
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APIP6 and APIP10 to suppress rice PTI (Park et al., 2012, 2016). In

return, these two E3 ligase ubiquitinate and degrade AvrPiz-t to

reduce its suppressive effects on rice PTI. APIP10 also promotes

degradation of the Piz-t protein through the 26S proteasome

system, although no direct interaction between these two proteins

were observed. During M. oryzae infection, AvrPiz-t interferes the

negative regulation of APIP10 on Piz-t, which leads to rapid

accumulation of Piz-t protein and initiation of ETI (Park et al.,

2016). The transcription factors OsVOZ1 and OsVOZ2 were found

to bridge the connection between APIP10 and Piz-t (Wang et al.,

2021). They function synergistically to negatively regulate basal

defense but positively regulate Piz-t-mediated immunity. ROD1 is a

C2 domain Ca2+ sensor, which recruits catalase CatB (OsCATB) to

increase its activity for ROS elimination. AvrPiz-t structurally

mimics ROD1 and executes similar ROS-scavenging-mediated

immune suppression (Gao et al., 2021). But both ROD1 and

AvrPiz-t can be targeted for ubiquitin-mediated degradation by

APIP6 and the other E3 ligase RIP1. Besides, APIP6 can also

ubiquitinate the catalase OsCATC, the peroxisomal receptor

protein OsPEX5, and OsELF3-2, an ortholog of the Arabidopsis

ELF3, and promotes their degradation via the 26S proteasome

pathway to positively regulate basal defense against M. oryzae

(You et al., 2022, 2023). OsPEX5 was further found to stabilize

the aldehyde dehydrogenase OsALDH2B1 to enhance its repression

of the defense-related gene OsAOS2. The Bowman-Birk trypsin

inhibitor (BBTI) APIP4 functions as a positive regulator of rice blast

resistance (Zhang et al., 2020a). The interaction between AvrPiz-t

and APIP4 suppress its trypsin inhibitor activity, while the binding

of APIP4 with Piz-t potentially promotes the activity of APIP4,

resulting in enhanced rice immunity. Like APIP4, APIP5 is the

target of both AvrPiz-t and Piz-t. It plays a critical role in preventing

effector-triggered necrosis (ETN) during the necrotrophic stage of

M. oryzae infection (Wang et al., 2016; Zhang et al., 2022). APIP5

directly targets the cell wall-associated kinase gene OsWAK5 and

the cytochrome P450 gene CYP72A1 as a transcription factor to

inhibit their expression, resulting in less lignin, ROS and defense

compounds accumulation. Besides, APIP5 regulates mRNA

turnover of the cell death- and defense-related genes OsLSD1 and

OsRac1 as an RNA-binding protein. AvrPiz-t attenuates the

transcriptional activity and protein accumulation of APIP5,

leading to ETN at the necrotrophic stage. Piz-t can stabilize

APIP5 and reduce the AvrPiz-t-mediated APIP5 turnover to

prevent ETN. In turn, APIP5 is essential for the accumulation of

Piz-t for the activation of ETI. A recent work showed that APIP5

directly suppresses the transcription of APIP4 and its homolog

OsBBTI5, thereby attenuating their trypsin inhibitor activity to

weaken the disease resistance (Zhang et al., 2024a). APIP4

and OsBBTI5 were further proved to associate and stabilize the

defense-related protein OsPR1aL, which positively regulates rice

blast resistance. APIP7 (OsAKT1) forms a complex with OsCBL1

and OsCIPK23, modulating K+ signal transduction for plant growth

and development, as well as immunity (Shi et al., 2018). AvrPiz-t

suppresses the activity of APIP7 and/or interferes with the APIP7-

OsCIPK23 complex to subvert inward K+ currents in favor of

M. oryzae pathogenesis. APIP12, targeted by both AvrPiz-t and

APIP6, is involved in the basal resistance but not the Piz-t mediated
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resistance (Tang et al., 2017). AvrPiz-t was also found to interact

with OsRac1 to suppress ROS generation (Bai et al., 2019).
AVR effector vs. paired NLRs

The genetically and molecularly co-acting NLR pairs are

prevalent in rice and other plant genomes (Duxbury et al., 2021;

Xi et al., 2022). The Pia pair RGA4/RGA5 recognize two sequence-

unrelated AVR effectors, AVR-Pia and AVR1-CO39 (Cesari et al.,

2013). Both these two AVR effectors bind to the HMA ID integrated

into the sNLR, RGA5. RGA4, as the hNLR, is autoactive and its

function is repressed by RGA5 in the absence of pathogen (Cesari

et al., 2014). This repression is relieved upon direct interaction of

AVR-Pia or AVR1-CO39 with the HMA domain in RGA5, leading

to activation of ETI (Cesari et al., 2013; Ortiz et al., 2017). Pias pair

Pias-1/Pias-2, which is allelic Pia pair, detects the AVR effector

AVR-Pias. Interestingly, the sNLR Pias-2 carries a different ID,

DUF761, and no direct binding between AVR-Pias and DUF761 of

Pias-2 was observed (Shimizu et al., 2022). For the Pik pair Pik-1/

Pik-2 and its cognate AVR effector Avr-Pik, both of them exist in an

allelic series in rice andM. oryzae, respectively (Yoshida et al., 2009;

Kanzaki et al., 2012; Wu et al., 2014; De la Concepcion et al., 2018).

At least 7 Pik alleles (Pi1, Pik, Pikm, Pikp, Piks, Pikh and Pike) and

6 AVR-Pik variants (A-F) have been reported. The Pik alleles

showing different recognition specificities to AVR-Pik variants.

Pik-1 recognition of AVR-Pik is mediated by direct binding of

the AVR effector to a HMA domain, integrated into between the CC

and NB‐ARC domains. In contrast to RGA4, the hNLR Pik-2 does

not show autoimmunity in an ectopic expression system, and both

NLRs are required to trigger an immune response upon perceiving

the matching AVR effector (Maqbool et al., 2015). Besides, AVR-

Pik variants interact with a subset of small HMA‐containing

(sHMA) protein, which belong to heavy metal-associated plant

proteins (HPPs) and heavy metal-associated isoprenylated plant

proteins (HIPPs) (Maidment et al., 2021; Oikawa et al., 2024). AVR-

PikD binds and stabilizes OsHIPP19 and OsHIPP20 in plant cells.

The binding affects the subcellular distribution of the OsHIPP19

and OsHIPP20. Knockout of OsHIPP20 conferred enhanced

resistance to infection by the blast pathogen, suggesting

OsHIPP20 is a susceptibility gene. Therefore, it is hypothesized

that AVR-Pik-mediated stabilization of sHMA proteins suppresses

rice defenses. Additionally, AVR-Mgk1, an effector sharing no

sequence similarity to known AVR-Pik family, is found on a

mini-chromosome and detected by Piks as well as other multiple

Pik alleles (Sugihara et al., 2023). Recent studies reported that Avr-

PikD interacts with the zinc finger−type transcription factor WG7

and the LSD1-like transcription factor AKIP30. WG7 negatively

regulates immunity through SA signaling pathway (Yang et al.,

2024). Avr-PikD suppresses rice immunity by targeting WG7 in

nucleus and promoting its transcriptional activity. By contrast,

AKIP30 is also a positive regulator of rice immunity. Avr-PikD

interferes with the expression, subcellular localization and

transcriptional activity of AKIP30, thereby facilitating ETS (Guo

et al., 2024). AVR-Pii interacts with two members of rice Exo70

family, OsExo70F2 and OsExo70F3, suggesting that the pathogen
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may target exocyst-mediated trafficking as a virulence-associated

mechanism (Fujisaki et al., 2015). Exo70, a component of the

exocyst complex, plays crucial roles in tethering and fusion of the

vesicles and plasma membrane at the site of polarized exocytosis

(Munson and Novick, 2006). It was revealed that OsExo70F3 is

specifically involved in Pii-dependent resistance (Fujisaki et al.,

2015). The association of AVR-Pii with OsExo70F3 is monitored by

Pii through an unconventional RIN4/NOI domain integrated in the

sNLR Pii-2 (Fujisaki et al., 2017). AVR-Pii also targets OsNADP-

ME2, a rice nicotinamide adenine dinucleotide phosphate-malic

enzyme, and inhibit its activity to limit ROS accumulation and

suppress basal resistance (Singh et al., 2016).
AVR effector vs. uncharacterized
R protein

Even though PWL2 is capable of being recognized by the NLR

protein Mla3 in barely which confers resistance to Blumeria

graminis and M. oryzae, its corresponding R protein in rice has

not yet been identified (Brabham et al., 2024). More recently, it was

reported PWL2 specifically binds to HIPP43 in rice and its

orthologs from other grass species (Were et al., 2024; Zdrzałek

et al., 2024). HIPP43 is a susceptibility factor for infection, since

overexpression of HIPP43 suppresses PAMP-induced ROS in

transgenic plants. PWL2 targets HIPP43 to stabilize and alter

plasmodesmata localization of HIPP43, thus enhancing

susceptibility (Were et al., 2024). ACE1, coding for a PKS-NRPS

hybrid, is the only non-secreted AVR effector in M. oryzae to date

(Böhnert et al., 2004). It is located in a secondary metabolite gene

cluster exclusively expressed during fungal appressorium-mediated

penetration (Collemare et al., 2008). The AVR signal detected by the

R protein Pi33(t) is not the ACE1, but the secondary metabolite

synthesized by it. However, the expression of ACE1 is under strict

temporal and cell type-specific regulation and its produced

secondary metabolite is extremely difficult to isolate. Ectopic

expression of ACE1 indicated that the metabolite is likely to be a

tyrosine-derived cytochalasan compound (Song et al., 2015). But

the exact AVR molecule remains to be determined.
Structural overview of M. oryzae AVR
effectors and their interactions with
rice R/target proteins

In natural pathosystems, AVR effectors are under strong

selection pressure to adapt to specific or new hosts and evade

immunity, which has driven their rapid expansion and

diversification (Fouché et al., 2018). The majority of fungal AVR

effectors share low sequence similarity with each other or with other

proteins of known function (Ellis et al., 2009). Therefore, the

prediction on their function is challenging. A protein’s three-

dimensional structure can provide key insights into function and

evolution. As such, structural determination has become an avenue

pursued to understand roles of the effectors in the infection process.
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Till now, the 3-dimensional structures of seven AVR effectors

including AvrPiz-t, AVR-Pia, AVR1-CO39, AVR-Pik variants,

AvrPib, AVR-Pii and PWL2 have been experimentally solved

(Zhang et al., 2013; De Guillen et al., 2015; Maqbool et al., 2015;

Ose et al., 2015; Zhang et al., 2018; De la Concepcion et al., 2022).

All these AVR effectors except AVR-Pii belong to the MAX

(Magnaporthe AVRs and ToxB-like) effector family, which

accounts for 5-10% of the effector repertoire in M. oryzae (De

Guillen et al., 2015; Kotsaridis et al., 2023). The crystal structure of

AVR-Pii/OsExo70F2 complex revealed a fold for AVR-Pii based on

a zinc-finger (ZiF) motif sustained by four residues coordinating a

Zn2+ atom and the structure has not been previously reported for

other phytopathogen effectors. AVR-Pii binds to Exo70 via a

conserved hydrophobic pocket (De la Concepcion et al., 2022).

MAX effectors share a common fold with six-stranded b-sheet
sandwich and the fold is stabilized by at least one disulfide bond

between conserved cysteins connecting b1 and b5 (De Guillen et al.,

2015). Even containing the similar structure, distinct shapes and

surface properties due to the varying orientation and length of b-
strands and loops constitute the basis of diversity in their functions.

For example, AvrPib and AvrPiz-t contain the shorter b-strand b6
at the C-terminus, while the shorter one of AVR1-CO39, AVR-Pia

and AVR-Pik is b5 (Zhang et al., 2018). AVR1-CO39, AvrPiz-t and
AvrPib have dominant charge patch(es) on the surfaces, but AVR-

Pia and AVR-Pik have only hydrophobic patch with multiple

charged residues distributed separately on the surfaces.
Bioengineering of rice NLRs guided
by structural knowledge of
NLR-AVR interactions

Management of rice blast disease is cumbersome, even though

rice R genes have been extensively used in breeding (Wang and

Valent, 2017; Younas et al., 2023). The recognition spectra of R

proteins tend to be specific andM. oryzaemay delete AVR effectors

from their genome or evolve novel AVR variants that evade

detection by the R proteins to re-establish infection (Maekawa

et al., 2011). With increasing mechanistic and structural insights

into the NLR-ID-AVR interactions, bioengineering of NLR’s ID has

emerged as a promising approach to expand its recognition

specificities. Recent studies have reported that HMA domain

engineering is an effective way to generate new resistance

specificities. A binding interface was grafted from Pikm-1-HMA

onto Pikp-1-HMA by mutating two residues in Pikp-1 and the

engineered variant gained an expanded recognition profile to AVR-

Pik variants previously unrecognized by Pikp in N. benthamiana

(De la Concepcion et al., 2019). Introduction of the HMA or three

specific residues in the interface of OsHIPP19 into Pikp-1-HMA

creates Pikp-1 variants that recognize all known AVR-Pik alleles

including AVR-PikC and AVR-PikF, which are not detected by

naturally occurring Pik-1, not only in N. benthamiana but also in

rice (Maidment et al., 2021). Integration of the HMA of OsHIPP43

into the Pikm-1 switches recognition from AVR-Pik to PWL2, as

well as PWL1 and PWL3 in N. benthamiana (Zdrzałek et al., 2024).
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By combining the AVR-PikD binding residues of Pikp-1-HMA into

RGA5-HMA, a variant gained an extended resistance specificity in

N. benthamiana but not in transgenic rice (Cesari et al., 2022). The

modified sites may affect NLR activation or additional interactions

with RGA5 outside the ID might be important for recognition. In

another two studies, RGA5-HMA was engineered by comparing the

structures of AVR1-CO39 and the noncorresponding AVR-Pib and

AVR-PikD for predicting their potential interface. The engineered

RGA5 confers specific resistance to M. oryzae strains expressing

AvrPib or AVR-PikD in transgenic rice (Liu et al., 2021b; Zhang

et al., 2024b). More recently, a groundbreaking approach for

molecular engineering of Pikm-1 by replacing HMA ID with

camelid-derived nanobodies of fluorescent proteins (FP) was

reported (Kourelis et al., 2023). The synthetic Pikm-1s with

nanobodies trigger HR in the presence of Pikm-2 and the

corresponding fluorescent proteins in N. benthamiana and confer

resistance against plant viruses expressing FPs. These studies

collectively demonstrated the potential for engineering IDs to

alter the recognition profiles of the NLR proteins.
Conclusion and future perspectives

Over the past three decades, despite our understanding the roles

of AVR effectors of M. oryzae in establishing interactions with rice

and other hosts is increasing, many issues and challenges (listed

below) remain to be resolved:
Fron
(1) The AVR effectors corresponding to the majority of known

R proteins, particularly those with broad-spectrum

resistance, such as Pigm, Pi2, etc., have not yet been

isolated. These AVR effectors may be highly conserved

and prevalent across M. oryzae population in the field.

The loss of them likely imposes fitness penalties on the

pathogen (Leach et al., 2001; Bart et al., 2012).

(2) Since wheat is currently threatened by the expanding blast

pandemic, research efforts are urgent to isolate more AVR

effector and R protein pairs. It will enable the study of their

molecular interactions and the potential for engineering

resistance against the Triticum pathotype of M. oryzae.

(3) What is the final product synthetized by ACE1 and how

does Pi33 detect the AVR signal?

(4) The structural mechanism underlying the transformation

of NLRs from their static to activated states upon

recognition of AVR effectors needs further investigation.

(5) What are the detailed molecular events downstream once R

protein is activated by AVR effectors?
tiers in Plant Science 10
(6) Little is known about the detailed mechanism by which the

cytoplasmic AVR effectors are internalized and transported

into plant cells. Once entering into the cytoplasm, how

these AVR effectors move into the cellular organelles for

virulence and avirulence functions remains to be addressed.
Future research in these fields will undoubtedly reveal novel

strategies of M. oryzae AVR effectors participating in rice

resistance/susceptibility that can be exploited to control blast

disease with high efficiency and durability.
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