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Climate change has a substantial influence on the end of the growing season (EOS).

The time-lag and cumulative effects are non-negligible phenomena when studying

the interactions between climate and vegetation. However, quantification of the

temporal effects of climatic factors on the EOS in the context of changing

hydrothermal patterns remains scarce. Based on the Moderate Resolution Imaging

Spectroradiometer (MODIS) fraction of absorbed photosynthetically active radiation

(FPAR), this study first inverted the EOS of typical steppe vegetation in a semi-arid

region of China and then quantified the time-lag and cumulative effects of monthly

total precipitation (PRE) and monthly average temperature (TEM) on the EOS during

2003–2022. The results showed that a turning point occurred in 2011, when the EOS

displayed an advancing trend until 2011, followed by a delayed trend. Accordingly, the

climatic background has changed fromwarming and drying conditions during 2003–

2011 to warming and wetting conditions during 2011–2022. The time-lag scales of

PRE and TEM on the EOS decreased from 2- and 4-month scales during 2003–2011,

respectively, to 1- and 2-month scales during 2011–2022, respectively. The time-lag

degree of the hydrothermal factors on the EOS weakened with increased

precipitation. The cumulative time scales of the EOS response to PRE and TEM

were mainly concentrated within 1-month during different time periods, but the EOS

was more sensitive to short-term precipitation. The time lag and cumulative partial

correlation coefficient of PRE to EOS changed frommainly negative regulation during

2003–2011 (39.2% and 50.0%, respectively) to mainly positive regulation during

2011–2022 (67.8% and 93.7%, respectively). The time-lag and cumulative effects of

TEM on the EOS were positive with the precipitation and temperature gradient under

a warming and wetting climate, which indicated that increased precipitation was a

prerequisite for temperature to induce a delayed EOS in the semi-arid study region.

This study emphasizes the important role of precipitation in regulating the EOS

response to hydrothermal factors in semi-arid regions.
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1 Introduction

Climate variability alters the spatiotemporal patterns of

precipitation and temperature, disrupting many ecosystem

processes and functions, including carbon and water cycles and

energy flows (Keenan et al., 2014), and significantly affects

vegetation productivity, biodiversity, and vegetation phenology

(Zhu et al., 2016; Chen et al., 2018). Vegetation phenology has

drawn widespread research attention due to the close and

observable relationships between phenology and climate variables

in terrestrial ecosystems (Zhou et al., 2022). The start and end of

vegetation phenology are important signals for the inception and

cessation of carbon uptake in the ecosystem carbon cycle,

respectively, and they play an important role in controlling

vegetation productivity as well as water and carbon cycle cycling

(Richardson et al., 2010; Wu et al., 2016; Zheng et al., 2020; Zhang

et al., 2022a).

In recent decades, global warming has led to the advancement

of vegetation green-up and delays at the end of the growing

season (EOS) (Tao et al., 2017). However, different directions of

phenological change have frequently been reported in the context

of current climate warming (Wang et al., 2019a, b; Li et al., 2022).

A growing number of studies have focused on the reversal of

phenomenon of vegetation phenology (Yang et al., 2014; Li et al.,

2018; Liu et al., 2021; Bevacqua et al., 2022; Xiong et al., 2023).

For example, in temperate China, the EOS exhibited delays

during the 1980s; this trend slowed or even reversed during the

1990s and the 2000s. The green-up in the middle-high latitudes of

the Northern Hemisphere showed a gradual reversal from

advance to delay. In the Tibetan Plateau region, vegetation

green-up showed a similar trend during 1982–2015. To

effectively manage and conserve terrestrial biomes, the study of

phenological responses and adaptation strategies to climate

change is critical for understanding the complex mechanisms of

climate–vegetation interactions in ecosystems (Zhang et al.,

2019). The phenology of grassland vegetation in arid and semi-

arid regions that are sensitive to climate change is influenced

mainly by temperature and precipitation (Sha et al., 2016; Tao

et al., 2017).

Preseason precipitation and temperature play an important role

in regulating vegetation phenology (Guo et al., 2020; Ma et al., 2022;

Zhang et al., 2022b). Thus, climate change affects the growth and

development of ecosystem vegetation through a complex temporal

effect (Mulder et al., 2016; Bigler and Vitasse, 2019). This temporal

effect can be divided into the time-lag and cumulative effects. The

time-lag effect refers to the effect of climatic factors on vegetation

phenology during a certain period before vegetation phenology. The

cumulative effect refers to the cumulative effect of climatic factors

on vegetation phenology within a certain duration before vegetation

phenology. Clarifying the time-lag and cumulative effects of pre-

season climate factors (pre-season variables before phenological

change begin to the climatic period associated with phenological

changes) on phenological change provides important information

for understanding climate–vegetation interactions (Guo et al.,

2020). The complex interactions between plants and climate
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variables require further in-depth and systematic analysis (Ding

et al., 2020).

Grassland ecosystems are important carbon sinks that are most

sensitive to climate change (Hovenden et al., 2008). Grassland

vegetation plays a vital role in species conservation (Weber et al.,

2018). Therefore, understanding the feedback relationship between

climate change and grassland vegetation phenology is crucial to

obtain a better understanding of the key processes involved in

managing grassland ecosystems. Studies have shown that the

contribution of EOS to the trend of growing season length in

specific areas is greater than that of green-up (Garonna et al.,

2014). However, the response of EOS to climate change is often

neglected (Gallinat et al., 2015). The response of EOS to climate

change is more complex and variable than that of green-up, which

makes it difficult to identify environmental drivers and construct

models (Yuan et al., 2020a). Therefore, studying the mechanisms

underlying the regulation of vegetation EOS by climate change

remains challenging (Yang et al., 2021).

Therefore, quantitative evaluation of the time lag and the

cumulative effects of pre-season hydrothermal factors on the EOS

in semi-arid regions is critical for improving the performance of

phenological models. In this study, it was hypothesized that the time

lag and cumulative effects of hydrothermal factors on the EOS

would change with changing climatic background. Hydrothermal

factors and vegetation types play crucial roles in determining

differences in the response of vegetation phenology to climate

change (Liu et al., 2021; Ren et al., 2022). Previous studies have

focused on the time lag and cumulative effects of climate drivers on

the growth and development of different types of vegetation (Ren

et al., 2017b; He et al., 2023). However, little is known regarding

whether the time lag and cumulative hydrothermal effects on the

EOS have changed under ongoing climate change and the

underlying mechanisms. Therefore, the main objectives of this

study were to (1) quantify the time-lag effect and cumulative

effect of the pre-season monthly total precipitation (PRE) and

monthly average temperature (TEM) on the EOS of typical steppe

vegetation in a semi-arid region of China, and (2) reveal the

mechanism of these temporal effects based on PRE and TEM

patterns over the past two decades.
2 Materials and methods

2.1 Study region

The grassland of Inner Mongolia in northern China is a typical

Eurasian steppe region comprising nearly 60% grassland vegetation

(Sha et al., 2016). Typical steppe vegetation accounted for 52.8% of

the total area. The present study focused on the Xilinhot region of

Inner Mongolia (Figure 1A), where the vegetation type is dominated

by typical steppe vegetation. This area is characterized by a temperate

continental monsoon climate, with cold and dry winters and hot and

moist summers (Ren et al., 2017b). The elevations in the study area

display notable spatial variability, with high elevations in the

southeast and low elevations in the north (Figure 1B).
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2.2 Datasets

TheModerate Resolution Imaging Spectroradiometer (MODIS)

dataset has been widely used to explore large-scale vegetation

phenology. This study utilized the fraction of absorbed

photosynthetically active radiation (FPAR) data from MODIS

(MCD15A3H.006) for 2003–2022 obtained using the Google

Earth Engine (GEE) platform. The FPAR dataset had a spatial

resolution of 500 m and temporal resolution of 4 days.

The meteorological data used were obtained from the National

Science and Technology Infrastructure Platform National Earth

System Science Data Centre (http://www.geodata.cn), including the

TEM and PRE during 2003–2022 at a spatial resolution of 0.0083°

(approximately 1 km). To ensure consistency in the spatial

resolution of the data, monthly climate data were resampled to a

spatial resolution of 500 m.
2.3 Methods

Using the FPAR dataset, the EOS was inverted using the

dynamic threshold method. The inversion process was conducted

using TIMESAT 3.3 software. EOS was extracted in two steps. First,

a filter function was used to smoothen the FPAR data. Second, the

threshold value of the FPAR was defined as 45% to identify the date

of EOS.

Partial correlation analysis is a statistical measure of the

direction and strength of the linear relationship between the

independent variable (x) and dependent variable (y), which

eliminates the interference of one or more covariates (z = [z1,

z2…, zn]). The formula used was as follows:

Rx,y j z =
Rxy − Rxz*Ryzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(1 − R2
xz)*(1 − R2

yz)
q (1)

where Rx,y|z refers to the partial correlation coefficient between x

and y after controlling the variable z; Rxy, Ryz and Rxz are the

correlation coefficients between x, y, and z.
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2.3.1 Time-lag effect
The hydrothermal factors during the early months of the EOS

were the most important factors affecting vegetation EOS. In this

study, PRE and TEM during the first 6 months of EOS were

selected as influencing factors. The time-lag effect refers to the use

of 1-month-scale climatic factors, where a time lag of 1 month

represents the impact of climatic factors on the EOS during the

first month of the EOS, while a time-lag of 6 months represents the

impact of climatic factors on the EOS during the sixth month of

the EOS. The time-lag effect is determined by the time-lag scales of

the EOS, climatic factors, and corresponding maximum partial

correlation coefficients. In this study, the time series of the EOS

and climatic factors during 2003–2022 (1 ≤ i ≤ 6) were calculated,

and the partial correlation coefficients of six time series were

calculated (significance level set to P <0.05); that is, six partial

correlation coefficients were obtained for each pixel for the EOS.

The maximum value of the six partial correlation coefficients was

considered as the time-lag maximum partial correlation coefficient

(Rmax_lagm), and the corresponding time-lag scale was recorded.

Rmax_lagm represents the maximum response of vegetation to the

time-lag effect of climatic factors.

Rlagi = corr(xi, y j zi),  1 ≤ i ≤ 6 (2)

Rmax _ lagm = max ( jRlagi j )  1 ≤ i ≤ 6 (3)

in the formulas, i is the time-lag scale of i months. xi is the time

series of climatic factors of i months before the EOS. y is the EOS

time series. zi is the z value of i months before the EOS. Rlagi is the

time-lag partial correlation coefficient of y and xi after the control

variable zi, and Rmax_lagm is the maximum value of Rlagi.

2.3.2 Cumulative effect
To evaluate the degree of response of the EOS to the cumulative

effect of climatic factors and their corresponding time scales, a pixel-

scale cumulative partial correlation analysis was conducted. First the

partial correlation coefficients between the cumulative values of PRE

and TEM from the first 1 month to the first 6 months of EOS and
FIGURE 1

Study region and elevation. (A) Geographical location of study region. (B) Elevation of study region.
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EOS were calculated. Subsequently, six groups of partial correlation

coefficients were compared, and the maximum pixel values at the

corresponding positions were synthesized to obtain the maximum

partial correlation coefficient. This indicates the maximum response

of the EOS to the cumulative effect of the climate. The corresponding

cumulative timescale is the cumulative number of months

corresponding to the maximum partial correlation coefficient. The

partial correlation coefficients of the six-time series were calculated

(based on the data series of the EOS during 2003–2022, with the

significance level set at P <0.05). The maximum value of the six

partial correlation coefficients was recorded as Rmax_cumm, and the

corresponding cumulative timescale m was recorded.

Rcumi = corr(xi, y j zi),  1 ≤ i ≤ 6 (4)

Rmax _ cumm = max ( jRcumi j )  1 ≤ i ≤ 6 (5)

where i is the cumulative time scale; xi represents the time series

of climatic factors with a cumulative time of i months; Rcumi is the

cumulative partial correlation coefficient of y and xi after the control

variable zi; and Rmax_cumm represents the maximum value of Rcumi.
3 Results

3.1 Spatiotemporal variation patterns of
hydrothermal factors and the EOS

Although the change trend of the EOS was not obvious during

2003–2022, it exhibited phase-change characteristics (Figure 2). Based on

the EOS rate, the entire study period was divided into two subperiods.

The EOS displayed a reversal phenomenon in the semi-arid region, with

a slight increase during the first sub-period (2003–2011) and a significant

delay during the second sub-period (2011–2022) (P <0.05).
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The temporal trends of the PRE and TEM during the first 6

months of the EOS and the EOS in the Xilinhot region during 2003–

2022 and two subperiods were analyzed (Figure 3). The results

revealed that the temporal trends and directions of PRE and TEM

during different time stages displayed notable spatial variability.

Overall, there was an increasing trend in the PRE during 2003–2022

(2.17 mm/yr) (Figure 3A). The PRE during 2003–2011 showed a

decreasing trend (−3.83 mm/yr) (Figure 3B), while the PRE during

2011–2022 exhibited an increasing trend (2.77 mm/yr) (Figure 3C).

In contrast, the TEM showed an increasing trend during all periods,

and the TEM increase rate during 2011–2022 (0.07 °C/yr) was close

to that from 2003 to 2011 (0.06°C/yr) (Figures 3D-F). This indicates

that the spatial and temporal patterns of the PRE and TEM in the

study area changed during 2003–2022, and the climate state shifted

from a warming and drying climate during 2003–2011 to a warming

and wetting climate during 2011–2022. Correspondingly, during

2003–2022, the study found that the temporal trends of the EOS

had substantial spatial variability, and the overall trend was slightly

delayed (0.27 days/yr) (Figure 3G). During the two subperiods, the

EOS during 2003–2011 mainly followed a trend of advancing (−0.28

days/yr) (Figure 3H), while the EOS showed a delayed trend during

2011–2022 (1.79 days/yr) (Figure 3I). This suggests that the

direction of change in the EOS has shifted with ongoing

climate change.
3.2 Time-lag effects of PRE and TEM on
the EOS

The spatial distributions of the time-lag effects of the PRE and

TEM on the EOS during different periods were analyzed (Figure 4).

The time-lag scale of the EOS in response to the PRE in 2003–2022

was dominated by a scale of 1 month, and the proportion of 1-
FIGURE 2

Segmental fitting of the end of the growing season (EOS) time series of typical steppe vegetation in Xilinhot during 2003–2022.
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minth pixels was more than 50%. The time-lag scale of the PRE in

response to the EOS was dominated by 1- and 2-month from 2003

to 2011, while it was dominated by 1-month during 2011–2022.

This suggests that the time-lag degree of the EOS in response to the

PRE was stronger under warming and drying climate conditions.

The time-lag scale of the EOS in response to TEM during 2003–

2022 was dominated by the 2-month scale, which accounted for
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35% of the total pixels. In particular, the time-lag scale of the

response of the EOS to TEM was dominated by the 4-month scale

during 2003–2011, while it was dominated by the 2-month scale

during 2011–2022, which indicated that the time-lag degree of the

EOS in response to TEM was also stronger under the warming and

drying climate conditions. Taken together, the time-lag scales of the

influence of climatic factors on EOS decreased with an increase in
FIGURE 3

Spatial variation patterns of the monthly total precipitation (PRE), monthly average temperature (TEM), and end of the growing season (EOS) of a
typical steppe in the semi-arid region of China during 2003–2022. (A-C) Spatial variation trends of the PRE in 2003–2022, 2003–2011, and 2011–
2022. (D-F) Spatial variation trends of TEM in 2003–2022, 2003–2011, and 2011–2022, respectively. (G-I) Spatial variation trends of the EOS in
2003–2022, 2003–2011 and 2011–2022.
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PRE. The time-lag scales of the influence of TEM on the EOS lasted

longer, whereas the EOS was mainly influenced by short-

term precipitation.

The spatial distributions of the time-lag maximum partial

correlation coefficients of different pixels demonstrated that the

time-lag effects of PRE and TEM on the EOS during 2003–2022

were mainly positive, and the proportions of pixels were 65.2% and

71.7%, respectively (Figures 5A, D). Among them, the proportion of

significant pixels for the time-lag effect of PRE on EOS (39.2%, P

<0.05) was higher than that for TEM (15.0%, P <0.05) (Figure 6).

Significant pixels were mainly distributed in the eastern part of

Xilinhot. The time-lag effect of PRE on the EOS was mainly negative

(60.8%) during 2003–2011, whereas the time-lag effect of TEM on

the EOS was mainly positive during the same period (67.7%)

(Figures 5B, E, 6). During 2011–2022, the time-lag effects of PRE

and TEM on the EOS were mainly positive, and the proportions of

the pixels were 67.8% and 63.9%, respectively (Figures 5C, F). The

proportion of significant pixels for the time-lag effect of PRE on

EOS (27.2%, P <0.05) was higher than that for TEM (18.3%,

P <0.05) (Figure 6).

Based on the above analysis, the distributions of the time-lag

maximum partial correlation coefficients under PRE and TEM

gradients were further explored (Figure 7). The PRE partial

correlation coefficients were greater than zero for both the entire

study period of 2003–2022 and the subperiod of 2011–2022,

suggesting that the increase in PRE and TEM was conducive to
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the postponement of the EOS under the current TEM and PRE

gradients (Figures 7A-C). In contrast to the above two stages,

during the subperiod 2003–2011, the variations in the partial

correlation coefficient of PRE and TEM were less than zero,

which indicated that under the climate background during this

stage, the increase in PRE and TEM was not conducive to the

postponement of the EOS. The TEM partial correlation coefficients

were greater than zero in the climatic context of all three phases

(Figures 7D-F). Moreover, the TEM partial correlation coefficient

decreased with increasing TEM and increased with increasing PRE,

indicating that excessive TEM was not conducive to the delay or

advancement of the EOS. In general, the results showed that the

time-lag effect of climatic factors on the EOS was related to the

climatic background. Sufficient precipitation is a prerequisite for

temperature to delay EOS.
3.3 Cumulative effects of PRE and TEM on
the EOS

The spatial distributions of the cumulative time scales of the

EOS response to PRE and TEM were analyzed (Figure 8). For PRE

(Figures 8A-C), the cumulative time scales of the response of the

EOS to PRE in the three stages mainly consisted of the 1-month

scale. The proportion of pixels with a 1-month scale exceeded 60%

for both 2003–2022 and 2011–2022, whereas it was below 35%
FIGURE 4

Spatial distributions of the time-lag scales at the end of the growing season EOS response to monthly total precipitation (PRE)and monthly average
temperature (TEM). (A-C) Spatial distributions of the time-lag scales of the EOS response to PRE in each pixel after controlling for TEM for 2003–
2022, 2003–2011, and 2011–2022, respectively. (D-F) Spatial distributions of time-lag scales of the EOS response to PRE in each pixel after
controlling for PRE during 2003–2022, 2003–2011, and 2011–2022.
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during 2003–2011. This indicated that the cumulative effect of PRE

on EOS was enhanced under a warming and drying climate. For

TEM (Figures 8D-F), the cumulative time scales of the EOS

response to TEM during 2003–2022 mainly consisted of 4- and 6-

month scales, which accounted for 50% of the pixels. In terms of
Frontiers in Plant Science 07
different stages, the cumulative time scale of the EOS response to

TEM during 2011–2022 primarily consisted of the 1-month, while

the proportion of pixels with a cumulative time scale greater than 1

month was significantly increased. This demonstrates that the

cumulative effect of TEM on EOS was stronger than that of PRE.
FIGURE 5

Spatial distributions of the time-lag maximum partial correlation coefficient between the end of the growing season (EOS), monthly total
precipitation (PRE), and monthly average temperature (TEM). (A-C) Spatial distributions of the time-lag maximum partial correlation coefficient
between the EOS and PRE after controlling for TEM for 2003–2022, 2003–2011, and 2011–2022, respectively. (D-F) Spatial distributions of the time-
lag maximum partial correlation coefficient between the EOS and TEM after controlling for PRE for 2003–2022, 2003–2011, and 2011–2022,
respectively. + denotes significant correlation. P, N, and S denote the positive, negative, and significant correlations, respectively.
FIGURE 6

Violin plot of the time-lag maximum partial correlation coefficients between the end of the growing season (EOS), monthly total precipitation (PRE),
and monthly average temperature (TEM). The width of each violin plot represents the probability density of partial correlation coefficients at different
values. The figure is related to Figure 5, which shows only the significant pixels (P <0.05).
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The spatial distributions of the maximum cumulative partial

correlation coefficients of the pixels are shown in Figure 9. The

cumulative effects of PRE and TEM on EOS during 2003–2022 were

mainly positive, and the proportion of pixels was 86.3% and 61.6%,

respectively (Figures 9A, D). Among them, the proportion of significant

pixels for the cumulative effect of PRE on EOS (25.5%, P <0.05) was

higher than that of TEM (13.9%, P <0.05) (Figures 9A, D, 10). This

scenario was particularly apparent in the eastern part of Xilinhot. The

proportions of pixels with positive and negative cumulative effects of

PRE on the EOS were similar during the 2003–2011 period, while the

cumulative effect of TEM on the EOS was mainly negative (Figures 9B,

E, 10). The cumulative effects of PRE and TEM on EOS were mainly

positive during the 2011–2022 period, and the proportions of pixels

were 93.7% and 53.7%, respectively (Figures 9C, F). The proportion of

significant pixels for the cumulative effect of PRE (21.5%, P <0.05) on

EOS was higher than that of TEM (9.7%, P <0.05), and the cumulative

effect of PRE was positive (Figure 10). In general, the cumulative effects

of the PRE and TEM on the EOS were altered by the precipitation

regime. The influence of PRE on EOS changed from negative regulation

to positive regulation over time.

Based on the above analysis, the distributions of the cumulative

maximum partial correlation coefficients under PRE and TEM
Frontiers in Plant Science 08
gradients were further explored (Figure 11). The cumulative

partial correlation coefficient of PRE (Figures 11A-C) was greater

than zero during the entire study period of 2003–2022 and the sub-

period of 2011–2022, which indicated that under the current TEM

and PRE gradient, increased PRE and TEM values were conducive

to the delay of the EOS. In contrast to the above two stages, the

partial correlation coefficient of PRE in 2003–2011 shifted from

negative to positive with an increase in PRE, and from positive to

negative with an increase in TEM, which indicated that under the

climate background during this stage, increased PRE before the EOS

was conducive to the delay of the EOS to a certain extent, while

increased TEM was not conducive to the delay of the EOS. The

partial correlation coefficient of TEM (Figures 11D-F) changed

from negative to positive with the increase in PRE during 2003–

2011 and from positive to negative with the increase in TEM, which

was in accordance with the change rule of the PRE partial

correlation coefficient. The partial correlation coefficient of TEM

during 2011–2022 was greater than zero, demonstrating that, under

the current climate background, increased PRE and TEM values

were conducive to the delay of the EOS. In general, the increase in

TEM under the climate background of increased PRE was

conducive to the postponement of EOS.
FIGURE 7

Distributions of time-lag maximum partial correlation coefficients with the gradient of monthly average temperature (TEM) and monthly total
precipitation (PRE). (A-C) Partial correlation coefficients between PRE and end of the growing season (EOS) for 2003–2022, 2003–2011, and 2011–
2022, respectively. (D-F) Partial correlation coefficients between TEM and EOS for 2003–2022, 2003–2011, and 2011–2022. The figure is related to
Figure 5, showing only significant pixels (P <0.05).
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4 Discussion

The EOS did not change significantly over the period of 2003–

2022 for the entire study area. The temporal trends of the EOS

exhibited spatial variability, and the trend in the EOS changed from

an advance to a delay. Therefore, the reversal of the EOS may be

closely related to climate warming and the precipitation regime

shift. The response of vegetation phenology to pre-season

precipitation and temperature exhibits spatial variability in terms

of its intensity and direction (Zhang et al., 2022b), which is

primarily caused by differences in the spatial distribution patterns

of precipitation and temperature (Fu et al., 2020; Ren et al., 2022).

Studies have demonstrated that spatial and temporal patterns of

precipitation and temperature are key factors controlling the spatial

differentiation of grassland vegetation phenology (Ren et al., 2017a).

In addition to climate warming, changes in precipitation patterns

constitute another aspect of climate change (Fu et al., 2020).

Previous reports have shown that changes in precipitation are a

more important factor than temperature in driving shifts in

vegetation phenology in semi-arid regions (Ren and Peichl, 2021;

Currier and Sala, 2022). Pre-season cumulative precipitation has the

greatest positive impact on vegetation in arid and semi-arid regions

(Guo et al., 2021). The results of the current study provide evidence

of the dynamic nature of climatic constraints on the EOS and show

that the influence of precipitation on the EOS has changed from

mainly negative regulation to mainly positive regulation. These
Frontiers in Plant Science 09
findings may provide an approach to improve model performance

by considering shifting dominant factors under changing climatic

conditions (Fu et al., 2020).

The present study found that the pre-season PRE and TEM

were mainly positively correlated with the EOS of typical steppe

vegetation under warming and wetting climate conditions, which is

consistent with previous findings (Liu et al., 2016; Zhang et al.,

2020). This may be attributed to the fact that higher temperatures

enhance the activity of photosynthetic enzymes and slow the

degradation of chlorophyll, thus leading to a delay in EOS

(Richardson et al., 2013; Wu et al., 2018). However, a previous

study found that the EOS of herbaceous plants in the Qinghai–Tibet

Plateau advanced with an increase in precipitation and was more

sensitive to temperature, which was contrary to the results of the

present study (Zhu et al., 2017). This discrepancy may be attributed

to the relatively abundant precipitation and extremely cold

temperatures in high-altitude areas, where temperature is the

limiting factor for alpine grassland growth. In contrast, in the

arid southwestern part of the Tibetan Plateau, increased pre-

season precipitation was found to delay EOS (Shen et al., 2023).

This implies that the climate–phenology relationship varies greatly

in different regions and vegetation types (Cong et al., 2012; Zhang

et al., 2022b) and that the response of vegetation phenology to

climate change is complex and changeable (Ganjurjav et al., 2016;

Yuan et al., 2020b; Bevacqua et al., 2022). Thus, the present results

suggest that a delayed trend in the EOS of typical grasslands is likely
FIGURE 8

Spatial distributions of the cumulative time scales of the response at the end of the growing season (EOS) to monthly total precipitation (PRE) and
monthly average temperature (TEM). (A-C) Spatial distributions of the cumulative time scales of the impact of PRE on the EOS after controlling for
TEM for 2003–2022, 2003–2011, and 2011–2022, respectively. (D-F) Spatial distributions of the cumulative time scales of the impact of TEM on EOS
after controlling for PRE for 2003–2022, 2003–2011, and 2011–2022, respectively.
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if precipitation thresholds are reached earlier. Therefore, as climatic

conditions under climate change shift from warming and drying

conditions to warming and wetting conditions, the precipitation

and temperature thresholds that trigger the inversion of the EOS

deserve further study.
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In this study, both PRE and TEM had a strong time lag and

cumulative effect on the EOS of typical steppe vegetation in the semi-

arid study region. The time lag and cumulative time scales were

mainly concentrated at the pre-season 1-month scale, indicating that

the EOS of typical steppe vegetation in the semi-arid region
FIGURE 9

Spatial distributions of the cumulative maximum partial correlation coefficients between the end of the growing season (EOS) and monthly total
precipitation (PRE) and monthly average temperature (TEM). (A-C) Spatial distributions of the cumulative maximum partial correlation coefficients
between EOS and PRE after controlling for TEM for 2003–2022, 2003–2011, and 2011–2022, respectively. (D-F) Spatial distributions of the
cumulative maximum partial correlation coefficients between the EOS and TEM after controlling for PRE for 2003–2022, 2003–2011, and 2011–
2022, respectively. + denotes significant correlation. P, N, and S denote the positive, negative, and significant correlations, respectively.
FIGURE 10

Violin plot of the cumulative maximum partial correlation coefficients between the end of the growing season (EOS), monthly total precipitation
(PRE), and monthly average temperature (TEM). The width of each violin plot represents the probability density of the partial correlation coefficients
at different values. The figure is related to Figure 9, which shows only the significant pixels (P <0.05).
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responded quickly to hydrothermal factors. A previous study showed

that the climatic factors 1 month before the EOS were most closely

related to the EOS on the Qinghai–Tibet Plateau (Liu et al., 2021),

which was consistent with the results of the present study. In

addition, the proportion of pixels with time lag and cumulative

effects of TEM on the EOS above the 1-month time scale was

greater than that for PRE, further implying that the EOS responded

more strongly to short-term precipitation than to temperature, which

was inconsistent with a previous report (He et al., 2023). The present

study demonstrated that with increasing precipitation, the time-lag

scale of PRE and TEM on the EOS was shortened, indicating that

increased PRE weakened the time-lag effect of hydrothermal factors

on the EOS. In addition, with an increase in the PRE, the response of

the EOS to TEM gradually increased. A previous study also found

that the temperature sensitivity of the EOS in temperate steppe

increased with an increase in precipitation (Yang et al., 2014).

Research has shown that, under sufficient water and nutrient

conditions, temperature is the dominant factor in delaying the EOS

of vegetation (Fu et al., 2018b). In other words, temperature triggers

changes in vegetation phenology only when water requirements are

met (Ren et al., 2022). Therefore, water availability regulates the

sensitivity of EOS to temperature. The novelty of the present study
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lies in the observation that the regulatory effects of PRE and TEM on

EOS change with changing climatic conditions.

The time lag and cumulative effects of PRE and TEM on the

EOS of typical steppe grasslands in the semi-arid region of China

demonstrated that pre-season climatic factors have a strongly

influenced on the EOS. This study provides a unique perspective

for assessing the PRE and TEM control of phenology, and believed

the findings imply that climatic context plays a key role in the EOS

in response of the EOS to PRE and TEM. The intensity and

direction of the influence of climate driving factors on EOS

exhibited spatiotemporal differences (Yuan et al., 2020a). In areas

with insufficient precipitation, an increase in temperature leads to

enhanced the increase of surface evaporation, which may be the

reason for the advancement of the EOS in these areas (Fu et al.,

2018a). In contrast, increased precipitation can improve the

hydrothermal conditions and delay the EOS (Ma et al., 2023).

Warming or drying of the climate may change alter the

phenological patterns and species composition of ecosystems

(Zhu et al., 2016). The present study found that different climatic

backgrounds led to inconsistent time lags and cumulative effects in

the EOS response of the EOS to hydrothermal factors. Under the

warming and drying conditions, the partial correlation coefficient of
FIGURE 11

Distributions of the cumulative maximum partial correlation coefficients with the gradient of monthly average temperature (TEM) and monthly total
precipitation (PRE). (A-C) Partial correlation coefficients between PRE and the end of the growing season (EOS) for 2003–2022, 2003–2011, and
2011–2022, respectively. (D-F) Partial correlation coefficients between TEM and EOS for 2003–2022, 2003–2011, and 2011–2022. The figure is
related to Figure 9, showing only significant pixels (P <0.05).
frontiersin.org

https://doi.org/10.3389/fpls.2024.1483452
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Liu et al. 10.3389/fpls.2024.1483452
the PRE with the gradient of the TEM and PRE was less than zero,

indicating that the increased of PRE in the climatic background was

not conducive to the delay of the EOS under these conditions. This

resultat may be due to the climatic background of the less lower

moisture availability in the summer (July), and the increased PRE

enhanced increase of soil moisture, thereby promoting vegetation to

promote photosynthesis of vegetation, which prompted the EOS to

advance. This mechanism is an adaptive measure for plants to cope

with climate change. The time-lag partial correlation coefficients of

TEM were greater than zero during 2003–2011 and decreased and

increased with increasing TEM and PRE, respectively. In other

words, as the TEM gradually increased TEM, the tendency of TEM

to delay the EOS was weakened, which may be related to the

drought stress caused by warming (He et al., 2021), further

negatively affecting impacting vegetation productivity (Sharma

et al., 2016). The time-lag partial correlation coefficients of PRE

and TEM were greater than zero during 2011–2022, which

indicated that under the warming and wetting climate, increases

in PRE and TEM were conducive to the delay of the EOS. This

finding provides further evidence that increased precipitation,

rather than warming, significantly delays EOS in the semi-arid

study region.
5 Conclusion

This study examined the spatial and temporal characteristics of

the time lag and cumulative effects of PRE and TEM on EOS in the

semi-arid region during 2003–2022. The results reflect the

important role of the climate background in regulating the

response of the EOS to TEM and PRE. The time-lag scales of the

EOS response to PRE and TEM were shortened as the climate

shifted from warm and dry conditions to warm and wet conditions.

Moreover, the time-lag effect of PRE on the EOS changed from

negative (60.8%) for 2003–2011 to positive (67.8%) during 2011–

2022, indicating that the time-lag effect of hydrothermal factors on

the EOS changed with climate background. The cumulative time

scale of the PRE to the EOS was concentrated within the 1-month

(65%) scale during 2011–2022. The proportion of pixels with

cumulative time scales for TEM to the EOS of greater than 1

month was greater than that for PRE during the subperiod of 2011–

2022, indicating that the EOS was highly sensitive to short-term

precipitation. Under a warming and drying background during

2003–2011, the cumulative partial correlation coefficients of PRE

and TEM changed from positive to negative with a decrease in PRE

and an increase in TEM, respectively. In addition, the increase in

TEM was conducive to the postponement of the EOS under a

warming and wetting background during 2011–2022. The change in

the primary drivers of the EOS was chiefly attributed to significant

increases in pre-season precipitation. Increased precipitation is a
Frontiers in Plant Science 12
prerequisite for increasing temperature to delay EOS. These results

provide an important reference for the construction of vegetation

phenology models.
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