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The complexity of selecting for drought tolerance in cassava, influenced by

multiple factors, demands innovative approaches to plant selection. This study

aimed to identify cassava clones with tolerance to water stress by employing

truncated selection and selection based on genomic values for population

improvement and genotype evaluation per se. The Best Linear Unbiased

Predictions (BLUPs), Genomic Estimated Breeding Values (GEBVs), and

Genomic Estimated Genotypic Values (GETGVs) were obtained based on

different prediction models via genomic selection. The selection intensity

ranged from 10 to 30%. A wide range of BLUPs for agronomic traits indicate

desirable genetic variability for initiating genomic selection cycles to improve

cassava’s drought tolerance. SNP-based heritability (h2) and broad-sense

heritabilities (H2) under water deficit were low magnitude (<0.40) for 8 to 12

agronomic traits evaluated. Genomic predictive abilities were below the levels of

phenotypic heritability, varying by trait and prediction model, with the lowest and

highest predictive abilities observed for starch content (0.15 – 0.22) and root

length (0.34 – 0.36). Some agronomic traits of greater importance, such as fresh

root yield (0.29 – 0.31) and shoot yield (0.31 – 0.32), showed good predictive

ability, while dry matter content had lower predictive ability (0.16 – 0.22). The G-

BLUP and RKHS methods presented higher predictive abilities, suggesting that

incorporating kinship effects can be beneficial, especially in challenging

environments. The selection differential based on a 15% selection intensity (62

genotypes) was higher for economically significant traits, such as starch content,

shoot yield, and fresh root yield, both for population improvement (GEBVs) and

for evaluating genotype’s performance per (GETGVs). The lower costs of

genotyping offer advantages over conventional phenotyping, making genomic

selection a promising approach to increasing genetic gains for drought tolerance

in cassava and reducing the breeding cycle to at least half the conventional time.
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1 Introduction

On a global scale, cassava (Manihot esculenta Crantz) plays a

crucial role in both food security and energy production, serving as a

primary source of income and carbohydrates for millions of people in

tropical regions (Kayondo et al., 2018; de Oliveira et al., 2021; Silva

et al., 2021). In Brazil, where cassava is extensively cultivated, even

under adverse conditions of water and nutrient availability (de

Andrade et al., 2019; Wei et al., 2020), climate change and water

stress pose substantial challenges to its successful production.

In this scenario, finding effective breeding strategies becomes

essential, especially when dealing with the complexity of the

drought tolerance — a key factor that negatively affects cassava

growth and productivity (El-Sharkawy, 2004; Vitor et al., 2019).

When plants face water shortages, they undergo changes at

morphological, physiological, biochemical, and molecular levels,

which ultimately reduce growth and yield. Drought tolerance is a

multifaceted trait controlled by numerous genes, transcription

factors, miRNAs, hormones, proteins, cofactors, ions, and

metabolites (OkogBenin et al., 2013; Budak et al., 2015). Thus,

assessing genetic variability in cassava is essential for unlocking the

crop’s full potential, particularly in semi-arid regions, by identifying

and selecting genotypes that show greater resilience to water

scarcity (Silva et al., 2021).

While traditional methods of selecting clones based on

phenotypic traits and best linear unbiased predictors (BLUPs) are

still valuable, their main limitation lies in the long generation

intervals. This makes it clear that faster, more agile strategies are

needed. Truncation selection, which ranks individuals based on

their phenotypic traits and uses the top performers for crossing, can

also fall short when the populations doesn’t offer enough variation

across all relevant traits (Sampaio Filho et al., 2023). Moreover, the

complex factors involved in drought response have made it difficult

to develop drought-tolerant cultivars through conventional

breeding techniques (Mohammadi, 2018).

Cassava, due to its clonal propagation and heterozygous nature,

faces notable challenges in implementing truncated selection

strategies due to the impact of intrafamilial genetic variations.

These variations can significantly affect the accuracy of

identifying superior genotypes. Additionally, the expected

performance of progeny may differ from BLUP-based predictions

for parents, largely due to the presence of non-additive effects for

economically important traits in cassava (Wolfe et al., 2021).

Given these challenges, innovative breeding strategies are

crucial. Genomic selection (GS), which uses genetic markers

spread across the genome to predict genomic estimated breeding

values (GEBVs), offers considerable potential to accelerate genetic

progress in targeted populations. By improving selection accuracy,

GS helps identify the most promising clones playing a vital role in

selecting new parents for crosses (Meuwissen et al., 2001; Hayes

et al., 2009). GS enables the early selection and recombination of

promising genotypes without the need for direct phenotypic

evaluation. This approach is particularly valuable in situations

where phenotypic selection is costly or inefficient, such as in the

seedling stage of cassava, where the heritability of important

agronomic traits is very low (de Andrade et al., 2019).
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In parallel with population improvement based on GEBV,

selecting clones through traditional breeding pipeline using multi-

environment field tests can identify superior clones for release as

varieties. In these cases, selection shouldbebasedon the estimated total

genomic breeding value (GETGV) of an individual, which includes

non-additive genetic effects such as dominance (Wolfe et al., 2021).

The combination of BLUPs and genomic selection holds

promise for reducing generation intervals and improving selection

accuracy during early developmental stages (Werner et al., 2023).

Therefore, it is important to develop and assess selection strategies

that that align with both specific and broader goals of cassava

breeding programs, especially in water-stressed environments. This

study aims to assess the efficacy of genomic selection methods,

including additive-dominant G-BLUP, alongside traditional

selection based on BLUPs, GEBVs, and GETGVs of clones. By

integrating these approaches, the study seeks to reduce generation

intervals and enhance selection accuracy, particularly in early

development stages, providing crucial insights for addressing

water stress challenges in cassava cultivation.
2 Materials and methods

2.1 Phenotypic data collection

Experiments were conducted at two locations in the state of

Pernambuco, Brazil: the Campus of Agricultural Sciences of the

Universidade Federal do Vale do São Francisco in Petrolina

(9°19’16.1”S 40°32’32.4”W, altitude 373 m) and the Bebedouro

Experimental Station of Embrapa Semiárido, also in Petrolina

(9°05’49.2”S 40°18’24.1”W, altitude 376 m). The climate and

environmental data for two locations in Petrolina, Brazil, spanning

a five-year period, are provided in Supplementary Table S1. A total of

446 cassava genotypes were evaluated, including local varieties and

improved varieties known for drought tolerance, which were either

harvested from semi-arid regions or selected under drought

conditions. Evaluations were conducted over four seasons, from

2016 to 2020 (Table 1).

The experimental design was a randomized complete block with

four replications. Each plot consisted of ten plants (two rows of five

plants) spaced 0.90 m apart between rows and 0.80 m apart between

plants. For planting, stem cuttings of 16-18 cm in length were used,

following the standard agricultural practices recommended for the

crop, as described in Souza et al. (2006). All experiments were

irrigated for up to three months after planting (MAP). Water was

supplied every two days via inline dripping (4 L h-1) based on the

plants’ evapotranspiration, estimated using data from a nearby

meteorological station. After this period, irrigation was suspended

until harvest to assess drought tolerance in the cassava genotypes.

According to Vitor et al. (2019), by 4 months after planting, the

yield potential of cassava genotypes is almost fully determined, with

minimal changes in the ranking of genotypes for various agronomic

traits when compared to harvests at 12 months after planting (end

of the cycle). Therefore, in our study, the comparative evaluations of

cassava genotypes for drought tolerance were conducted at 6 MAP

to enable the highest possible number of phenotypic assessments in
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a shorter period of time. The main traits evaluated during harvest

included: 1) Fresh root yield (FRY), representing the total weight of

all roots in the plot, converted to tons per hectare (t ha-1); 2) Shoot

yield (ShY), representing the weight of the aboveground parts of all

plants in the plot, including stems, leaves, and petioles, also

converted to tons per hectare (t ha-1); 3) Dry matter content of

roots (DMC), determined as a percentage using the gravimetric

method (Kawano et al., 1987); 4) Number of stems per plant

(Nstem.Plant); 5) Harvest index (HI), the ratio of fresh root

weight to total biomass, including both aboveground and

belowground parts of the plants, expressed as a percentage (%); 6)

Plant height (Plant.Height), measured from the soil level to the

plant meristem using a graduated scale, expressed in meters (m); 7)

Starch content (StC), obtained by specific weight according to

Kawano et al. (1987); 8) Number of roots per plant (N_Roots); 9)

Starch yield (StY), obtained by multiplying starch content by fresh

root yield, expressed in tons per hectare (t ha-1); 10) Root Length

(Root.Le), measured the length of the root from the tip to the base in

cm; 11) Root Diameter (Root.Di): measured the diameter of the root

at its midpoint using a digital caliper, recorded in cm; and 12) Stem

Diameter (Stem.D): measured the diameter of the stem at ground

level using a digital caliper, recorded in cm.
2.2 Phenotypic analyses

A linear mixed model was employed to estimate BLUPs through

the analysis of multi-environmental trials. Prior to the analysis, a

preliminary descriptive analysis of the data was conducted to detect

and remove any highly discrepant values. BLUPs were obtained by

fitting a multi-environmental model (with year as the environment)

to the following linear mixed model: yijklm = μ+Ei + bk(i) + Rl +

Cm + Gj + GEij + eijk, where yijk  is the phenotype value of the jth

genotype in the kth block and ith environment, μ is the overall mean,

Ei is the random effect of the ith environment, bk(i) is the fixed effect

of the kth block within the ith environment, Rl is the random effect of

the lth row, Cm is the random effect of the mth column, Gj is the

random effect of the jth genotype, GEij is the random effect of the jth

genotype in the ith environment, and eijk  is the random error

(eijk eN(0s ,2r ), where and s2
r represents the residual variance). The

random vectors follow the distributions: E eN(0, Is2
e ), R eN(0, I

s 2
rw), C eN(0, Is 2

c ), G eN(0, Is 2
g ), GE eN(0, Is 2

ge). Here , s2
g

represents genetic variance, s 2
e represents environmental

variance, s 2
rw represents row variance, s 2

c represents column
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variance s 2
ge represents the variance due to the interaction

between genotype and environment. The residual distribution was

thoroughly examined, along with its relationship to the fitted values,

to assess the adequacy of the model and identify any potential

patterns or deviations.

SNP-based heritability (h2) and broad-sense heritabilitiy (H2)

were also calculated to evaluate the contribution of genetic and

environmental factors to the phenotypic variation of the evaluated

assessed, using the formula: h2 = s2
A

s2
A+s

2
R
and H2 =

s2
g

s2
g +s2

r
, where s 2

A

and s2
R represent the additive and residual components based on

markers, and s 2
g s 2

r represent the genetic and residual components

based on phenotype. The sommer package (Covarrubias-Pazaran,

2016) in R software version 4.2.3 (R Core Team, 2023) was used to

obtain the BLUPs and variance components.
2.3 Genotyping and SNP quality control

Genomic DNAwas extracted using the cetyltrimethylammonium

bromide (CTAB) protocol described by Doyle and Doyle (1987).

Subsequently, DNA samples were sent to the Genomic Diversity

Facility at Cornell University (http://www.biotech.cornell.edu/brc/

genomic-diversity-facility) for Genotyping by Sequencing (GBS) as

described by Hamblin and Rabbi (2014). A comprehensive set of

27,045 single nucleotide polymorphisms (SNPs) distributed across

all 18 cassava chromosomes was obtained.

To ensure the reliability of the data, quality control was

performed on the genotypic information. Markers with minimum

allele frequencies (MAF) below 0.01 were systematically excluded

from further analyses. After this quality control step, the marker

matrix was refined to include 22,779 high-quality SNPs, which were

subsequently used in subsequent analyses. The GBS dataset

generated as part of this study is publicly available through

Cassavabase (https://www.cassavabase.org/).
2.4 Genomic selection

This study evaluated various genomic selection methods,

including RR-BLUP, G-BLUP (both with additive and dominance

effects), RKHS, BayesA, BayesB, and Random Forest, each based on

distinct statistical assumptions. The RR-BLUP model is expressed

as: yd = 1m +Mu + є, where yd   is the vector of BLUPs from the

phenotypic analysis, m is the overall mean, 1 is a vector with

elements equal to 1, u is the marker effects vector, M is the

marker matrix, and є is the vector of residual effects. The random

vectors follow the distributions: u   e  N(0, Is 2
u ), and є   e  N(0, Is2

e )

, where s 2
ua is the additive marker variance, and s 2

e is the

residual variance.

The additive-dominant genetic model of G-BLUP is expressed

as: yd = 1m + Za+Hd+є, where yd   is the vector of BLUPs; m is the

overall mean; 1 is a vector with elements equal to 1, a is the vector of
random additive effects of individuals, d is the vector of random

dominant effects of individuals, and є is the vector of residual effects.

Z is the incidence matrix for genetic effects a and d. The random

vectors follow the distributions a   e  N(0,  Gs 2
a ), d   e  N(0,Ds2

d )
TABLE 1 Year of evaluation and number of genotypes assessed. The
diagonal entries indicate the number of genotypes evaluated in that
specific year, while the off-diagonal entries indicate overlapping
genotypes assessed in different years.

Year 2017 2018 2019 2020

2017 165 42 22 14

2018 42 138 39 16

2019 22 39 133 29

2020 14 16 29 138
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and є   e  N(0, Is 2
e ), where s 2

a is the additive variance, s 2
d is the

dominant variance and 2
e is the residual variance. The additive

relationship matrix is calculated as: G   =   ZZ 0  
2o​pi(1  −   pi)

and the

dominant relationship matrix used is that described by Vitezica

et al. (2013):  D   = HH 0  
2o​piqi(1  −   piqi)

 .

The RKHS method model is given by: yd = 1m + Zg+є, where
yd   is the vector of BLUPs, m is the overall mean, 1 is a vector with

elements equal to 1, g is the vector of random genotypic effects with

g   e  N(0,Ks 2
g ) where

2
g is the genetic variance, є is the vector of

residual effects with є   e  N(0, Is 2
e ),

2
e is the residual variance. Z is

the incidence matrices of g and K is a Gaussian matrix estimated by

K   =   exp( −hDist
median(Dist) ), where ℎ is the reduction coefficient for the K

values, and Dist is the Euclidean distance of the coded marker

matrix M (Gianola et al., 2006; Crossa et al., 2010).

For the Bayes A and Bayes B methods, the same model as RR-

BLUP is used. For BayesA, the prior distributions for the i-th

marker effects are uai js  2aieN(0,s  2ai ) and udi js  2dieN(0,s  2di ). For
BayesB, the prior distributions are uai js  2ai ,pe(1−p )N(0,s  2ai=0)+
pN(0,s  2ai ) and udi js  2di ,pe(1−p )N(0,s  2di=0)+pN(0,s  2di ): s

2
ua is

the additive marker variance and s 2
ud is the dominant marker

variance. The variances assumed to follow an inverted chi-square

distribution scaled, and p follows a beta distribution. The Gibbs

sampler with 20,000 iterations was used to fit the model, discarding

the first 5,000 samples as burn-in and saving one in every ten

samples to calculate posterior means of the parameters.

The Random Forest (RF) method is an extension of regression

tree, designed to improve prediction accuracy by generating multiple

models from bootstrapped samples of data. Each tree is built using a

random subset of predictors, aiming to identify the optimal partition

that creates homogeneous groups within the data. RF enhances

prediction by averaging the outputs of several trees, which reduces

overfitting and boosts generalization ability (Prasad et al., 2006).

The RF algorithm uses recursive binary splitting to select the

best predictor, Xj which is a marker j. It evaluates the split

xjxj < s
� �

e xjxj ≥ s
� �

to minimize the residual sum of squares

(RSS), represented as:

R1(j,  s) =   XjXj  <  s
� �

e R2(j,  s) =   XjXj  ≥  s
� �

,

The goal is to find the values of j and s that minimize the

following equation:

o
i : xi∈R1(j,s)

(yi − ŷ R1
)2 + o

i : xi∈R2(j,s)

(yi − ŷ R2
)2

where ŷ R1
is the mean response variable of the training

observations in region R1(j,  s), ŷ R2
is the mean response variable

in region R2(j,  s), and yi is the true value of the response for each

individual observation (James et al., 2021).

In RF, a total of B models are generated, denoted as f̂ 1(x),  f̂ 2(

x),…,  f̂ B(x). A key feature of RF is that each tree is built using a

random subset of predictors at each node, promoting diversity

among the trees and enhancing the overall model’s robustness

(Boehmke and Greenwell, 2019). In this study, the RF model was

implemented using the RandomForest package (Liaw and Wiener,

2002). The model was set to generate 500 trees, and at each split, the

number of variables randomly sampled as candidates was set to p/3,

where p represents the total number of markers (Prasad et al., 2006).
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We employed 5-fold cross-validation with five repetitions to

estimate predictive ability using the formula: rŷ y = cor(ŷ val , yval),

where ŷ val is the genomic estimated breeding values (GEBVs) or

genomic estimated genotypic values (GETGVs) of the validation

population from each method, and yval is the BLUPs of the

validation population.

The sommer package (Covarrubias-Pazaran, 2016) was used for

fitting the RR-BLUP, G-BLUP and RKHS models, while the BGLR

package (Pérez and De Los Campos, 2014) was used for Bayes A

and Bayes B models. All analyses were performed using R software

4.2.3 (R Core Team, 2023).
2.5 Clone selection

For the first cycle of genomic selection focused on drought

tolerance, we used a combined approach to select GS-C0 clones for

the crossing block, incorporating both BLUPs and GEBVs/GETGVs.

GEBVs predict average performance in random matings, suitable for

recurrent selection, while GETGVs assess individual clone

performance, ideal for cultivar advancement. Combining these

methods aimed to balance gains across multiple traits and improve

population performance. Clones were ranked using a selection index

that weighted traits according to their importance.

The clones were ranked based on the following selection index:

InS=(5×Nstem.Plant) + (5×Stem.D) + (5×Root.Di) + (5×Root.Le) +

(5×Plant.Height) + (10×StC) + (10×HI) + (10×StY) + (10×ShY) +

(15×DMC) + (15×NRoots) + (20×FRY), where InS represents the

value of the individual selection index for each clone. The

coefficients associated with each trait reflect their respective

weights within the selection index. Each trait corresponds to the

values of GEBV or GETGV.

In the context of selecting clones for population improvement

and identifying promising clones for future crosses, selection

intensities ranging from 10% to 30% were explored for each

evaluated trait. Two distinct strategies were implemented:

selection based on GEBVs and GETGVs.

The Kappa coefficient (Cohen, 1960), was used to evaluate

agreement between the selection methods in identifying superior

clones. The primary goal was to compare the effectiveness of

these methods in identifying high-performing clones for future

crosses, ultimately optimizing the formation of an improved

cassava population.
3 Results

3.1 Variance components and estimation of
genetic parameters

The distributions of BLUPs for each trait are shown in

Supplementary Figure S1. Although distinct distribution patterns

were observed for agronomic traits, all exhibited variability in their

BLUPs. This broad genetic variability is highly desirable in the

training population (GS-C0) as it is important for initiating

genomic selection cycles aimed at improving drought tolerance in
frontiersin.org
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cassava. Additionally, the residual distribution and its relationship

with the fitted values were analyzed to assess the model’s goodness

of fit (Supplementary Figures S2, S3). The analysis revealed that the

residuals largely adhere to a normal distribution and demonstrate

homogeneity of variance across the spectrum of fitted values.

Estimates of variance components derived from the joint

analysis across the four environments provided a thorough

understanding of the factors contributing to phenotypic

variation in the evaluated traits (Figure 1). Both residual and

genotypic effects, as well as their interaction, were significant

(Supplementary Table S2). Residual effects accounted for the

largest portion of variation in all traits, ranging from 32.99% for

ShY to 55.21% for Root.Le. Traits like Root.Le, Stem.D, and

Nstem.Plant showed the highest residual variation, with more

than 50% of the variation explained by residuals. In contrast,

genetic variances for traits such as ShY, StC, and DMC were

relatively high, though still comparable to the residual variances

(~40% each). The genetic variation of the Nstem.Plant trait was

considerably lower, representing just 14.52% of the total variation.

It is noteworthy that the effect of the evaluation year was nearly

constant for all traits, ranging from 8.57% to 11.05%. However, the

effect of the year × clone interaction was more pronounced for traits

like FRY, HI, Nstem.Plant, and StY, although it remained similar in

magnitude to the genetic variance for these traits. The analysis

showed that row and column effects, although statistically

significant in some cases, contributed only small portions of the

overall variation. For example, the row effect for shoot yield (ShY)

accounted for just 0.64%, while the column effect was slightly higher

at 1.37%. For dry matter content (DMC), the row and column

effects were 4.27% and 4.51%, respectively. These results highlight

that while row and column effects are detectable, their contributions

to phenotypic variation are minimal compared to the dominant
Frontiers in Plant Science 05
residual and genetic effects, reinforcing the primary role of genetic

and residual factors in shaping the traits studied.

The results reveal that traits with higher residual effects, such as

Root.Le, Stem.D, Root.Di, and Nstem.Plant, exhibited lower broad-

sense heritability (H2 ranging from 0.224 to 0.279) (Table 2). For the

remaining traits, H2 estimates were above 0.30, suggesting that,

while environmental factors contribute to phenotypic expression,

genetic inheritance is still significant. ShY exhibited the highest H2

value (0.523), highlighting the high influence of genetic factors on

this trait’s expression. Traits such as N_Roots, DMC, and StC

displayed moderate H2 values, indicating good potential for

improvement through genetic selection.

SNP-based heritability (h2), which capture additive genetic

variance and can help estimate the narrow-sense heritability of

traits, revealed a significant influence of genetic factors on the

observed phenotypic variation, ranging between 0.199 and 0.450.

Among these, StY and Stem.D stands out with the highest SNP-

based heritability (>0.40), suggesting that most of the variation in

root production is attributable to genetic factors. Other traits with

medium magnitude of h2 include ShY (0.397), FRY (0.410), and

Plant.Height (0.385). For traits such as N_Roots, StC, DMC, and

ShY the H2 estimate was higher than h2, while for Stem.D, the

opposite was observed.
3.2 Predictive performance of different
genomic selection methods

A comprehensive examination of genomic prediction methods

revealed distinct patterns in predictive ability for various agronomic

traits under water deficit conditions. Overall, all genomic ability

estimates fell below phenotypic heritability levels (Figure 2;
FIGURE 1

Distribution of variance components of the traits evaluated in field trials under water deficit for the traits: dry matter content (DMC), fresh root yield
(FRY), harvest index (HI), number of roots per plant (N_Roots), number of stems per plant (Nstem.Plant), plant height (Plant.Height), root diameter
(Root.Di), root length (Root.Le), shoot yield (ShY), starch content (StC), stem diameter (Stem.D) and starch yield (StY).
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Table 2), indicating an inherent challenge in achieving high

predictive ability under water stress conditions.

In the case of cassava, our study revealed prediction abilities

ranging from 0.150 to 0.371, depending on the trait and the model

used. For DMC, prediction abilities ranged from 0.150 to 0.221,

with the RR-BLUPmodel being the most accurate. For traits such as

FRY and HI, the prediction abilities ranged from 0.310 to 0.328 and

0.233 to 0.267, respectively, with the RKHS model providing the

highest predictive ability. For the N_Roots, predictive abilities

ranged from 0.250 to 0.262, with the G-BLUP-DOM model being

the most accurate. Prediction abilities for other traits, such as

Nstem.Plant(0.208 to 0.272), Plant.Height(0.280 to 0.304),

Root.Di(0.288 to 0.311), and Root.Le(0.345 to 0.371), were also

fairly similar, with the RKHS model showing the highest predictive

ability. Similarly, the prediction abilities for traits such as ShY

(0.311 to 0.324), StC (0.157 to 0.222), StY (0.286 to 0.311), and

Stem.D (0.345 to 0.353) were comparable, though the G-BLUP

model achieved the best predictive performance for these traits.

Results indicated that the predictive abilities of different

genomic selection methods were generally similar, except for

random forest. The random forest method exhibited the lowest

predictive ability values across all analyzed traits (Figure 2),

particularly for traits such as DMC, Nstem.Plant, and StC. This

finding suggests a limitation in the effective application of random

forest for predicting agronomic traits under water stress conditions,

highlighting the need to explore more robust alternatives.

In contrast, the G-BLUP and G-BLUP-DOM methods showed

higher predictive ability estimates with minimal variations between

them. The RKHS method also demonstrated high predictive

abilities for several traits, including FRY, DMC, and HI. These

results suggest that incorporating kinship effects may confer an

advantage in prediction ability, especially in challenging

environments. However, it is essential to note that overall,

predictive ability did not exceed 0.40 for any trait, indicating a
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general limitation in accurately predicting traits under water stress.

Notably, traits such as DMC, StC, and HI exhibited the lowest

average predictive ability, highlighting specific complexities

in modeling and predicting these attributes under water

deficit conditions.

In summary, selecting the genomic prediction method for water

stress data should involve careful consideration of the traits of

interest, taking into account the stability and consistency of the

method across different agronomic contexts. Given their superior

predictive abilities for most evaluated agronomic traits, we focused

our further analyses solely on the G-BLUP and G-BLUP-

DOM methods.

The results indicate that the predictive abilities of various

genomic selection methods were generally comparable, with the

exception of the random forest method. Random forest exhibited

the lowest predictive ability across all analyzed traits (Figure 2),

particularly for traits such as DMC, Nstem.Plant, and StC. This

suggests that random forest may have limitations in effectively

predicting agronomic traits under water stress conditions,

underscoring the need to explore more robust alternatives.

A thorough examination of genomic prediction methods

revealed distinct patterns in predictive ability for different

agronomic traits under water deficit conditions. Overall, the

genomic prediction abilities were lower than the phenotypic

heritability levels (Figure 2; Table 2), highlighting the inherent

challenge of achieving high predictive accuracy under water stress.
3.3 Comparison between
selection methods

The comparative analysis encompassed truncated selection

based on BLUP and genomic selection based on GEBVs and

GETGVs obtained using the additive G-BLUP and additive-

dominant G-BLUP methods, respectively. Different levels of

selection index (SI), ranging from 10% to 30%, were explored

using the Kappa coefficient as the evaluation metric (Figure 3;

Supplementary Table S3).

When individually evaluating the genomic selection methods

compared to the BLUP selection method (GEBV × BLUP and

GETGV × BLUP), the Kappa coefficients remained below 0.4

(Figure 3), regardless of the selection index (SI) level ranging

between 10% and 30%. This suggests a limited agreement

between the genotypes selected by truncation selection with

BLUP and genomic selection based on GEBV or GETGV. Similar

results were observed when employing combined selection between

GETGV and GEBV compared to truncated select ion

(GETGV_GEBV × BLUP). The trait with the lowest concordance

between selection approaches was HI, followed by N_Roots and

StC. Conversely, for traits Root.Le and Plant.Height, there was a

higher degree of agreement in the selection of cassava genotypes

based on different approaches.

In the comparative analysis between genomic methods (GEBV

× GETGV), notable consistency in selection was observed due to the

high agreement between genotypes selected through these

approaches, especially for traits DMC, StC, Nstem.Plant, and
TABLE 2 Broad-sense heritability (H2), SNP-based heritability (h2), mean
and range for several cassava agronomic traits evaluated in field trials
under water deficit.

Trait h2 H2 Mean/range

Number of roots per plant 0.199 0.462 29.06 (11.98 - 48.34)

Fresh root yield 0.410 0.363 4.95 (0.12 - 22.2)

Shoot yield 0.397 0.538 24.56 (1.57 - 71.97)

Dry matter content 0.309 0.549 4.29 (0.12 - 15.67)

Starch yield 0.440 0.277 2.13 (1.00 - 6.67)

Plant height 0.385 0.346 1.19 (0.36 - 3.03)

Harvest index 0.316 0.413 28.88 (6.12 - 63.3)

Starch content 0.312 0.535 23.21 (7.00 - 47.33)

Root length 0.351 0.253 14.23 (0.69 - 61.17)

Root diameter 0.294 0.306 24.42 (7.33 - 43.69)

Stem diameter 0.450 0.239 1.52 (0.02 - 8.87)

Number of stems per plant 0.251 0.225 2.11 (1.01 - 4.37)
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Root.Di, with coefficients equal to or close to 1.00 at any selection

intensity. Therefore, even if there were statistical differences in the

predictive ability of the additive and additive-dominant G-BLUP

methods, the expected genetic gains would be very similar. A similar

situation was also observed when using combined selection of

GEBV_BLUP and GETGV_BLUP compared to selection based

solely on BLUP. In these cases, the concordance coefficients

between methods ranged from 0.44 to 0.78.
3.4 Selection of clones for population
improvement and agronomic performance

The GEBVs and GETGVs were used to select cassava clones for

population improvement and to confirm agronomic performance

per se for recommendation as new cultivars in the target regions of

the project, respectively (Figure 4; Supplementary Table S4).

The averages of the selected population (XS) and the selection

differentials (SD) based on GEBV and GETGV were computed for

each trait and selection intensity, ranging from 10 to 30%. At the

highest selection intensity (10%), the selection differentials of

cassava clones to be used as parents were higher for traits such as

FRY (13.5%), StY 10.9%), and ShY (9.4%), while traits such as

Stem.D, Nstem,Plant had selection differentials below 2% compared
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to the average of the original population (Figure 4; Supplementary

Table S4). This trend was also observed in the selection of clones

based on GETGV, except that the Plant.Height trait exhibited a

selection differential above 2% compared to the average of the

evaluated population.

Increasing the selection intensity from 10% to 30% led to a

reduction in the selection differential of cassava clones for both the

average GEBV and GETGV. However, the difference in selection

differentials between the 10% and 15% intensities of the original

population was relatively low (<20%) for most evaluated traits, except

for Plant.Height and FRY (Figure 4; Supplementary Table S4). On the

other hand, the maximum selection intensity (30%) resulted in a

reduction in the selection differential compared to the lowest

selection intensity (10%), with reductions exceeding 40% for traits

such as DMC, FRY, Plant.Height, HI, Root.Le, StC and StY.

Overall, there was a tendency for similar gains from selection

based on genomic parameters (GEBV and GETGV), although

selection focusing on agronomic performance per se based on

GETGV resulted in slightly higher gains than selection of parents

based on GEBV for most traits (Figure 4). Exceptions to this trend

were observed for traits DMC, Nstem.Plant and StC at a 25%

selection intensity, and for HI, Plant.Height, Root.Di, and Root.Le

at almost all levels of selection intensity, where the average GEBV

was higher than the GETGV.
FIGURE 2

Boxplot of predictive ability for different genomic selection methods, including Bayes (A), Bayes (B), G-BLUP additive (G-BLUP), G-BLUP additive-
dominant (G-BLUP-DOM), Random Forest (RF), Reproducing Kernel Hilbert Space (RKHS), and RR-BLUP for various traits evaluated under water
deficit, such as dry matter content (DMC), fresh root yield (FRY), harvest index (HI), number of roots per plant (N_Roots), number of stems per plant
(Nstem.Plant), plant height (Plant.Height), root diameter (Root.Di), root length (Root.Le), shoot yield (ShY), starch content (StC), stem diameter
(Stem.D) and starch yield (StY).
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4 Discussion

4.1 Genetic parameters for agronomic
traits in cassava under drought tolerance

Our study identified significant interaction effects between

environmental factors (year) and genotype (clone) for various

cassava traits, particularly for FRY, HI, Nstem.Plant, and StY

(Supplementary Table S2). Residual effects were notably higher for

traits such as Nstem.Plant, Plant.Height, Root.Di, Root.Le, and Stem.D

(Figure 1). As a result, broad-sense heritability (H2) estimates were

generally of moderate to low magnitude, ranging from 0.22 to 0.52.

These heritability values align with those reported for cassava in typical

cultivation environments (rainfed planting with rainfall only during the

initial growth stages), such as the findings of de Andrade et al. (2019)

for FRY and DMC (0.337 and 0.545, respectively) and Sampaio Filho

et al. (2023) for FRY, ShY, DMC, PH, and HI, with H2 values of 0.32,

0.30, 0.57, 0.50, and 0.40, respectively.
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Another type of heritability that was also found to have a

moderate to low magnitude (ranging from 0.201 to 0.44) is SNP-

based heritability (h2). This represents the portion of trait variation

explained by SNPs and is useful for understanding the genetic

control over a trait. In many cases,H2 and h2 were similar, as seen in

traits like Nstem.Plant, Root.Di, Plant.Height, FRY, and ShY.

However, for certain traits such as N_Roots, StC, DMC, and ShY,

h2 estimates were lower thanH2. In general, h2 can be lower thanH2

for several reasons. First, h2 typically only captures additive genetic

variance, whereas H2 includes all genetic effects, including additive,

dominance, and epistasis. If non-additive genetic effects are

significant for a trait, H2 may be higher. Another potential

explanation includes: i) incomplete coverage of genetic variance

where SNP markers may not capture all genetic variation, especially

if the causal variants are rare or not well-represented, and ii)

population structure, in which h2 estimates can be lower in

populations with complex structures or high relatedness because

the model may not fully account for all genetic relationships,
FIGURE 3

Cohen’s Kappa of coincidence in selecting cassava clones based on its high GEBVs and BLUPs considering different selection proportion (10% to
30%—SP) for several traits, such as: starch yield (StY), stem diameter (Stem.D), starch content (StC), shoot yield (ShY), root length (Root.Le), root
diameter (Root.Di), plant height (Plant.Height), number of stems per plant (Nstem.Plant), number of roots per plant (N_Roots), harvest index (HI),
fresh root yield (FRY), and dry matter content (DMC).
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leading to less variance explained by the SNPs. Although studies on

cassava are limited, a recent study by Aghogho et al. (2024) reported

lower h2 than H2 for several root quality traits, such as gari yield,

peel loss, and bulk density.

Water deficit directly affects plant growth and physiological

development, presenting significant challenges for selecting plants

based on their responses to drought stress. Under drought

conditions, heritability values for cassava can vary considerably,

primarily due to the stress environment. For instance, heritability

estimates significantly lower than those observed in this study have

been reported for traits like N_roots (H2 = 0.25 – de Oliveira et al.,

2015) and ShY (H2 = 0.26 – Silva et al., 2021), while other traits, such as

Root.Di, have shown much higher heritabilities (H2 = 0.46 – Vieira

et al., 2024). These low heritability estimates pose significant challenges

for breeding programs. In crops like wheat and barley, for example, low

heritability for productive traits has limited the effectiveness of marker-

assisted selection (MAS) and the identification of robust QTLs,

complicating the selection of superior genotypes (Isidro et al., 2015;

Liu et al., 2018). Similarly, in maize, the low heritability of yield-related

traits under drought stress requires multiple selection cycles to achieve

meaningful genetic gains, which extends the duration and cost of

breeding programs (Lorenzana and Bernardo, 2009).
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In breeding for drought tolerance, plant selection has

traditionally focused on identifying genotypes that maintain high

yield under stress conditions (Sallam et al., 2019; de Oliveira et al.,

2021). However, intrinsic factors linked to drought-prone

environments, such as limited genetic variation for specific traits,

strong genotype × environment interactions, and low heritability,

can limit the effectiveness of breeding efforts (Varshney et al., 2021).

These factors can complicate the selection of optimal genotypes

across different years and growing conditions.

To overcome the challenges posed by low heritability,

integrating advanced techniques like genomic selection has

become essential for optimizing genetic gains. Genomic selection

leverages genetic marker information across the genome to predict

the genetic potential of individuals, improving selection accuracy

even for traits with low heritability (Heffner et al., 2009). Moreover,

conducting multi-environment phenotypic evaluations and

exploring the full spectrum of available genetic diversity,

including wild relatives, are critical strategies for capturing true

genetic variation and improving the efficiency of breeding programs

in the medium to long term (Hickey et al., 2014). These approaches

help mitigate the impact of low heritability and can lead to

significant advancements in crop improvement.
FIGURE 4

Average of the evaluated cassava population under water deficit conditions (X0) alongside the average of the improved population (XS) based on the
GEBVs and GETGVs of cassava genotypes. This analysis considers selection proportions ranging from 10% to 30% of the original population for
various agronomic traits. Dry matter content (DMC), fresh root yield (FRY), harvest index (HI), number of roots per plant (N_Roots), number of stems
per plant (Nstem.Plant), plant height (Plant.Height), root diameter (Root.Di), root length (Root.Le), shoot yield (ShY), starch content (StC), stem
diameter (Stem.D) and starch yield (StY).
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Recent studies have shown that the prediction accuracy of

genomic selection for drought tolerance traits often compares

favorably with phenotypic heritability values. For instance, in

maize, prediction abilities ranged from 0.5 to 0.7, while

phenotypic heritability for these traits ranged from 0.4 to 0.6

(Zhang et al., 2017). Similarly, in sorghum, prediction accuracies

for grain yield and stay-green traits under drought stress were

around 0.6, exceeding the phenotypic heritability values, which

ranged from 0.3 to 0.5 (Santantonio and Robbins, 2020). In our

study, prediction abilities for various agronomic traits in cassava

were lower than theirH2 estimates. For example, prediction abilities

for DMC ranged from 0.150 to 0.221, while H2 was 0.549. For FRY,

prediction abilities ranged from 0.310 to 0.328, compared to H2 of

0.363. Similarly, for HI, prediction abilities ranged from 0.233 to

0.267, with H2 ranging from 0.413.
4.2 Genomic selection to improve drought
tolerance in cassava

Lower genetic gains under drought conditions compared to

favorable environments represent significant limitations for

breeding programs (Mohammadi, 2018). Overcoming this

challenge requires a comprehensive approach that integrates plant

breeding, genomics, statistics, experimental design, and strategies

for managing genetic diversity. While traditional phenotypic BLUP

selection has been, and continues to be, highly valuable,

incorporating genomic values (GEBVs or GETGVs) provides a

more targeted and efficient strategy, especially in the context of

drought tolerance. This is particularly relevant given the high and

long-term costs associated with phenotyping cassava populations

for drought tolerance.

The predictive performance of genomic selection models is

influenced by several factors, including SNP marker density, the

number of QTLs, trait heritability and complexity, the genomic

selection model, and other factors (Daetwyler et al., 2008; Rosero

et al., 2020; da Costa et al., 2022; Yan et al., 2022). In our study on

cassava, prediction abilities ranged from 0.154 to 0.371, with traits

such as FRY, Plant.Height, Root.Di, Root.Le, ShY, and Stem.D

showing at least one prediction model with predictive abilities

above 0.30.

In standard cassava cultivation trials (without drought stress),

higher prediction accuracies have been reported for traits such as

ShY (ranging from 0.72 to 0.77), FRY (ranging from 0.66 to 0.76),

and DMC (ranging from 0.67 to 0.68) (Oliveira et al., 2012; Wolfe

et al., 2017; Torres et al., 2019). A more recent study by Andrade

et al. (2022) reported lower prediction accuracies for FRY (0.48) and

DMC (0.57), although these were still higher than the values

reported in our study under drought conditions. Literature

suggests that predictive accuracies for yield traits under drought

stress are generally low in other crops as well. For example, in

maize, prediction accuracies for grain yield ranged from low (0.03)

to moderate (0.51), even when including dominance effects in the

model and using different cross-validation schemes (Dias et al.,

2018). Similarly, in wheat, prediction accuracies ranged from 0.33 to

0.67 for productive traits under drought stress (Mohammadi, 2018).
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Different genomic prediction models can yield varying

prediction abilities due to their different assumptions and

characteristics. For instance, the RR-BLUP model assumes that all

markers have small, equal effects, which may not be realistic for all

traits and can limit its predictive ability when few major-effect QTLs

are involved (Clark and van der Werf, 2013; Haile et al., 2021). In

contrast, the G-BLUP model uses a genomic relationship matrix to

capture genetic variation and is generally robust, though it can still

be affected by linkage disequilibrium and population structure

(Haile et al., 2021). More advanced models, such as BayesA and

BayesB, assume different distributions for marker effects, allowing

for more flexible and potentially more accurate modeling of traits

controlled by a few large-effect QTLs (Daetwyler et al., 2013; de los

Campos et al., 2013; Rosero et al., 2020). Additionally, methods like

RKHS and deep learning models can capture complex nonlinear

relationships between markers and traits, offering an advantage

when such relationships are significant (Gianola et al., 2006; Gota

and Gianola, 2014). Since GBLUP is the most commonly

implemented prediction model (Nascimento et al., 2024), its

results were used as the benchmark in this study.

In this study, while the differences between genomic selection

methods were similar in terms of predictive ability, the additive G-

BLUP, additive-dominant G-BLUP, and RKHS methods showed

slight superiority over other methods for most traits. Due to the

advantages of clonal propagation, family structure is often

overlooked by breeders in clonal selection (Ceballos et al., 2015),

with minimal use of pedigree information. Therefore, genomic

selection methods that utilize a genetic relationship matrix, such

as G-BLUP and RKHS, can help increase selection gains by using

covariance information between individuals to estimate GEBVs (de

Andrade et al., 2019).

Other studies have also highlighted the effectiveness of the G-

BLUP method for routine genomic prediction in cassava roots

(Wolfe et al., 2017; de Andrade et al., 2019). Its main advantage lies

in the use of the genetic relationship matrix, which leverages

covariance information between individuals to estimate GEBVs.

This enables for the estimation of relationships through markers,

even without prior knowledge of relatedness, potentially improving

selection gains (Meuwissen et al., 2001). G-BLUP assumes an

infinitesimal genetic architecture, with nearly equal and small

contributions from all genomic regions to phenotypes, which

contrasts from Bayesian methods that allow for variance to vary

between SNP loci and emphasize main effect loci and variable

selection (Crossa et al., 2010; Wolfe et al., 2017). Although methods

like RKHS and RF can model epistasis (Kayondo et al., 2018), G-

BLUP is still preferred due to its reduced computational demands

and simplicity (Hernandez et al., 2020) especially when compared

to more complex parametric methods like Bayesian Alphabet

(Gianola et al., 2009).

While Barreto et al. (2024) suggested that modeling both

additive and dominant effects, depending on the environment,

could improve genomic prediction in drought-stressed trials, our

results showed that prediction accuracy for most traits was

relatively low under drought conditions and early harvests (6

months after planting). Additive effects predominated for most

traits, as evidenced by high correlations between GEBVs and
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GETGVs. Other studies have shown that traits such as dry matter

content and root diameter are primarily controlled by additive

effects, while traits like fresh root yield, root number, harvest index,

and plant height tend to be influenced by non-additive effects

(Zacarias and Labuschagne, 2010; Tumuhimbise et al., 2014;

Wolfe et al., 2016; Varona et al., 2018). However, when the

dominance effect accounts for a minor portion of genetic

variance, as observed in this study, using both additive and

additive-dominant models to understand trait control can

improve predictions of total genetic effects (Dias et al., 2018;

Barreto et al., 2024).
4.3 Selection of cassava clones for
recombination and evaluation of
agronomic performance

According to El-Sharkawy (2004), traditional methods for

selecting parental lines to enhance drought tolerance and

adaptation to infertile soils have resulted in the development of

improved cassava cultivars with high yields in favorable

environments and stability under stress. However, achieving

progressively higher genetic gains for various traits has become

increasingly challenging for conventional breeding programs. As a

result, new approaches, such as genomic selection can aid in

predicting agronomic performance and identifying the best lines

and parental combinations for population improvement or cultivar

validation (Mohammadi, 2018).

In cassava population improvement, the cycle time for

reintroducing a clone into a new breeding cycle is lengthy due to

several biological constraints, including low flowering rates, long

breeding cycles, limited genetic diversity, and low rates of planting

material multiplication (Kayondo et al., 2018). Genomic selection

can optimize and expedite the breeding pipeline by reducing the

time needed for improvement through the selection of superior

parental genotypes at the seedling stage based solely on genotyping

data (Heffner et al., 2009; Wolfe et al., 2017).

Typically, a selection cycle in cassava requires one to two years

to produce botanical seeds from the clones to be tested, followed by

an additional two to four years for field evaluations (Oliveira et al.,

2012; Wolfe et al., 2017; Torres et al., 2019). Selection decisions are

made throughout this process to reduce the number of genotypes

evaluated in replicated trials across multiple locations (Torres et al.,

2019). The conventional cassava breeding cycle spans at least four

years due to the need to collect phenotypic data across four main

stages of improvement: clonal evaluation trials (CET), preliminary

yield trials (PYT), advanced yield trials (AYT), and uniform yield

trials (UYT) (Oliveira et al., 2012). In practice, a clone typically only

returns to the crossing block after being evaluated in advanced yield

trials (AYT), resulting in a cassava breeding cycle lasting between 4

to 6 years.

In contrast, selecting clones for agronomic validation, which

occurs after completing the UYT trials, typically takes about eight

years from the start of crossings (Wolfe et al., 2017). This prolonged

selection cycle can be significantly shortened with the use of genomic

selection. By employing GEBVs and GETGVs in population
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improvement, the breeding cycle can be expedited, allowing for the

selection and reintroduction of promising clones into the breeding

block in a shorter time frame. Furthermore, this approach accelerates

the development of new cassava cultivars (performance per se), as the

selection of genotypes with the highest potential to become cultivars

can be made earlier at the seedling stage, thus reducing the time

needed for agronomic validation. Integrating genomic selection into

the breeding process can shorten the conventional eight-year cycle to

a considerably shorter period, leading to faster advancements in the

productivity and quality of new cassava varieties. This efficiency is

primarily dependent on the production of propagative material for

trials with replications across multiple environments and

growing seasons.

Regardless of the outcomes for genotypes in breeding programs,

selecting superior genotypes based on genomic values often shows

less agreement with selection based on phenotypic BLUPs,

especially when truncation selection is used for traits with

complex inheritance. Complex traits are controlled by numerous

small-effect loci scattered throughout the genome, and genomic

selection accounts for all these loci simultaneously. In contrast,

phenotypic selection relies solely on observed performance, which

can be affected by environmental factors and gene-environment

interactions (Crossa et al., 2010; Bhat et al., 2016). The low

heritability of these complex traits and their sensitivity to

environmental variations can cause significant variability in the

accuracy of phenotypic selection, particularly under non-uniform

conditions (de los Campos et al., 2009). On the other hand, genomic

selection faces accuracy challenges due to linkage disequilibrium

(LD) between SNP markers and QTLs, as well as the effective

population size. In populations with low LD, large populations can

reduce the accuracy of genomic models (Cruz et al., 2013). The

density and number of SNP markers are also critical factors, with

higher marker density potentially improving the efficiency of

genomic models (González-Camacho et al., 2012).

de Andrade et al. (2019) also reported a low Kappa coefficient

(0.40) when analyzing the agreement in ranking clones based on

genomic values versus phenotypic BLUPs, using different genomic

prediction methods (BayesB, G-BLUP, RKHS, RR-BLUP, and

BLASSO). In contrast, there was a high level of agreement (Kappa

coefficient ranging from 0.76 to 1.0) in selecting cassava genotypes

ranked based on GEBVs versus GETGVs.

In this study, cassava clones were selected based on GEBVs to

advance population improvement, aiming to gradually raise the

population mean for specific traits (Chen et al., 2023). GEBVs

estimate the genetic value of an individual as a parent, indicating its

potential to transmit favorable traits to the next generation (Crossa

et al., 2017). Conversely, ranking based on GETGVs is used for

selecting clones for agronomic validation in different environments

experiencing drought stress, focusing on improving the individual

performance of genotypes by considering both additive and non-

additive effects (such as dominance and epistasis) (Chen et al., 2019).

Although higher selection intensities (e.g., 10%) result in greater

selection differentials compared to the mean of the original

population, the reduction in gains when increasing the selection

intensity from 10% to 15% is relatively small, regardless of whether

the selection is based on GEBVs or GETGVs. Bernardo et al. (2006)
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noted that while higher selection intensity can lead to increased

genetic gains, it is generally more advisable to determine the

number of parental lines based on the breeding program’s long-

term or short-term goals, considering the specific characteristics of

each species. In cassava breeding, crossing blocks with specific

objectives typically consist of around 50 genotypes. With selection

intensities of 10% and 15%, 42 and 62 genotypes would be selected,

respectively, to form crossing blocks and conduct agronomic

evaluations. Considering the lack of synchronization in flowering

and the fact that not all cassava clones flower within a production

cycle, selecting 62 clones is a reasonable number to start a genomic

selection program focused on enhancing drought tolerance.

Selecting parents for crossing is a critical component of plant

breeding programs. Selection intensities ranging from 5% to 30%

are commonly applied, with 10% frequently used to balance

selection intensity and genetic diversity (Falconer and Mackay,

1996). For instance, Das et al. (2021) used a 5% selection

intensity to identify drought-tolerant maize individuals, while

Zhang et al. (2017) varied selection intensities from 5% to 50%

across different selection cycles to estimate genetic gains and

investigate diversity in maize populations. In cassava, Sampaio

Filho et al. (2023) applied a 30% selection intensity to determine

gains in stability and performance, whereas Andrade et al. (2022)

evaluated selection intensities ranging from 5% to 30% for selecting

clones and parental lines for breeding blocks.

The success of hybridization in breeding programs depends on

the appropriate selection of germplasm to be used as parents (Oliveira

et al., 2017). Superior parents with desirable alleles and minimal

undesirable genetic load can be identified and incorporated into

breeding programs to develop cultivars with preferred allele

combinations (Varshney et al., 2021). In our study, using a 15%

selection intensity (62 clones), selection differentials based on GEBVs

ranged from 0.76% for Stem.D to 13.50% for FRY, while gains based

on GETGVs ranged from 0.81% to 13.62% for the same traits.

Regardless of the genomic selection parameter (GEBV or GETGV),

traits with the highest selection differentials (>7%) were economically

significant (StY, ShY, and FRY). With the development of

populations derived from crossing these parental lines, it is

expected that selection indices will further enhance genetic gains

for productive traits and other important physiological traits under

drought stress. Andrade et al. (2022) reported that reducing the

cassava breeding cycle makes genomic selection gains, on average,

12.48% and 11.92% higher than those from phenotypic selection for

FRY and DRY traits, respectively. Oliveira et al. (2012) also noted that

a 25% reduction in breeding cycle time resulted in relative efficiency

improvements of 4.6%, 15.96%, and -7.05% for FRY, starch content,

and DMC, respectively, with RR-BLUP genomic prediction.
4.4 Prospects for future breeding

Phenotypic selection can achieve genetic gains of around 5-10%

per cycle, depending on the trait and the population structure

(Carena et al., 2010). However, these gains are often limited by the

long duration of breeding cycles and the lower precision of

phenotypic evaluations. As a result, new selection approaches, such
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as genomic selection, are increasingly being integrated into breeding

programs. Numerous studies have shown that genomic selection

accelerates the breeding process by enabling earlier selection based on

GEBVs, thus bypassing the need for full phenotypic cycles (Crossa

et al., 2017). This advantage is especially valuable for crops with long

generation intervals, like cassava, where traditional breeding methods

are slow and resource-intensive (Wolfe et al., 2017).

By reducing the breeding cycle time, greater selection gains can

be achieved per unit of time, even with less precise selection. For

example, Oliveira et al. (2012) found that shortening the selection

cycle by one year made genomic selection 4.6% more efficient than

phenotypic selection for the FRY trait. These gains could be even

more substantial (up to 73%) if the cassava selection cycle were

reduced from 4-5 years to just 2 years. This reduction is critical,

particularly for semi-perennial crops like cassava, which have

naturally long production and breeding cycles (Varshney et al.,

2021). Specifically, for drought tolerance in cassava, using GEBVs

and GETGVs not only shortens the breeding cycle—potentially

enabling annual cycles—but also optimizes resources by reducing

both the costs and time associated with intensive drought stress

phenotyping. Indeed, Bernardo (2008) suggested that while the

gains per cycle may not necessarily be higher with marker-based

selection, markers improve the efficiency of gains per unit of cost

and time.

Reducing the time required to produce progeny can significantly

enhance genetic gains, as shortening the reproduction cycle has a

greater impact than increasing heritability or selection intensity

(Cobb et al., 2019; Santos et al., 2024). In conventional cassava

breeding programs, selection cycles using only phenotypic BLUPs

can take 4 to 6 years due to slow vegetative propagation and the need

for phenotyping genotypes in multiple environments (Mohammadi,

2018). In contrast, genomic selection can shorten this cycle to about

one year, depending on the program’s ability to generate new progeny

and the available genotyping infrastructure.

The decreasing costs of genotyping offer substantial long-term

benefits for selecting drought tolerance compared to the intensive

and costly phenotyping required for BLUP-based programs.

Genomic selection allows for early selection of young plants

before they reach reproductive maturity, optimizing resource use

and enabling more selection cycles within a shorter timeframe. This

approach increases the likelihood of accumulating favorable alleles

for drought tolerance and enables a quick response to

environmental and genetic changes (Costa-Neto et al., 2021). By

accelerating the development of new varieties suited for challenging

cultivation conditions, genomic selection also prepares breeding

programs to tackle future climate challenges in increasingly

demanding tropical agricultural systems that require rapid

adaptation (Heffner et al., 2009; Varshney et al., 2021).

Our results suggest that genomic selection can be just as

effective as traditional phenotypic selection in identifying

drought-tolerant genotypes. This is crucial for breeding programs

focused on developing resilient crops in response to climate change

and water scarcity. Therefore, incorporating genomic selection into

breeding programs can significantly expedite the development of

drought-tolerant varieties, contributing to agricultural sustainability

in a context of limited water resources.
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4.5 Conclusion

According to our results, the heritability estimates for most

agronomic traits were lower than those reported in the literature for

cassava trials conducted under normal conditions. This suggests

that water stress may have affected plant growth and physiological

development, creating challenges for selecting genotypes with

drought tolerance. Although the predictive abilities of GEBVs and

GETGVs under water stress were low (ranging from 0.154 to 0.371),

traits such as FRY, Plant.Height, Root.Di, Root.Le, ShY, and Stem.D

exhibited the highest predictive abilities (>0.30). The selection

differentials based on a 15% selection intensity (62 genotypes)

were higher for economically significant traits like StY, ShY, and

FRY, both for population improvement (using GEBVs) and for

evaluating the genotype’s performance per se (using GETGVs).

Integrating genomic selection can enhance the selection of

cassava genotypes under water stress by predicting the genetic

value of individuals for key agronomic traits related to drought

tolerance at an early stage. In conventional cassava breeding

programs, selection cycles using phenotypic BLUPs can last 4 to 6

years, whereas genomic selection can feasibly reduce this cycle to

about 2 years. Shortening the breeding cycle has a greater impact on

genetic gain than increasing heritability or selection intensity.

Additionally, decreasing genotyping costs offer significant long-

term benefits compared to the intensive and costly phenotyping

required for mitigating the impacts of water stress.
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Cientıfíco e Tecnológico). Grant number: 310980/2021-6 and

402422/2023-6; FAPESB (Fundação de Amparo à Pesquisa do

Estado da Bahia). Grant number: Pronem 15/2014; This work was

partially funded by UK’s Foreign, Commonwealth & Development

Office (FCDO) and the Bill &Melinda Gates Foundation. Grant INV-

007637. Under the grant conditions of the Foundation, a Creative

Commons Attribution 4.0 Generic License has already been assigned

to the Author Accepted Manuscript version that might arise from this

submission. The funder provided support in the form of fellowship

and funds for the research, but did not have any additional role in the

study design, data collection and analysis, decision to publish, nor

preparation of the manuscript.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fpls.2024.1483340/

full#supplementary-material
References
Aghogho, C. I., Kayondo, S. I., Eleblu, S. J. Y., Ige, A., Asante, I., Offei,
S. K., et al. (2024). Genome-wide association study for yield and quality of
granulated cassava processed product. Plant Genome 17, e20469. doi: 10.1002/tpg2.
20469

Andrade, L. R. B., e Sousa, M. B., Wolfe, M., Jannink, J.-L., Resende, M. D. V.,
Azevedo, C. F., et al. (2022). Increasing cassava root yield: Additive-dominant genetic
models for selection of parents and clones. Front. Plant Sci. 13. doi: 10.3389/
fpls.2022.1071156

Barreto, C. A. V., das Graças Dias, K. O., de Sousa, I. C., Azevedo, C. F., Nascimento,
A. C. C., Guimarães, L. J. M., et al. (2024). Genomic prediction in multi-environment
trials in maize using statistical and machine learning methods. Sci. Rep. 14, 1062.
doi: 10.1038/s41598-024-51792-3
frontiersin.org

https://figshare.com/
https://www.frontiersin.org/articles/10.3389/fpls.2024.1483340/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fpls.2024.1483340/full#supplementary-material
https://doi.org/10.1002/tpg2.20469
https://doi.org/10.1002/tpg2.20469
https://doi.org/10.3389/fpls.2022.1071156
https://doi.org/10.3389/fpls.2022.1071156
https://doi.org/10.1038/s41598-024-51792-3
https://doi.org/10.3389/fpls.2024.1483340
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


da Costa et al. 10.3389/fpls.2024.1483340
Bernardo, R. (2008). Molecular markers and selection for complex traits in plants:
Learning from the last 20 years. Crop Sci. 48, 1649–1664. doi: 10.2135/
cropsci2008.03.0131

Bernardo, R., Moreau, L., and Charcosset, A. (2006). Number and fitness of selected
individuals in marker-assisted and phenotypic recurrent selection. Crop Sci. 46, 1972–
1980. doi: 10.2135/cropsci2006.01-0057

Bhat, J. A., Ali, S., Salgotra, R. K., Mir, Z. A., Dutta, S., Jadon, V., et al. (2016).
Genomic selection in the era of next generation sequencing for complex traits in plant
breeding. Front. Genet. 7. doi: 10.3389/fgene.2016.00221

Boehmke, B., and Greenwell, B. (2019). Random Forests. In: Hands-On Machine
Learning with R. (Boca Raton, FL: Chapman and Hall/CRC) 45, 203–219. doi: 10.1201/
9780367816377-11

Budak, H., Hussain, B., Khan, Z., Ozturk, N. Z., and Ullah, N. (2015). From genetics
to functional genomics: Improvement in drought signaling and tolerance in wheat.
Front. Plant Sci. 6. doi: 10.3389/fpls.2015.01012

Carena, M. J., Hallauer, A. R., and Miranda Filho, J. B. (2010). Quantitative genetics in
maize breeding (New York, NY: Springer New York). doi: 10.1007/978-1-4419-0766-0

Ceballos, H., Kawuki, R. S., Gracen, V. E., Yencho, G. C., and Hershey, C. H. (2015).
Conventional breeding, marker-assisted selection, genomic selection and inbreeding in
clonally propagated crops: a case study for cassava. Theor. Appl. Genet. 128, 1647–1667.
doi: 10.1007/s00122-015-2555-4

Chen, N., Chen, L., Ma, Y., and Chen, A. (2019). Regional disaster risk assessment of
China based on self-organizing map: Clustering, visualization and ranking. Int. J.
Disaster Risk Reduct. 33, 196–206. doi: 10.1016/j.ijdrr.2018.10.005

Chen, S. P., Tung, C. W., Wang, P. H., and Liao, C. T. (2023). A statistical package for
evaluation of hybrid performance in plant breeding via genomic selection. Sci. Rep. 13,
12204. doi: 10.1038/s41598-023-39434-6

Clark, S. A., and van der Werf, J. (2013). Genomic best linear unbiased prediction
(gBLUP) for the estimation of genomic breeding values.Methods Mol. Biol. 1019, 321–
330. doi: 10.1007/978-1-62703-447-0_13

Cobb, J. N., Juma, R. U., Biswas, P. S., Arbelaez, J. D., Rutkoski, J., Atlin, G., et al.
(2019). Enhancing the rate of genetic gain in public-sector plant breeding programs:
lessons from the breeder’s equation. Theor. Appl. Genet. 132, 627–645. doi: 10.1007/
s00122-019-03317-0

Cohen, J. (1960). A coefficient of agreement for nominal scales. Educ. Psychol. Meas
20, 37–46. doi: 10.1177/001316446002000104

Costa-Neto, G., Fritsche-Neto, R., and Crossa, J. (2021). Nonlinear kernels,
dominance, and envirotyping data increase the accuracy of genome-based prediction
in multi-environment trials. Heredity (Edinb) 126, 92–106. doi: 10.1038/s41437-020-
00353-1

Covarrubias-Pazaran, G. (2016). Genome-Assisted prediction of quantitative traits
using the r package sommer. PloS One 11, e0156744. doi: 10.1371/journal.pone.
0156744
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Campos, G., et al. (2017). Genomic selection in plant breeding: methods, models, and
perspectives. Trends Plant Sci. 22, 961–975. doi: 10.1016/j.tplants.2017.08.011

Cruz, C. D., Salgado, C. C., and Bhering, L. L. (2013). Genômica Aplicada. Eds. C. D.
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