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Using the Pearson’s correlation
coefficient as the sole metric
to measure the accuracy of
quantitative trait prediction:
is it sufficient?
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How to evaluate the accuracy of quantitative trait prediction is crucial to choose

the best model among several possible choices in plant breeding. Pearson’s

correlation coefficient (PCC), serving as a metric for quantifying the strength of

the linear association between two variables, is widely used to evaluate the

accuracy of the quantitative trait prediction models, and generally performs well

in most circumstances. However, PCC may not always offer a comprehensive

view of predictive accuracy, especially in cases involving nonlinear relationships

or complex dependencies in machine learning-based methods. It has been

found that many papers on quantitative trait prediction solely use PCC as a

single metric to evaluate the accuracy of their models, which is insufficient and

limited from a formal perspective. This study addresses this crucial issue by

presenting a typical example and conducting a comparative analysis of PCC and

nine other evaluation metrics using four traditional methods and four machine

learning-based methods, thereby contributing to the improvement of practical

applicability and reliability of plant quantitative trait prediction models. It is

recommended to employ PCC in conjunction with other evaluation metrics in

a targeted manner based on specific application scenarios to reduce the

likelihood of drawing misleading conclusions.
KEYWORDS

genomic selection, quantitative trait prediction, Pearson’s correlation coefficient,
evaluation metric, regression prediction
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1 Introduction

Quantitative trait prediction is receiving increasing attention in

plant breeding in recent years (Jeong et al., 2020). It aims to obtain

accurate predictions of unobserved genetic or phenotypic values

through the integrated analysis of multi-source data (e.g., genomics,

phenomics, and enviromics) (Xu et al., 2022). In recent years,

machine learning techniques have been introduced and applied in

genomic prediction due to their ability to capture various complex

potential interactions, non-linear and non-additive effects

(Yan et al., 2021; Xu et al., 2022; Li et al., 2024). Specifically,

many machine learning-based methods represented by deep neural

networks, have been introduced as superior alternatives to

traditional linear models (Wang et al., 2023). Evaluating the

prediction accuracy is crucial for choosing the best model among

several possible choices (Blondel et al., 2015). Pearson’s correlation

coefficient (PCC), serving as a metric for quantifying the strength of

the linear association between two variables, is widely used to

evaluate the accuracy of the quantitative trait prediction models,

and generally performs well in most circumstances (Blondel et al.,

2015). However, it should be noted that PCC may not always

provide a complete picture of predictive accuracy and is flawed for

the purpose of method comparison (McGrath et al., 2024),

especially in cases involving nonlinear relationships or complex

dependencies (González-Recio et al., 2014), the use of inappropriate

models, and insufficient model training. It has been found that

many papers on quantitative trait prediction based on machine

learning solely use PCC as a single metric to evaluate the accuracy of

their models, which is insufficient and limited from a formal

perspective (González-Recio et al., 2014). Indeed, this issue is not

restricted to machine learning-based models for quantitative trait

prediction, potentially surfacing in any predictive modeling

framework. In certain instances, relying solely on PCC for

accuracy evaluation may lead to misleading conclusions (Bland

and Altman, 1986; McGrath et al., 2024). Firstly, PCC only

measures the overall linear correlation between all observed and

predicted values without considering the prediction bias or variance

of the model (González-Recio et al., 2014; Abdollahi-Arpanahi

et al., 2020). Secondly, PCC measures the strength of a relation

between observed and predicted values, not the agreement between

them (Bland and Altman, 1986). Thirdly, the PCC value depends on

the range or variability of the variables. High variability and a larger

sample size tend to provide a more accurate and reliable estimate of

the linear relationship between the variables. Conversely, low

variability or a narrow range of values can make the correlation

coefficient less informative, potentially leading to misleading

interpretations. Thus, predictive models selected solely based on

PCC metric often fail to align with many practical application

scenarios. For example, in practical crop breeding, breeders focus

more on the hit rate of head or tail breeding lines rather than the

overall correlation in order to select the top-K individuals or

eliminate the bottom-K individuals in the ranking. Thus, relying

solely on PCC for choosing predictive models makes it difficult to

accurately select the top individuals with the highest breeding value

(Blondel et al., 2015).
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2 Limitations of relying solely on PCC
for accuracy evaluation

Most often, a common approach tomeasure the performance of a

quantitative model is to plot the scatter diagram of predicted and

observed values, and fit them using a simple linear regression model

Yobserved = aYpredicted + b and then compare slope and intercept

parameters with the 1:1 line (Piñeiro et al., 2008). In this simple

linear regression, if the least squares method is used for parameter

estimation, the square of the PCC value between the independent

variable and dependent variable (corresponding to the predicted

values and observed values in the original quantitative prediction

model, respectively) is exactly equal to the R2 score of this simple

linear regression model (not the R2 score of the original quantitative

prediction model). This may be one of the reasons why PCC between

predicted and observed values is often used in many papers to

measure the performance of a quantitative prediction model. There

seem to be no issues whatsoever, but the reality is somewhat different.

The correlation between predicted and observed values depends on

their variability (e.g. range) and distribution (Bland and Altman,

2003). In particular, a change in the scale of the predicted value (e.g.

all being multiplied by a certain factor) does not alter the PCC value,

but it undoubtedly impacts the performance of a model (Bland and

Altman, 1986). For example, if the predicted values are consistently

tenfold the observed values, employing the aforementioned simple

linear regression model would yield an impeccable straight line

characterized by a slope of 10.0 and a PCC value of 1.0. If the

ranges of observed and predicted values differ or if there is a non-

linear relationship between them due to various factors, such as

inherent defects of the prediction model, insufficient model training,

substantial differences in data distribution between the test set and the

training set, relying solely on the PCC to measure the accuracy of the

prediction model may lead to misleading conclusions. Thus, it is not

rigorous to solely use PCC as a single metric to measure the

prediction accuracy of a model in some published papers.

Here, we present a simple example to elucidate this issue. Suppose

our objective is to utilize genotypic and environmental data to forecast

the phenotypes of a quantitative trait (e.g., yield). In this scenario, we

employ four machine learning-based models individually to make

predictions, thereby obtaining the corresponding predicted values for

each model. To simplify, let us assume that the test set comprises 10

test data, the details of the input data and four prediction models are

omitted here. The observed values and predicted values of each model

are shown in Supplementary Table S1. The scatter plots of predicted

vs. observed values and the residual plots are presented in this example

to visually assess the prediction accuracy of these four models

(Figure 1). The PCC between predicted values and observed values

in the four models are 0.8345, 0.8785, 0.8978, and 0.9229 respectively.

For model 1, except for two data points with residual values of -6.1 and

2, the absolute residuals for the remaining eight data points are all

within 1, resulting in a MAE (Mean Absolute Error) of 1.28. In model

2, the absolute values of all residuals are greater than or equal to 10,

with a MAE of 11.40. Similarly, in model 3 and model 4, the absolute

residuals are relatively larger, with a MAE of 20.20 and 26.60

respectively. Compared with the first three models, the residual
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value of model 4 fluctuates more widely. If we solely rely on the PCC

metric to assess the predictive accuracy of the four models, it would

seemingly suggest that Model 1 exhibits the poorest predictive

performance while Model 4 displays the most superior accuracy.

However, it is patently clear that this conclusion fails to align with

the actual situation. Obviously, Model 1 has the smallest residuals

among these four models, and shows a better fitting capability to the

observed values (Figures 1E, F). However, its PCC value (0.8345) is the

lowest, which is less than the values of Model 2 (0.8785), Model 3

(0.8978), and Model 4 (0.9229) (Supplementary Table S1). This

suggests that a model boasting a higher PCC does not always

guarantee superior predictive accuracy. This issue may also emerge

in the phenotype prediction of real-world crop breeding datasets

(Supplementary Tables S2-S39).
3 Empirical analysis based on real-
world breeding datasets

To strengthen the persuasiveness and thoroughness of our

opinion, the differences between PCC and nine other evaluation

metrics were compared by eight methods on seven real-world crop
Frontiers in Plant Science 03
breeding datasets representing different species, traits, sample sizes,

and data distributions in this study (Supplementary Figures S1-S14).

These nine metrics were MAE, MSE (Mean Squared Error), RMSE

(Root Mean Squared Error), R-squared, SRCC (Spearman’s rank

correlation coefficient), NDCG@K (top-K normalized discounted

cumulative gain) (Blondel et al., 2015), THR@P% (top-P percent

hit ratio), BHR@P% (bottom-P percent hit ratio), and CICE

(combined index for correlation and error) (Supplementary

Equation S1). The eight methods used in this study include: four

traditional methods — ridge regression best linear unbiased

prediction (rrBLUP), BayesA, Bayesian LASSO (BL), and Bayesian

ridge regression (BRR); and four machine learning methods — light

gradient boosting machine (LightGBM), support vector regression

(SVR), random forest (RF), and deep neural network for genomic

prediction (DNNGP) (Wang et al., 2023). Two evaluation schemes,

10-fold cross-validation and one-time test (80% for training and 20%

for testing), were involved in this study for comparing the

performance of eight models on different datasets. The

experimental results indicate that, in some cases, the ranking of the

PCC metric of the model is inconsistent with the ranking of other

metrics (Supplementary Tables S2-S39). For example, in the

prediction of plant height (PH) using 10-fold cross-validation on
FIGURE 1

An example of how relying solely on PCC for accuracy evaluation in quantitative trait prediction may lead to misleading conclusions based on the
simulated data. (A-D) Scatter diagrams of predicted versus observed values for the Model 1, Model 2, Model 3 and Model 4; (E) Comparison of
observed values with predictions from four models; (F) A comparison of residuals among the four models. MAE, mean absolute error; RMSE, root
mean squared error; PCC, Pearson’s correlation coefficient.
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the IRRI dataset (Spindel et al., 2015), the PCC score of the DNNGP

model (Wang et al., 2023) is higher than those of the BRR and SVR

models, with PCC scores of 0.351, 0.347 and 0.211, respectively

(Supplementary Tables S2). However, the DNNGP model presents

a distinctly lowest R² score and ranking compared to the BRR and

SVRmodels, and the ranking of its other metrics, such as MAE, MSE,

and RMSE, are also higher than those of the other two models

(Figure 2A). The potential reason for this phenomenon could lie in

the inherent challenges faced by neural network models in fully

harnessing their strengths when confronted with relatively small size
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datasets (Abdollahi-Arpanahi et al., 2020). Similar phenomena also

can be observed in the prediction of quantitative traits such as flowing

date (FLW), peduncle length (PedL), grain width (GrW), grain yield

(YLD), panicle exertion rate (Exs), and lodging score (Lg) on the IRRI

dataset (Supplementary Tables S3-S8, S22-S27), as well as the average

grain yield (GY) on the wheat599 (McLaren et al., 2005) dataset with

1279 markers (Supplementary Tables S9, S28). Furthermore, in-depth

case studies focusing on specific traits of utmost importance in crop

breeding, were conducted on five additional datasets including

wheat487 (Garcia et al., 2019), G2F_2017 (McFarland et al., 2020),
FIGURE 2

Comparison of the ranking between PCC and nine other evaluation metrics in some phenotype predictions based on real-world breeding data.
(A) Prediction of the trait PH on the IRRI dataset; (B) Prediction of the trait Exs on the IRRI dataset; (C) Prediction of the trait Biomass on the
wheat487 dataset; (D) Prediction of the trait Yield on the G2F_2017 dataset; (E) Prediction of the trait DTP on the CNGWAS dataset; (F) Prediction of
the trait PGW on the millet827 dataset. PH, plant height; Exs, panicle exertion rate; DTP, days to pollen; PGW, per plant grain weight. PCC, Pearson’s
correlation coefficient; MAE, mean absolute error; MSE, mean squared error; RMSE, root mean squared error; R-squared, coefficient of
determination R²; SRCC, Spearman’s rank correlation coefficient; NDCG@5, top 5 normalized discounted cumulative gain; THR@10%, top 10% hit
rate; BHR@70%, bottom 70% hit rate; CICE, combined index for correlation and error; rrBLUP, ridge regression best linear unbiased prediction; BL,
Bayesian LASSO; BRR, Bayesian ridge regression; LightGBM, light gradient boosting machine; SVR, support vector regression; RF, random forest;
DNNGP, deep neural network for genomic prediction.
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CNGWAS (Yang et al., 2014), USNAM (Li et al., 2024), andmillet827

(Wang et al., 2022), further reaffirm and strengthen the

aforementioned findings (Figure 2; Supplementary Tables S11-S20,

S30-S39). In these typical cases (Figures 2C, D), if we rely solely on

PCC metric to measure the accuracy of a model, it will lead to

misleading conclusions. On the other hand, the PCC metric exhibits

almost consistency with other metrics across all eight models on the

wheat599 dataset with 251 principal components after dimensionality

reduction (Supplementary Tables S10, S29). Considering that the

phenotypes on the wheat599 dataset is close to a standard normal

distribution (Supplementary Figures S2, S9), and that the features in

its genotypes are linearly independent of each other after

dimensionality reduction, this implies that the redundant features

of genotypes and the data distribution of phenotypes may have a

considerable influence on the PCC performance of the model.

A higher PCC value for a prediction model merely indicates a

stronger linear correlation between the predicted and observed

values, but it does not necessarily imply that the prediction error is

smaller. In some scenarios, there may be high PCC values

accompanied by high prediction bias (Supplementary Tables S3-S9,

S11-S28, S30-S40). Moreover, the PCC value has volatile and opaque

characteristics in predictive models based on nondeterministic effects

alone, showing noticeable fluctuations across varying test set sizes,

distinct random partitions of the data, and even with different

random initializations (Ubbens et al., 2021). For example, the PCC

value is more susceptible to factors such as sample size and test set

size compared to MAE and RMSE (Supplementary Figure S15). As

the sample size gradually increases, the PCC value shows a more

rapidly increasing trend compared to the MAE and RMSE values

(Supplementary Figures S15A–C). Given a fixed training set, the PCC

score exhibits larger fluctuations compared to MAE and RMSE when

the size of the test set is small, and tends to decrease and become

more stable as the size of the test set gradually increases

(Supplementary Figures S15D–F). In some cases, such as when the

predicted values and observed values are collinear, even if the PCC of

the model is high, there may be other issues such as overfitting

(Blondel et al., 2015). In practice, in the evaluation of the model,

metrics such as MAE, MSE, RMSE, and R² score are more frequently

used alternatives to PCC (Scikit-learn, 2023; Supplementary Figure

S16). Thus, data transformation or standardization is also very

important for the objective evaluation of model accuracy. In

addition, PCC has an upper limit (equal to the square root of

heritability) when heritability is less than one in genomic

prediction (Blondel et al., 2015).
4 Conclusion

The PCC may not reflect the accuracy of the model if range or

variability of observed and predicted values differ or if there is a non-

linear relationship between them due to various factors such as

outliers, data distribution, test set size and inappropriate models.

For the performance evaluation of the model, it is essential to first test

whether there is a linear relationship between the observed and
Frontiers in Plant Science 05
predicted values, along with their variability. If their relationship is

not a simple linear regression or if their value ranges differ, the

model’s predictions may be not good, then the PCC may not be a

useful metric. At this time, using PCC solely as a measure of model

accuracy should be approached with caution, as each metric has its

own advantages and disadvantages in different application scenarios

(González-Recio et al., 2014; Supplementary Table S41) and there is

no one which can be used solely. When selecting metrics for

evaluating the accuracy of the model, multiple factors such as

practical application scenarios, redundant features of genotype data,

distribution of phenotype data, train-test split of dataset, the size of

test set, and model complexity should be comprehensively

considered. For example, in crop breeding scenarios, the THR@P%,

or BHR@P%may be more suitable for measuring the performance of

the model compared to PCC, as breeders are more concerned with

how to select the top-K individuals or eliminate the bottom-K

individuals. It is recommended to employ a combination of

multiple metrics such as MAE, RMSE, R² score, NDCG and root

mean squared deviation (RMSD) (Piñeiro et al., 2008) rather than

just using the PCC as a sole metric to assess the accuracy of a

quantitative trait prediction model. In addition, the Bland–Altman

method (Bland and Altman, 2003) and visual assessment such as

scatter plot of predicted and observed values are also valuable

supplement for evaluating the accuracy of the model (Piñeiro et al.,

2008). To improve the operability in practical applications, the clear

guidance and detailed steps on how to select and apply evaluation

metrics in several typical scenarios are provided (Supplementary

Table S42). Furthermore, in order to facilitate the comparison of

performance among models and minimize the likelihood of

misleading conclusions, a combination of PCC and MAE, called

combined index for correlation and error (CICE) (Supplementary

Equation S1) was proposed for model evaluation in general scenarios.

Empirical results indicate that CICE effectively balances prediction

trend and prediction bias in model evaluation compared to using

PCC as the sole measure (Supplementary Tables S2-S40).
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