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Bingöl, Bingöl, Türkiye, 3Department of Plant and Animal Production, Vocational School of Pazar,
University of Recep Tayyip Erdogan, Rize, Türkiye
This study was carried out to determine the factors affecting the wet grass yield of

pea plants grown in Turkey. Wet grass yield was predicted using parameters such

as genotype, crude protein, crude ash, acid detergent fiber (ADF), and neutral

detergent fiber (NDF) with some data mining algorithms. These techniques

provided easily interpretable data trees and precise cutoff values. This led to a

comparison of the predictive abilities of data mining methods, including

multivariate adaptive regression spline (MARS), Chi-square automatic

interaction detection (CHAID), classification and regression tree (CART), and

artificial neural network (ANN). To test the compatibility of the data mining

algorithms, seven goodness-of-fit criteria were used. The predictive abilities of

the fitted models were assessed using model fit statistics such as the coefficient

of determination (R2), adjusted R2, root mean square error (RMSE), mean absolute

percentage error (MAPE), standard deviation ratio (SD ratio), Akaike information

criterion (AIC), and corrected Akaike information criterion (AICc). With the

greatest R2 and adjusted R2 values (0.998 and 0.986) and the lowest values of

RMSE, MAPE, SD ratio, AIC, and AICc (10.499, 0.7365, 0.047, 268, and 688,

respectively), the MARS method was determined to be the best model for

quantifying plant fresh herbage yield. In estimating the fresh herbage

production of the pea plant, the results showed that the MARS method was

the most appropriate model and a good substitute for other data

mining techniques.
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1 Introduction

Pea (Pisum sativum L.), is an indigenous plant throughout

southwest Asia and was among the earliest crops that people

farmed, with wild varieties still found in Ethiopia, Afghanistan,

and Iran (Maria et al., 2009). According to Berhane et al. (2016),

legumes such as peas are essential for crop rotations because they

contribute to the breakdown of disease and pest cycles, supply

nitrogen, enhance soil microbial activity and multiplicity, improve

soil composition, conserve soil water, and provide economic variety.

Peas are a cool-season annual crop that fixes nitrogen and has a

high ratio of edible protein (23%–33%), along with other

biomolecules such as vitamins and carbohydrates (Hafiz

et al., 2014).

According to Borreani et al. (2009), field pea, faba bean, and

white lupin can all be effectively ensiled with the addition of a lactic

acid bacteria inoculum and after a brief wilting period in favorable

weather. However, white lupin can only be effectively ensiled with

the application of a lactic acid bacteria inoculant due to the low dry

matter content at cutting and the quick wilting phase, resulting in a

very low dry matter content of wilted and unwilted silages.

When harvested as ensiled feed, legume pulses, including field

peas, faba beans, and lupins, are annual crops that are well-suited

for brief crop rotations (Borreani et al., 2007). Ensiling pulses as a

whole-crop forage provides livestock with less expensive, traceable,

and nonanimal-based home-grown protein and starch (Cavallarin

et al., 2007). This can also increase the efficiency of the production

system in dairy farms by reducing the amount of purchased

concentrates fed to the animals (Adesogan et al., 2004).

Forage pea (Pisum arvense L.), a highly nutritious and palatable

annual legume forage plant, rich in protein within its seeds. After

crushing, it can be mixed with roughage. All pea varieties grown in

Europe today have flowers in white, green, or yellow colors. Seeds of

varieties known in the feed industry in almost all of Europe are

evaluated as protein-based feed. If the dried grass of pea is harvested

at the appropriate time, it contains about 20% crude protein.

Similarly, its seeds contain 20%–30% crude protein, making them

a high-quality, nutritious protein source for animals. Peas are used

both as dry hay and green seeds for feed, and are valued as a green

forage plant in pastures and as green manure to increase nitrogen

levels (Özkaynak, 1980; Açıkgöz, 2001).

The aim of this study was to determine the factors affecting

green grass yield in pea plants and to predict yield using data on

crude ash, crude protein, neutral detergent fiber (NDF), and acid

detergent fiber (ADF).
2 Materials and methods

2.1 Experimental materials

The study was conducted on 14 different pea lines and varieties

at the Bingöl University Research and Application Field, located 10

km from the Bingöl city center.

The long-term average temperature in Bingöl province is 12.0°C,

whereas in 2015, it was 13.7°C. Similarly, the long-term average
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maximum temperature is 18.4°C, compared to 19.8°C in 2015. The

long-term average minimum temperature is 6.4°C, while in 2015 it

was 7.2°C. Annual precipitation also showed a decrease, with a long-

term average of 933.9 mm, compared to and 801.8 mm in 2015.

These values indicate that 2015 was both warmer and received less

rainfall than the long-term averages.

Soil analyses were conducted in the soil analysis laboratory of the

Department of Soil Science and Plant Nutrition, Faculty of

Agriculture, Bingöl University. The results indicate that the soil has

a clayey texture, low organic matter, low salinity, basic pH, deficiency

in calcium and potassium, and sufficient phosphorus content.

A field experiment was established in 2015 on a field that had

been deep-plowed and tilled with a cultivator and harrow. The

experiment followed a randomized block design with three

replications. Plot sizes were 5 m in length with 30 cm row

spacing, and each plot contained four rows. A seeding rate of 15

kg/ha was used. After planting, sprinkler irrigation was applied to

ensure emergence, and weed control was conducted manually

throughout the growing season using hand hoeing.

It can be generally accepted that the dependent variable, the wet

grass yield of pea plants, is influenced by the genotype predictor

variables (crude protein, crude ash, ADF, and NDF).

Crude protein values are shown for each feed. To calculate

crude protein, multiply the Kjeldahl nitrogen by either 6.25 or 100/

16. On average, proteins contain 16% nitrogen. Crude protein

provides little insight into a feed’s true protein and nonprotein

composition. Many feed composition charts include digestible

protein, but it is more deceptive than crude protein due to the

significant contribution of body protein to the apparent protein in

feces (Stanton and LeValley, 2006). Crude ash is a proximate

chemical composition, similar to crude protein.

Animal digestibility is closely linked to ADF. The availability of

net energy from digestible energy and voluntary feed intake are

associated with NDF. Both metrics have a stronger correlation with

expected animal performance (Stanton and LeValley, 2006).
2.2 Statistical methods

2.2.1 Chi-squared automatic
interaction detection

For paired-variable assessment, the Chi-squared automatic

interaction detection (CHAID) approach may reveal a more

trustworthy representation of the unmasked link than either the

scatterplot or the smoothed scatterplot. Due to its simplicity in

construction, comprehension, and application, CHAID regression

tree models are a well-liked approach, particularly among aspiring

regression modelers lacking substantial statistical expertise. The

foundations of CHAID are also quite appealing: it is an assumption-

free technique (i.e., it does not require formal theoretical

assumptions to be satisfied) and it is very effective at managing a

large number of predictor variables in “big data”. Traditional

regression models, on the other hand, are assumption-full, which

leaves them vulnerable to unpredictable outcomes and ineffective in

handling a large number of predictor variables (Ratner, 2017).

Gallagher et al. (2005) state that the CHAID approach is based
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solely on the classification of categorical dependent variables and

uses the Chi-square test to identify categorical independent

variables. A representation of the Chi-square test of independence

is as follows:

c2 =o
ij

(Oij − Eij)
2

Eij

where i = 1, 2,…, r  and   j = 1, 2,…,

cOij: reflects the cell’s observed frequency.

Eij: reflects the cell’s expected frequency.

The CHAID approach consists of three steps: merging, splitting,

and stopping (Alkhasawneh et al., 2014).

Continuous variables are converted into ordinal variables before

the following algorithm is activated. The mapping of a given x into

category C(x) is as follows for a given set of break points a1, a2,…

, aK−1 an (in ascending order):

C(x) =

1 x ≤ a1

k + 1   ak < x < ak+1, k = 1,…K − 2

K aK−1 < x

8>><>>:
When estimating the ranks, if K is the desired number of bins, xi

frequency weights are taken into account for the computation of the

break points. The average rank is used if there are ties. The

following is an ascending order of the rank and accompanying

values: r(i), x(i)
� �n

i=1

For k = 0 to (K−1), set Ik = i :½r(i) K
Nf 1

� = k
n o

where (x) displays

the floor integer of x. If Ik is not empty. ik = max i : i ∈ Ikf g.
In order to exclude the largest, the break points are made equal

to the x values corresponding to the ik (Breiman et al., 1984; Orhan

et al., 2016; Gözüaçık et al., 2018).

2.2.2 Classification and regression tree
Classification and regression tree (CART) is a rule-based,

nonparametric machine learning technique that looks for

relationships inferred from input characteristics (predictor

variables) to target attributes. To improve the accuracy of the

target variable prediction, the predictor variable is divided into

many areas using this approach (Breiman et al., 1984; Steingberg

and Colla, 2016).

Numerous fields, such as agricultural and veterinary sciences,

extensive use it (Cak et al., 2013; Eyduran et al., 2013; Çelik and

Yilmaz, 2018; Çelik et al., 2018). By locating the primary patterns

within the collection of independent variables, the CART technique

can be categorize and forecast the values of a specific dependent

variable, Y. The dependent variable in binary classification

problems is binary-valued, while in regression problems, it is

continuous or interval-type. The independent variables may be

continuous, ordinal, or nominal in nature. Recursive partitioning,

the methodical process of building a binary decision tree by dividing

each node into two child nodes or not, is the foundation of the

CART (Yordanova et al., 2015).

In a regression problem, the mean value of all cases in each

terminal node of the decision tree constitutes the projected value.

The mean squared error from all variables and threshold values is
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minimized at each step by determining one independent variable

and its suitable threshold value, such as qk. For all circumstances

where there are two viable answers, “yes” or “no”, the splitting rule

has the form xki < qk. In this manner, the independent variable

input space is divided into multidimensional, nonoverlapping 2D

rectangular or hypercuboid sections. A decision tree is a flow

diagram that shows the dependent variable’s categorization and

regression prediction models (Yordanova et al., 2015). All

beginning cases are dispersed into the regression tree’s

terminal nodes.

The following stages can be used to describe the CART method

(Gupta et al., 2017):

• The following formal formula is used to calculate the impurity

of D and the potential result.

Gini(D) = 1 −om
i p

2
i

Where pi is the probability that a tuple in data D belongs to class

Ci, and it is given by Ci,D

�� ��= Dj j.
• The following formula is used to compute each partition

attribute’s impurity:

GiniA(D) =
D1j j
Dj j Gini(D1) +

D2j j
Dj j Gini(D2)

The optimum binary split should then be chosen for use in the

following phase by selecting the partition attribute with the lowest

Gini index.

• The following formula is utilized to determine the impurity

reduction:

DGini(A) = Gini(D) − GiniA(D)

The splitting attribute is determined by selecting the feature

with the lowest Gini index and the largest drop in impurity (Gupta

et al., 2017).

2.2.3 Artificial neural networks
An information processing system called an artificial neural

network (ANN) is modeled after biological systems, such the

human brain. The brain’s distinctive characteristics include

learning new ideas, making judgments, and deriving conclusions

from complex and perhaps irrelevant or incomplete data. The

widespread use of ANN stems from their limited capacity to

mimic brain functions, albeit in a limited capacity (Samarasinghe,

2007). ANNs, therefore, provide an alternative methodology to

conventional statistical techniques, which call for the definition of

an algorithm and its recording as a computer program. ANNs are

instead given example tasks, and their weight coefficients and

connections between network parts are automatically adjusted

based on the training method (Tadeusiewicz and Lula, 2007).

A typical artificial neuron and the modeling of a multilayered

neural network are as follows. The signal flow from inputs x1, x2, :

, xn is considered to be unidirectional, which is a neuron’s output

signal flow (O). The neuron output signal O is given by the

following relationship:

O = f (net) = f on
i=1wixi

� �
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The weight vector in this case is denoted by wi, and the function

f (net) is known as an activation (transfer) function. A scalar

product of the weight and input vectors defines the variable net,

net = wTx = w1x1 + w2x2 +… + wnxn

When T is a matrix’s transpose, and the output value O is

calculated in the most basic scenario as

O = f (net) =
1       if  wTx ≥ q  

0           otherwise

(

where the node type is referred to as a linear threshold unit and

q is known as the threshold level (Abraham, 2005).

2.2.3.1 Perceptron neural networks

By establishing the weights and relevant functions, a multilayer

perceptron network can be utilized to solve many exceedingly

complex mathematical problems that involve complex nonlinear

equations. Different activation functions can be utilized in neurons

depending on the kind of issue. In these networks, there are three

layers: an input layer that introduces issue inputs, a hidden layer,

and an output layer that offers the solution. Backpropagation is a

popular training technique for these networks (Manhaj, 2002).

2.2.3.2 Artificial neural network structures

The linked collection of neural networks often uses

mathematical techniques to handle data. This multilayer

perceptron network (MLP) has three layers: an input layer, a

hidden layer, and an output layer for input data, data processing,

and output data, respectively. Each layer is composed of many

artificial neurons, or nodes. All neurons are linked to each other,

except within the same layers. The results are categorized and

moved to the output layer using hidden layers. The target

variable’s anticipated values are likewise displayed in the output

layer. An estimate of the stations’ daily discharge is displayed in the

output layer of the current research. The backpropagation

technique is used in the multilayer perceptron network’s training

process. This algorithm defines the starting weights, which are then

assigned to the knots. Next, the model is updated to include the

learning samples, after which the output is produced and contrasted

with trial samples. When differences exceed the designated cutoff

point, the weights are adjusted until the difference between the

intended and actual outputs is minimized. This procedure is carried

out until the maximum number of iterations or a previously

established level of precision is reached (Islam et al., 2001).

The input layer of a feed-forward backpropagation neural

network receives external evidence. These inputs are then moved

to input variables via the identity transfer function. Through the

connections between input layer and hidden layer neurons,

scientists were able to access the hidden layers. The basic

calculation of ANNs performed in these layers is achieved by

connecting weights between the neurons of hidden layers

(Nowruzi and Ghassemi, 2016). In order to weight the

summations of the outputs from the preceding layer in the

neurons of the hidden layer, they are adding biasedly. This total

is then transferred using a transfer function. For a neuron in the
Frontiers in Plant Science 04
buried layer, the hyperbolic tangent sigmoid transfer function is

implemented by

nj =
2

1 + e−2Z
− 1

where Z will be ascertained as follows, and nj represents the jth

neuron output.

Z =o
r

i=1
wijpi + bj

Here, pi is the ith neuron’s output, and wij are the ith neuron’s

connectivity weights from the previous layer to the jth neuron.

Furthermore, bj is the bias, and r is the number of neurons in the

preceding layer.

In addition to hyperbolic tangent activation, other activation

functions such as linear activation function, sigmoid function,

exponential linear unit, and Softmax function can be used in

artificial neural networks.

The linear activation function can be defined as:

F(Z) = aZ

Any constant value that the user selects can be the value of

variable a (Sharma et al., 2020).

The sigmoid function can be defined as follows (Sibi et al., 2013):

sig(Z) =
1

1 + e−Z

Exponential linear unit introduces a parameter slope for the

negative values of x. It uses a log curve for defining the negative

values (Sharma et al., 2020).

f (Z) = Z,      Z ≥ 0

f (Z) = a(eZ − 1),    Z < 0

The Softmax function is a combination of multiple sigmoid

functions. Since a sigmoid function is known to yield values

between 0 and 1, these values may be interpreted as the probability

of the data points belonging to a certain class. The Softmax function

can be used for multiclass classification issues, in contrast to sigmoid

functions, which are utilized for binary classification. The function

yields the probability for each data point across all classes. It can be

stated as follows: (Sharma et al., 2020).

s (Z)i =
eZi

oK
k=1e

Zk
            for   i = 1, 2,…,K:  

In this study, the highest R2 and adjusted R2 and the lowest

RMSE, MAPE, SD ratio, AIC, and corrected Akaike information

criterion (AICc) values were achieved using the hyperbolic tangent

activation function. The hyperbolic tangent activation function was

used because it provided the best prediction.

The output layer will receive the results. Thus, the output layer

will obtain the output variable. In the output layer, the linear

transfer function (l) is applied as,

g = l(wLZ + b0)
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where the output layer and the final hidden layer’s connectivity

weights are denoted by wL. Furthermore, the output layer bias is b0
(Rumelhart et al., 1986).

2.2.4 Multivariate adaptive regression spline
Multivariate adaptive regression spline (MARS) is a

nonparametric modeling technique that adds nonlinearities and

variable interactions to the linear model. This approach is an

extension of recursive partitioning regression (RPR), which

creates distinct subregions inside the predictor variable space

(Friedman, 1991; Montero, 2013). The model is expressed as

follows:

yt = f (xt) = b0 +o
k

i=1
biB(xit)

where bi, which range from i = 1,…, k, are the model

parameters for the corresponding xit variables and yt is the

response variable at instant t. The intercept is represented by the

value ˇ0, and the basis functions each B(xit) may be expressed as

B(xit) = max(0,   xit − c)

or

B(xit) = max (0,   c − xit),

where c is a threshold value and k is the number of explanatory

variables, which includes interactions of the predictor variables

(Salford Systems, 2001a). By using only a small number of knots c,

the MARS algorithm (Friedman, 1991) aims to fit splines of the

form (xit − c) and (c − xit), to high-dimensional data. Thus, in a

forward stepwise fashion, the algorithm looks for the ideal c to

approximate the relationship between yt and the predictor variables

xit. It begins with an empty model and adds knots to the model

recursively for each of the predictor variables in xit. The variable and

knot selected at each phase are chosen to produce the greatest

reduction in the final model’s error (Friedman, 1991). For both

forms, consider it as a functional value xit. In the first version, xit
equals xit − c for all values of x greater than c and is set to 0 for all

values of xit up to a threshold value, c. In the second form, xit equals

c − xit for all values of x less than c and is set to 0 for all values of xit
greater than a threshold value, c (Abraham et al., 2001). Every

function has a knot at value c and is piecewise linear. Linear

nonsmooth splines are these transformed functions (Hastie et al.,

2009). B(xit) are functions that rely on the corresponding xit
variables. The data analysis yields the space partition points and

model parameters. The complexity of the model is indicated by the

number of derived basis functions (Salford Systems, 2001a).

The least squares approach is used to identify the functions with

the best estimate performance once the fundamental functions and

knots have been identified (Friedman et al., 2001). Generalized

crossvalidation (GCV) measurement serves as the basis for model

selection (Salford Systems, 2001b).

GCV =o
n

i=1

(yi − byi)2
(1 − C(M)=n)2
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where C(M) displays a penalty measure correlated with the

number of chosen parameters, and ŷ denotes the projected values.

The differences between each method used were displayed

in Table 1.

The following goodness-of-fit criteria were computed in order

to compare the prediction performance of the approaches in 10-fold

crossvalidation (Willmott and Matsuura, 2005; Takma et al., 2012):

Pearson correlation coefficient (r) between the actual and

predicted yield (WGY) values,

1. Akaike information criterion (AIC) calculated as:

AIC = nln
1
n
(yi − byi)2� �

+ 2k,       if
n
k
> 40

or:

AICc = nln
1
n
(yi − ŷ )2

� �
+ 2k

+
2k(k + 1)
n − k − 1

,                                   otherwise

2. Root-mean-square error (RMSE) given by the following

formula:

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
no

n
i=1(yi − byi)2r

3. Standard deviation ratio (SDratio):

SDratio =
sm
sd

4. Mean absolute percentage error (MAPE):

MAPE =
1
no

n

i=1

yi − byi
yi

���� ����:100
TABLE 1 Differences between MARS, CHAID, CHART, and ANN methods.

MARS A maximum of 35 basis functions was used in the MARS approach.
A level − 1 penalty was applied for adding additional basis functions
to the model, and interactions between variables were included.

CHAID The CHAID approach used 10-fold crossvalidation to prevent the
model from overlearning. In this method, the input dataset is
repeatedly divided into training and test subsets, forming the basis of
the model. We can finish the model-building process without
overlearning by evaluating their quality at each iteration. When
overlearning occurs, the model’s error on the learning set is
extremely low.

CART The CART approach included 10-fold crossvalidation to prevent the
model from overlearning. This technique involves repeatedly dividing
the input dataset into learning and test subsets, which serve as the
foundation for the models. By evaluating their quality at each
iteration, we can finish the model-building process without
overlearning. When overlearning occurs, the model’s error on the
learning set is extremely low.

ANN The optimal network structure was determined by setting the number
of neurons in the hidden layer to 3 in the ANN. A multilayer
perceptron model was used in the study.
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TABLE 2 Descriptive statistics of characteristics of peas.

Genotype N Mean SE SD Minimum Maximum

WGY

88 PO38 3 723.220 77.588 134.387 608.330 871

SPRING PEA 3 951.560 62.556 108.351 844.330 1061

P57B 3 723.890 8.957 15.5146 708 739

P51 3 756.560 108.031 187.114 573.330 947.330

P101 3 1007 82.924 143.628 860 1147

P104 3 845.110 71.661 124.121 707 947.330

ATOS 3 888.560 130.160 225.443 684.670 1,130.670

ÖZKAYNAK 3 1,003.890 100.561 174.176 851.330 1,193.670

RETNA 3 1,243.220 121.818 210.995 1,006.670 1,412

GATEM-101 3 1,178.670 149.953 259.725 879.670 1,348.330

SPRING 3 735.890 55.690 96.458 659.670 844.330

BOLERO 3 965.890 10.839 18.774 944.670 980.330

ÜRÜNLÜ 3 1,273.560 49.998 86.599 1,179.330 1,349.670

GÖL YAZI 3 1,116.330 85.836 148.673 1,021.330 1,287.670

Crude Protein

88 PO38 3 9.340 0.714 1.237 8.070 10.540

SPRING PEA 3 9.990 0.242 0.419 9.520 10.330

P57B 3 9.650 0.649 1.1247 8.620 10.850

P51 3 11.250 0.762 1.320 10.060 12.670

P101 3 9.600 0.155 0.269 9.300 9.820

P104 3 7.640 0.448 0.7766 6.890 8.440

ATOS 3 11.480 1.142 1.9787 9.360 13.280

ÖZKAYNAK 3 10.150 0.202 0.350 9.800 10.500

RETNA 3 10 0.027 0.046 9.950 10.040

GATEM-101 3 9.630 0.115 0.199 9.410 9.800

SPRING 3 9.910 0.185 0.320 9.580 10.220

BOLERO 3 13.810 0.419 0.726 13.100 14.550

ÜRÜNLÜ 3 11.030 0.598 1.036 9.980 12.050

GÖL YAZI 3 10.650 0.602 1.042 9.650 11.730

Crude Ash

88 PO38 3 8.310 0.205 0.356 7.970 8.680

SPRING PEA 3 8.700 0.152 0.263 8.460 8.980

P57B 3 7.660 0.060 0.104 7.580 7.780

P51 3 9.410 0.353 0.612 8.880 10.080

P101 3 7.520 0.022 0.038 7.490 7.560

P104 3 9.310 0.245 0.424 8.960 9.780

ATOS 3 8.770 0.095 0.165 8.580 8.870

ÖZKAYNAK 3 9.660 0.168 0.291 9.380 9.960

RETNA 3 10.520 0.788 1.365 9.160 11.890

GATEM-101 3 10.520 0.233 0.403 10.150 10.950

SPRING 3 12.090 0.032 0.056 12.040 12.150

(Continued)
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5. Coefficient of determination

R2 = 1 −o
n
i=1(yi − byi)2

on
i=1(yi − �yi)

2

6. Adjusted coefficient of determination

Adj :R2 = 1 −
1

n−k−1on
i=1(yi − byi)2

1
n−1on

i=1(yi − �yi)
2

where n is the number of cases in a set, k is the number of model

parameters, yi is the output variable’s actual (observed) value, ŷ is
Frontiers in Plant Science 07
its predicted value, sm is the standard deviation of model errors, and

sd is its output variable’s standard deviation (WGY).

Data mining algorithms are non-parametric statistical

techniques that do not require a normality assumption for the

dependent variables. These algorithms perform well in cases of

missing data for independent variables and can be applied to both

large and small datasets (Yordanova et al., 2015).

For algorithms that have varying input numbers, the adjusted

coefficient of determination can be utilized as a goodness-of-fit criteria.

This adjustment accounts for difference in the number of input
TABLE 2 Continued

Genotype N Mean SE SD Minimum Maximum

BOLERO 3 10.250 0.015 0.025 10.230 10.280

ÜRÜNLÜ 3 9.810 0.033 0.057 9.760 9.870

GÖL YAZI 3 8.230 0.257 0.445 7.780 8.670

ADF

88 PO38 3 31.170 0.722 1.250 29.840 32.320

SPRING PEA 3 30.360 0.866 1.499 28.970 31.950

P57B 3 34.610 0.789 1.367 33.140 35.840

P51 3 30.210 0.603 1.045 29.060 31.100

P101 3 33.650 1.573 2.725 31.020 36.460

P104 3 35.040 0.489 0.848 34.110 35.770

ATOS 3 30.510 1.579 2.735 27.800 33.270

ÖZKAYNAK 3 34.790 0.717 1.242 33.590 36.070

RETNA 3 28.760 2.020 3.498 26.080 32.720

GATEM-101 3 33.410 2.116 3.665 29.710 37.040

SPRING 3 33.400 0.251 0.435 32.960 33.830

BOLERO 3 27.750 0.026 0.045 27.710 27.800

ÜRÜNLÜ 3 34.250 1.280 2.217 32.300 36.660

GÖL YAZI 3 32.560 0.490 0.848 31.760 33.450

NDF

88 PO38 3 41.450 0.556 0.963 40.450 42.370

SPRING PEA 3 38.040 0.667 1.156 36.820 39.120

P57B 3 46.030 0.962 1.667 44.460 47.780

P51 3 41.150 0.420 0.728 40.390 41.840

P101 3 44.780 1.766 3.059 41.940 48.020

P104 3 44.260 0.122 0.211 44.020 44.400

ATOS 3 37.180 2.678 4.638 32.710 41.970

ÖZKAYNAK 3 43.830 0.285 0.494 43.290 44.260

RETNA 3 42.080 0.101 0.175 41.910 42.260

GATEM-101 3 42.870 0.766 1.327 41.660 44.290

SPRING 3 43.330 0.012 0.020 43.310 43.350

BOLERO 3 43.970 0.444 0.7696 43.140 44.660

ÜRÜNLÜ 3 42.090 1.062 1.840 40.180 43.850

GÖL YAZI 3 40.120 0.240 0.415 39.780 40.580
frontiersin.org

https://doi.org/10.3389/fpls.2024.1482723
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
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variables. The MARS algorithm defines k as the number of phrases.

IBM SPSS 26 (IBM Corp. Released, 2019) was used for statistical

analyses of the CHAID, CART, and ANN algorithms, while the R

Studio software (R Core Team, 2022) described the MARS method.
3 Results

3.1 Descriptive statistics

Table 2 provides descriptive information about the traits (wet

grass yield, crude protein, crude ash, ADF, and NDF) of peas grown

in 14 distinct genotypes.
3.2 Results of correlation matrix and
principal component analysis

The correlation matrix for the characteristics of peas is

presented in Figure 1.

When examining the correlation coefficients in Figure 1, the

highest correlations are observed between the ADF-NDF (0.490)
Frontiers in Plant Science 08
and ADF-crude protein (− 0.450) variables. Correlation coefficients

between other traits are low and statistically insignificant. The

lowest correlations were between WGY-ADF (0.001), WGY-NDF

(0.024), WGY-Protein (0.030), and ADF-Ash (− 0.044),

respectively. The representation of the principle component

analysis (PCA) graph for the same variables is presented in Figure 2.

In PCA analysis, the first principal component (PC1) accounted

for 36%, while the second principal component (PC2) accounted for

23.1%. Together, PC1 and PC2 explained a total of 59.1% of the

variation. An angle between the slices between 0° and 90° is

interpreted as a positive correlation among the traits within those

slices, whereas an angle between 90° and 180° is interpreted as a

negative association. If the angle is exactly 90°, it indicates no

relationship between the traits (Yan and Tinker, 2005: Aktas ̧, 2017).
As the vector moves away from the origin, the variation between

variables increases according to the trait examined, whereas the

variation decreases as the vector approaches the origin (Abate et al.,

2015). Accordingly, the relationship between ADF and NDF is

positive. In contrast, the relationships between ADF-WGY and

ADF-Crude Ash variables are positive but very weak. Conversely,

the relationship between ADF-Crude Protein is negative. While the

relationship between NDF and WGY and crude ash variables is
FIGURE 1

Correlation coefficients between features.
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positive, the relationship between NDF and crude protein is

negative. The relationships between WGY and both crude protein

and crude ash are positive. Additionally, the relationship between

crude protein and crude ash is also positive.

CHAID, CART, ANN, and MARS techniques were used to

investigate the impacts of characteristics on wet grass yield in peas,

and the findings are given below.
3.3 Result of CHAID algorithm

The CHAID method was used to assess the impacts of various

factors on wet grass yield. The parent node to child node ratio was

set at 8:4, as this configuration provided better goodness-of-fit

criteria within the CHAF algorithm. Crossvalidation was

performed with a setting of 10. The regression tree diagram

resulting from the CHAID method is shown in Figure 3.

An analysis of the CHAID diagram revealed that genotype (Adj.

p-value = 0.003, F = 33.192) was the first-order effective

independent variable influencing wet grass yield of peas, followed

by ADF (Adj. p-value = 0.008, F = 21.306) as the second-order

variable (Figure 3). Throughout the whole tree construction process,

the branches produced by independent variables were statistically

significant (p < 0.05). In terms of R2, SD ratio, RMSE, MAPE, AIC,

and AICc, the CHAID algorithm’s performance was determined to be

0.759, 0.564, 109.75, 9.198, 443, and 876, respectively. The results of

the CHAID algorithm indicated that the highest yield in peas was
Frontiers in Plant Science 09
found to be 1,329.889 kg for the RETNA, GATEM-101, ÜRÜNLÜ,

and GÖLYAZI lines, with ADF > 33.59.
3.4 Result of CART algorithm

The CART technique was used to determine the effects of

various variables on wet grass yield. The ratio of parent nodes to

child nodes was established at 8 to 4, which resulted in improved

goodness-of-fit criteria for the CART algorithm. Figure 4 illustrates

the regression tree diagram generated by the CART algorithm. A

crossvalidation approach was set to 10.

The CART diagram revealed that genotype (improvement =

24.091) was the first-order effective independent variable affecting

the wet grass yield of peas, closely followed by ADF (improvement =

24.091) (Figure 4). Independent factors created significant branches

over the tree construction process (p < 0.05). The CHAID method

performed well in terms of R2, SD ratio, RMSE, MAPE, AIC, and

AICc, with values of 0.752, 0.576, 111.526, 9.791, 499, and 918,

respectively. According to the CART algorithm, the greatest pea

yield was recorded at 1,329.889 kg when ADF > 33.625.
3.5 Result of artificial neural network

The multilayer perceptron artificial neural network model was

chosen for its suitability to the data. A training ratio of 70% and
FIGURE 2

Relationship among traits according to principal component analysis.
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testing ratio of 30% were used, with the scaled conjugate gradient

selected as the optimization algorithm. In the present study, an

ANN with 10-fold crossvalidation was applied. Figure 5 shows the

connections within the ANN.

In Figure 5, the activation function used in the hidden layer of

the artificial neural network architecture is the hyperbolic tangent,

while the output employs the identity activation function. The

parameter estimates of the ANN are presented in Table 3.

The connections between each neuron in Table 3 are as follows:

The connection weight value between protein in the input

layer and H(1:1) of the first neuron in the hidden layer is − 0.299.

The connection weight value between H(1:2) of the second

neuron in the hidden layer is 0.699, while the connection

weight value between H(1:3) of the third neuron in the hidden

layer is 0.084.

The connection weight value between the ash in the input layer

and the H(1:1) of the first neuron in the hidden layer is − 0.193. The

connection weight value between the H(1:2) of the second neuron

in the hidden layer is − 0.577, and the connection weight value

between H(1:3) of the third neuron in the hidden layer is 0.240.

The connection weight value between ADF in the input layer

and H(1:1) of the first neuron in the hidden layer is 0.077. For the

second neuron in the hidden layer, H(1:2), the connection weight
Frontiers in Plant Science 10
value between is 0.444, while for the third neuron, H(1:3), the

connection weight value is 0.389.

The connection weight value between NDF in the input layer

and H(1:1) of the first neuron in the hidden layer is 0.427, while H

(1:2) of the second neuron has weight of 0.141, and H(1:3) of the

third neuron has a weights of − 0.430.

The learning sum of squares error (SSE) in the ANN model was

3.638, with a relative error of 0.269. For the test data, the SSE was

6.577, and the relative error was 0.594.

Tab le 4 shows the percentage of importance o f

independent variables.

As shown in Table 4, the independent variables affecting wet

grass yield in the output layer include genotype (line) with a

coefficient of 0.409, protein at 0.317, ash at 0.083, ADF at 0.046,

and NDF at 0.145. Figure 6 presents a percentage column graph

illustrating the influence of these variables on the prediction.

As can be seen in Table 5, genotype (line) has the highest

influence, accounting for 100% of the effect on the fresh herbage

yield of pea plants sold from the terminal on this model. In addition,

crude protein is the second most important independent variable

with a rate of 77.4%, while NDF accounts for 35.5%. Crude ash has

an effect of 20.2%, and ADF has the least impact, with a rate of

11.3% on the fresh herbage yield from the terminals.
FIGURE 3

CHAID classification tree diagram of the estimation in wet grass yield.
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3.6 MARS algorithm results

The model estimation coefficients of the MARS algorithm,

which predicts the fresh herbage yield of pea plants, are provided

in Table 6. A penalty of − 1 penalty and 10-fold crossvalidation were

applied in the R studio free software to improve the predictive

accuracy of the MARS algorithm.

According to presented results in Table 4, all coefficients

concerning MARS predictive model were statistically significant

(p < 0.05, p < 0.01, p < 0.001). The desirable predictive quality of the

MARS equation produced here was obtained with ensuring the

smallest GCV (110). The recorded or observed values in fresh

herbage yield of pea plants were correlated very strongly with those
Frontiers in Plant Science 11
predicted by the MARS model (p < 0.001), indicating effective plant

yield modeling. For prediction equation of MARS model with 35

terms, no overfitting problem was recorded, as evidenced by the R2

estimate (0.998) being close to the CVR2 estimate (0.782). The

present SD ratio of 0.047, RMSE of 10.499, MAPE of 0.7365, AIC of

268, and AICc of 688 indicate that the MARS model, which

captures influential factors, demonstrates an excellent fit.

According to the MARS method, several terms and coefficients

can be read as follows: The equation derived by incorporating the

interaction effect of the model’s coefficients is shown in detail below.

The effect and corresponding positive coefficient (69.189) on fresh

herbage yield were shown to be favorably correlated when ADP ≤

31.02 in peas; on the other hand, an adverse corresponding negative
FIGURE 4

CART classification tree diagram of the estimation in wet grass yield.
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coefficient (− 126.666) on fresh herbage yield was identified when

protein > 9.67. The greatest positive effect on fresh herbage yield in

peas was 36,677.515, when the genotype was Özkaynak. The second

highest favorable effect, with an increase of 3,143.449, occurred when

the genotype was Gate101 and protein > 9.67 have. The third largest

positive effect was noted when the genotype was Özkaynak and Cash

was present, leading to an increase in fresh herbage yield of 1,575.428.

The greatest negative effect on fresh herbage yield is –

29,761.909 if genotype = P104. The second and third largest

negative effects on fresh herbage yield are – 17,608.673 if
Frontiers in Plant Science 12
genotype = Golyazi cm and – 17,220.45 when CAsh > 9.87

cm, respectively.

WGY= 1.23e+03− 72.4*GenotypGate101 – 17,609*GenotypGolyazi

+ 36,678*GenotypOzkayna

− 29,762*GenotypP104 – 2,525*max(0, 9.67 − protein) −

127*max(0, protein − 9.67)

− 345*max(0, 9.87 − CAsh) – 17,220*max(0, CAsh − 9.87) +

69.2*max(0, 31 − ADF)

− 119*max(0, ADF − 31) + 95.9*max(0, 41.7 − NDF) +

266*max(0, NDF − 41.7)
FIGURE 5

Artificial neural network architecture.
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− 219*max(0, NDF − 42.1) − 60*max(0, NDF − 43.1) +

447*GenotypGolyazi * NDF

+ 1 5 7 5 * G e n o t y p O z k a y n a * C A s h –

1,192*GenotypOzkayna*NDF

+ 651*GenotypP104*NDF − 202*GenotypATOS*max(0,

protein − 9.67)

+ 7 1 * G e n o t y pATOS *m a x ( 0 , 9 . 8 7 − CA s h ) +

3,143*GenotypGate101*max(0, protein − 9.67)

+ 1 6 2 *G e n o t y p P 1 0 1 *m a x ( 0 , 9 . 8 7 − CA s h ) –

1,609*GenotypP51*max(0,CAsh − 9.87)

+ 669 *Geno typRETNA*max (0 , CAsh − 9 . 87 ) +

335*GenotypRETNA*max(0, ADF − 31)
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− 3 ,132*GenotypSpr inP*max(0 , 9 .67− prote in) −

99.9*GenotypSprinP*max(0, 31 − ADF)

+ 2 2 7 * G e n o t y p S p r i n g m a x ( 0 , AD F − 3 1 ) +

571*GenotypUrunlu*max(0, protein − 9.67)

− 262*GenotypUrunlu * max(0, ADF − 31) + 14.7*protein*max

(0, ADF − 31)

+ 81.1*max(0, 9.67 − protein)*ADF + 385*max(0, CAsh − 9.87)

* NDF

+ 142*GenotypGolyazi*max(0, 9.67 − protein)*ADF

The relative importance of the variables predicting fresh

herbage yield as a result of the MARS algorithm is given in Figure 7.

The graph of the estimated values generated by the MARS

algorithm alongside the observed values is shown in Figure 8.

Assuming the plant has the following characteristics (genotype =

“Özkaynak”, protein = 10.5, Cash = 8, ADF = 32, and NDF = 41.3),

the predicted fresh herbage yield of the pea is 992.648 kg.

When predicting fresh herbage production, all algorithms

yielded suitable results (Table 5). The predicted accuracy of the

algorithms was ranked in the following order of superiority: MARS

> CHAID > CART > ANN.

MARS, multivariate adaptive regression spline; CHAID, Chi-

square automatic interaction detection; CART, classification and

regression tree; ANN, artificial neural network; AIC, Akaike

information criterion; AICc, corrected Akaike information

criterion; RMSE, root-mean-square error; SD, standard deviation;

MAPE , mean absolute percentage error; R2 , coefficient

of determination.
4 Discussion

The average green yield (kg/ha) of pea plants grown in different

varieties was found to be between 735.89 and 1,273.56. The crude

protein content (%) was 7.64–13.81, crude ash content (%) was

7.52–12.09, NDF content (%) was 37.18–46.03, and ADF content

(%) was 27.75–35.04. Notably, the crude protein content observed

in this study was lower than the findings of Alatürk et al. (2021) and

Uzun et al. (2012), who reported crude protein content percentages

of 16.8–20.5 and 9.5–20.4, respectively. The crude ash content in

this study was also lower than the findings reported by Alatürk et al.

(2021), which ranged from 10.9% to 13.0%. However, NDF and

ADF contents of pea forage were in accordance with the study of
TABLE 3 Parameter estimates of ANN.

Parameter estimates

Predictor Predicted

Hidden layer 1 Output layer

H(1:1) H(1:2) H(1:3) WGY

Input layer

(Bias) − 0.348 − 0.379 0.315

[Genotype=88 PO38] − 0.309 0.405 − 0.340

[Genotype=ATOS] 0.044 0.164 − 0.379

[Genotype=BOLERO] 0.293 − 0.803 0.472

[Genotype=GATEM-101] 0.308 − 0.007 0.464

[Genotype=GÖL YAZI] 1.665 − 0.052 − 0.224

[Genotype=ÖZKAYNAK] 0.667 0.243 − 0.301

[Genotype=P101] − 0.382 − 0.585 − 0.246

[Genotype=P104] − 1.514 0.352 0.245

[Genotype=P51] − 0.745 − 0.173 0.117

[Genotype=P57B] − 1.141 0.315 − 0.003

[Genotype=RETNA] 1.206 − 0.231 − 0.227

[Genotype=SPRING] − 1.068 -0.010 0.355

[Genotype=SPRING
PEA]

0.041 − 0.355 0.081

[Genotype=ÜRÜNLÜ] 0.827 − 0.685 − 0.045

Protein − 0.299 0.699 0.084

Ash − 0.193 − 0.577 0.240

ADF 0.077 0.444 0.389

NDF 0.427 0.141 − 0.430

Hidden layer 1

(Bias) 0.033

H(1:1) 1.264

H(1:2) − 0.575

H(1:3) 0.320
TABLE 4 Independent variable importance.

Importance Normalized
importance

Genotype 0.409 100.00%

Protein 0.317 77.40%

Ash 0.083 20.20%

ADF 0.046 11.30%

NDF 0.145 35.50%
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Alatürk et al. (2021), who reported values of 38.4%–43.2% and

28.6%–34.5%, respectively. In a related study, Çaçan et al. (2018)

investigated several forage pea lines and cultivars to determine seed

yield, hay yield, and hay quality. They found that seed yield ranged

from 33.8 to 180.2 kg ha−1, hay yield ranged from 160.3 to 887.0 kg

ha−1, ash content ranged from 9.42% to 11.19%, crude protein

content ranged from 6.54% to 11.91%, crude protein yield ranged

from 11.9 to 104.9 kg ha−1, ADF ranged from 29.5% to 39.8%, and

NDF ranged from 39.1% to 51.2%, respectively. The Gatem,

Ürünlü, Gölyazı, and Spring Pea 3-638 genotypes exhibited

superior characteristics under Bingöl ecological conditions. In a

study by Karadeniz and Bengisu (2022), which investigated the

effects of row spacing on yield and quality in green peas (Pisum

sativum ssp. arvense), crude protein was found to range from 20.2%

to 22.5%, crude ash from 8.0% to 8.9%, ADF from 32.00% to

33.65%, and NDF from 42.4% to 44.9%. Additionally, a study by

Victor (2022) assessed the feed value of green mass of annual

legume species and reported the crude protein, ADF, and NDF

values of fodder pea as 142 g/kg DM, 392 g/kg DM, and 598 g/kg
Frontiers in Plant Science 14
DM, respectively. Çalık (2020) determined crude protein levels of

10.3%–20.1%, ADF ratios of 21.7%–36.4%, and NDF ratios of

33.2%–43.4% for fodder pea, based on an animal nutrition study

assessing various legumes consumed as roughage in Şanlıurfa. In

addition, Sarıkaya et al. (2023) conducted a study to determine the

effects of different sowing times and plant densities on dry grass

yield and quality in some forage pea varieties, finding average values

of 14.16% for crude protein, 27.98% for ADF, and 37.64% for NDF.

Kara and Sürmen (2023) examined eight different forage pea

cultivars (Kirazlı, Ulubatlı, Ürünlü, Gölyazı, Özkaynak, Töre,

Taşkent, GAP Pembesi) and subjected them to mowing

treatments in three different phenological periods (10%, 50%, and

100% flowering) under Aydın ecological conditions, finding crude

protein levels of 19.88%, ADF ratios of 32.57%, and NDF ratios of

45.25%. In a separate study, Kır (2022) investigated the appropriate

mixing ratios of fodder pea (Pisum sativum ssp. arvense L.) and rye

(Secale cereale L.) under rainy conditions in Kırs ̧ehir province

during the 2018–2019 vegetation period, reporting crude protein

levels of 15.6%, ADF ratios of 31.1%, and NDF ratios of 39.3%.
FIGURE 6

Importance of variables.
TABLE 5 MARS, CHAID, CART, and ANN types’ predictive performance.

MARS CHAID CART ANN Decision The best
algorithm

R2 0.998 0.759 0.752 0.651 Greater is better MARS

Adjusted R2 0.986 0.747 0.739 0.635 Greater is better MARS

RMSE 10.499 109.750 111.526 144.009 Smaller is better MARS

MAPE 0.7365 9.198 9.791 13.589 Smaller is better MARS

SD ratio 0.047 0.564 0.576 0.922 Smaller is better MARS

AIC 268 443 499 424 Smaller is better MARS

AICc 688 876 918 861 Smaller is better MARS
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In the study of Çelik et al. (2024), the factors influencing fresh

herbage yield in sorghum–sudangrass hybrid plants were analyzed

using CHAID, CART, MARS, and Bagging MARS algorithms.

MARS, Bagging MARS, CART, and CHAID were found to be the
Frontiers in Plant Science 15
most appropriate algorithms for predicting the dependent variable.

In this study, the MARS algorithm emerged as the best predictor of

crop yield, followed by CHAID, CART and ANN methods,

respectively. As in the authors’ study, the CART algorithm
TABLE 6 Results of MARS algorithm in the prediction of fresh herbage yield of pea plants.

Variables Coefficients Std. Error t value Pr(>|t|)

(Intercept) 1,232.876 51.718 23.838 5.81e−08***

bx[. -1]h(CAsh-9.87) − 17,220.45 1,717.774 − 10.025 2.10e−05***

bx[. -1]h(9.87-CAsh) − 345.434 33.226 − 10.397 1.65e−05***

bx[. -1]h(Protein-9.67) − 126.666 11.887 −10.656 1.41e−05***

bx[. -1]h(9.67-Protein) − 2,524.694 336.174 −7.51 0.000136***

bx[. -1]h(ADF-31.02) − 118.65 79.948 − 1.484 0.181359

bx[. -1]h(31.02-ADF) 69.189 8.566 8.077 8.57e−05***

bx[. -1]GenotypGolyazi −17,608.673 2,884.624 − 6.104 0.000489***

bx[. -1]GenotypP51*h(CAsh-9.87) −1,608.724 218.595 − 7.359 0.000155***

bx[. -1]GenotypP101*h(9.87-CAsh) 162.16 12.724 12.745 4.24e−06***

bx[. -1]GenotypOzkayna 36,677.515 4,457.209 8.229 7.61e−05***

bx[. -1]GenotypP104 − 29,761.909 6,812.56 − 4.369 0.003279**

bx[. -1]GenotypRETNA*h(ADF-31.02) 335.349 69.485 4.826 0.001908**

bx[. -1]h(9.67-Protein)*ADF 81.118 10.824 7.494 0.000138***

bx[. -1]GenotypUrunlu*h(Protein-9.67) 571.176 104.154 5.484 0.000922***

bx[. -1]h(CAsh-9.87)*NDF 384.612 38.595 9.965 2.19e-05***

bx[. -1]GenotypOzkayna*NDF − 1,191.847 151.188 − 7.883 0.000100***

bx[. -1]GenotypOzkayna*CAsh 1,575.428 250.733 6.283 0.000411***

bx[. -1]GenotypGate101*h(Protein-9.67) 3,143.449 402.036 7.819 0.000105***

bx[. -1]GenotypGate101 − 72.392 53.619 − 1.35 0.219005

bx[. -1]GenotypRETNA*h(CAsh-9.87) 668.896 101.938 6.562 0.000315***

bx[. -1]GenotypGolyazi*NDF 447.193 71.89 6.221 0.000436***

bx[. -1]GenotypUrunlu*h(ADF-31.02) − 261.754 52.285 − 5.006 0.001554**

bx[. -1]GenotypSpring*h(ADF-31.02) 226.808 49.835 4.551 0.002632**

bx[. -1]GenotypP104*NDF 651.318 152.853 4.261 0.003742**

bx[. -1]GenotypSprinP*h(9.67-Protein) − 3,131.514 389.113 − 8.048 8.77e−05***

bx[. -1]h(NDF-41.66) 266.393 77.431 3.44 0.010832*

bx[. -1]h(41.66-NDF) 95.905 13.08 7.332 0.000158***

bx[. -1]h(NDF-43.14) − 59.971 39.891 − 1.503 0.176454

bx[. -1]Protein*h(ADF-31.02) 14.653 7.71 1.9 0.099142

bx[. -1]h(NDF-42.08) − 218.748 95.77 − 2.284 0.056295

bx[. -1]GenotypATOS*h(Protein-9.67) − 202.012 40.597 − 4.976 0.001608**

bx[. -1]GenotypSprinP*h(31.02-ADF) − 99.857 26.78 − 3.729 0.007370**

bx[. -1]GenotypATOS*h(9.87-CAsh) 70.95 29.165 2.433 0.045240*

bx[. -1]GenotypGolyazi*h(9.67-
Protein)*ADF

142.443 74.291 1.917 0.096704
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Çatal et al. 10.3389/fpls.2024.1482723
ranked as the third best method in this study. The R2, adjusted R2,

and SD ratio statistics were closely aligned in both this study and the

authors’ research.

The findings obtained of this study show some similarities and

some differences with those of previously mentioned researchers.

These differences are likely attributed to a combination of factors,

with one of the most significant being the variations in climate and

soil structures among the study areas. Different climatic and soil

conditions can directly affect the development of vegetation and the

application of agricultural practices. This can lead to differences in

the findings. Another factor is the different practices used by

different researchers (such as different fertilization methods,

irrigation techniques, weed control methods, and harvest times).
5 Conclusion

In this study, the performances of CHAID, CART, ANN, and

MARSmethods were analyzed to predict wet grass yield in pea plants.
Frontiers in Plant Science 16
The input variables included genotype (line), crude protein (%),

crude ash (%), ADF (%), and NDF (%). The results were compared

using different goodness-of-fit tests, including the coefficient of

determination (R2), adjusted R2, RMSE, MAPE, SD ratio, AIC, and

AICc. The results of this study are presented below.

According to the results of the MARS algorithm, the variables

that contributed the most to wet herbage yield in pea plants were

genotype, crude protein, crude ash, NDF and ADF. As a result of the

application of artificial neural network method, the order of

importance of the variables affecting wet grass yield in pea was

identified as genotype, crude protein, NDF, crude ash, and ADF. The

CHAID algorithm estimated the highest fresh herbage yield of pea at

1,329.889 kg in RETNA, GATEM-101, ÜRÜNLÜ, and GÖLYAZI

lines, with ADF > 33.59. When the CART algorithm was applied, the

highest herbage yield was reached when ADF > 33.625, resulting in

an estimated yield of 1,329.889 kg. In this case, the results from the

CHAID and CART algorithms were very close to each other. The

performance findings are as follows: MARS > CHAID > CART >

ANN (best to worst).
FIGURE 7

Graph of relative importance for fresh herbage yield.
FIGURE 8

Agreeable expectations and observed fresh herbage yield values.
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It was determined that mining approaches are quite effective in

field agricultural data for identifying factors influencing plant

production and predicting any variables.
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Bezelyesi Çes ̧itlerinin verim ve kalitesi üzerine etkileri. Türk Tarım ve Doğa Bilimleri
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