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Northeast China (NEC) is the major production area for soybeans in China,

whereas its soybean germplasm has played key roles in world soybean

production, especially in the Americas. For plant breeding, genomic selection

involves two stages, cross design and progeny selection, with the former

determining the latter’s potential. In NEC, one of the major breeding purposes

is for 100-seed weight (100SW) and seed oil content (SOC). A diverse sample with

361 NEC soybean germplasm accessions was evaluated for their 100SW and SOC

in Tieling, Liaoning, China. Both traits exhibited significant phenotypic, genotypic,

and G × E variation, with a trait heritability of 82.38% and 86.26%, respectively. A

restricted two-stage multi-locus genome-wide association study (RTM-GWAS)

with 15,501 SNPLDB (SNP linkage disequilibrium block) markers identified 80 and

92 QTLs with 230 and 299 alleles for 100SW and SOC, respectively.

Corresponding to some increase of the two traits, almost all the alleles in the

early maturity groups (MG 0 + 00 + 000) were inherited from the late MGs (MG I

+II+III), indicating that genetic recombination was the major motivator in

addition to a few allele emergence and some allele exclusion fluctuations

among early MGs. Using the 95th percentile as indicator, the prediction of
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recombination potentials showed that 30.43 g 100SW and 27.73% SOC might be

achieved, respectively. Three strategies of simultaneous genomic improvement

of both traits in designing optimal crosses, namely, 100SW-first, SOC-first, and

100SW-SOC-balance, were proved to be efficient. Thus, the optimal cross design

could be extended to multiple traits based on a relatively thorough identification

of the QTL-alleles using RTM-GWAS.
KEYWORDS

Northeast China soybean germplasm population (NECSGP), 100-seed weight (100SW),
seed oil content (SOC), RTM-GWAS, recombination potential prediction, simultaneous
genomic cross design for traits, evolutionary dynamics
1 Introduction

Northeast China (NEC) is the major production area for

soybeans, with its yield and acreage accounting for approximately

50% in China. Liu et al. (2020) showed that soybeans in North and

South America were genetically clustered in the same group with

those from NEC, and the germplasm from NEC is the primary

source for soybeans in the world’s largest production regions.

Therefore, exploring the genetic basis of NEC soybean germplasm

is essential for global soybean production (Fu et al., 2020a). During

the long period of artificial selection and improvement in soybean,

the seed size (expressed as 100-seed weight or 100SW), seed oil

content (SOC), and seed protein content (SPC) increased, but there

was a negative correlation between oil and protein contents (Guo

et al., 2022; Li et al., 2022; Ray et al., 2022). Compared with soybeans

in central and southern China, soybeans in NEC have relatively

smaller 100SW but higher SOC; thus, one of the major breeding

purposes is for increased 100SW and SOC.

Marker-assisted selection (MAS) has been proven as an effective

method for precise plant breeding (Collard and Mackill, 2008).

Through identifying genomic markers related to breeding targets,

MAS improves breeding efficiency by applying directly genotypic

selection in addition to phenotypic selection. Furthermore, the

concept of “breeding by design” was proposed based on

quantitative trait locus (QTL) and gene mapping, aiming to

improve breeding efficiency by designing optimal genotypes and

parental combinations (Peleman and van der Voort, 2003).

However, breeding by design is usually applicable for the

selection of a handful of major genes. Meanwhile, genomic

selection (GS) was also proposed to improve breeding efficiency

by predicting breeding values in offspring population using whole-

genome markers without the need for QTL/gene mapping

(Meuwissen et al., 2001). GS firstly establishes a statistical model

between phenotype and genome-wide markers in a training or

reference population (generally germplasm population) where both

phenotype and genotype data are available and then predicts

breeding values as a comprehensive evaluation for all target traits

in breeding populations using genome-wide markers based on an
02
established model. In fact, both breeding by design and GS are

special cases of MAS in comprehensive selection for multiple traits.

Following the “breeding by design” concept, QTL-allele-based GS

was also proposed as a potential approach to both optimal crosses

and superior progenies based on the whole-genome QTL-allele

system, and is in fact a direct genotype selection method (He et al.,

2017). Anyway, simultaneous improvement of multiple traits using

QTL-allele-based GS in plant breeding needs to be further explored

and practiced.

Both 100SW and SOC are quantitatively inherited traits

controlled by a number of genes with varying effects. At least 297

and 315 QTLs have been reported at SoyBase (https://

www.soybase.org) for 100SW and SOC in soybean, respectively.

These QTLs were detected mainly from bi-parental populations

using the linkage mapping method with many ones located in

overlapping regions. However, among these, only 13 and 16 QTLs

of 100SW and SOC were recognized as confirmed QTLs,

respectively (Fasoula et al., 2004; Nichols et al., 2006; Pathan

et al., 2013). There were also a handful of genes conferring the

two traits, which have been cloned. For example, a wild soybean

allele simultaneously conferring 100SW, seed protein, and oil

content was mapped to a 329-kb region on chromosome 15, with

Glyma.15g049200 as their common candidate gene (Yang et al.,

2019). The causative gene SW16.1 underlying a 100SW QTL

qSW16.1 was identified and encoded as a nucleus-localized LIM

domain-containing protein (Chen et al., 2023). However, the

underlying genes for most of the detected QTLs still need to be

further identified; in particular, the complete gene systems of

100SW and SOC QTLs need to be explored for a thorough

genetic design.

The linkage mapping for QTL detection involves only two

parental lines, such as the recombinant inbred line (RIL)

population, in which the genetic variation is limited between the

two parents. The genome-wide association study (GWAS) for the

natural/germplasm population provides a broad background to

genome-wide QTL identification (Hong et al., 2023; Khatun et al.,

2022; Ren et al., 2022; Ullah Zaid et al., 2018) and was widely used

in soybean for QTL identification (Li et al., 2017; Zhang et al., 2018;
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Su et al., 2023). The GWAS on over 12,000 soybean accessions

identified 18 and 19 QTLs for SOC and SPC, respectively (Bandillo

et al., 2015). Based on 809 soybean accessions worldwide, GWAS

identified 245 QTLs of 84 agronomic traits (Fang et al., 2017).

Hwang et al. (2014) identified 25 and 40 SOC and SPC loci in 298

soybean germplasm accessions, respectively. The GWAS also

provided an efficient method for mining the underlying genes

conferring quantitative trait variation. A sucrose efflux transporter

gene, GmSWEET39, controlling SOC was identified using GWAS

(Miao et al., 2020). A pair of SWEET homologs, GmSWEET10a and

GmSWEET10b, were identified simultaneously conferring 100SW,

SOC, and SPC during soybean domestication (Wang S. et al., 2020).

Generally, only a handful of major QTLs were detected in

individual GWAS, whereas their multiple alleles in germplasm

populations were neglected. To improve the GWAS efficiency, the

restricted two-stage multi-locus genome-wide association analysis

(RTM-GWAS) was proposed for a relatively thorough detection of

whole-genome QTLs with their multiple alleles (He et al., 2017).

Two innovative techniques in RTM-GWAS were taken. One

method uses SNPLDB (SNP linkage disequilibrium block)

markers with multiple haplotypes to meet the requirements of

multiple alleles in the natural population. The other method

controls the total contribution within heritability value based on

two-stage GWAS with the first stage under a single-locus model for

marker pre-selection and the second stage of stepwise regression

under a multi-locus model with forward addition and backward

elimination. RTM-GWAS was used in QTL-allele detection for

100SW and SOC in 366 soybean landraces (Zhang et al., 2015,

2018). Firstly, 116,769 single-nucleotide polymorphism (SNP)

markers were used to form 29,121 SNPLDBs. Then, 55 and 50

QTLs with 263 and 136 alleles were detected based on SNPLDBs for

100SW and SOC, respectively. The detected QTL-allele matrix was

used in studies for evolutionary motivators and breeding potentials

of the respective trait.

Conventional crossbreeding has been the major procedure for

genetic improvement in soybean. It consists of two major steps: the

first is to design optimal crosses based on germplasm or breeding

materials, and the second is to select the best progenies in

segregating generations. Optimal cross design determines the

potential of progeny selection and is the key to breakthrough

breeding. An approach of GS based on the QTL-allele matrix was

proposed for optimal cross design (He et al., 2017; He and Gai,

2020) and has been applied to soybean breeding (Khan et al., 2018;

Wang W. et al., 2020; Fahim et al., 2021; Wang et al., 2021). For

example, 1,803 optimal crosses were predicted for high SPC in the

NEC soybean germplasm population (NECSGP), and the

maximum of predicted SPC was 50.00% with a transgressive

potential of 3.93% improvement (Feng et al., 2022).

However, previous studies on cross design based on GWAS-

identified QTL-allele results focused on genetic improvement of a

single trait. Since breeding programs involve multiple traits, it is

essentially appropriate to consider multiple traits simultaneously in

designing optimal crosses. In this study, the representative sample

of the NECSGP (Feng et al., 2022) was studied to identify the

100SW and SOC QTL-allele systems expressed in NEC using the

RTM-GWAS procedure, to characterize the genetic systems and
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motivators of the two traits in the evolutionary process from the

southern part to the northern part of NEC, and to predict the

recombination potential or to design optimal crosses for the

simultaneous improvement of the two traits in the NECSGP

using 100SW-first, SOC-first, and 100SW-SOC-balance strategies,

respectively. This optimal cross design method could be extended to

multiple traits based on a relatively thorough identification of the

QTLs and their alleles of the traits.
2 Materials and methods

2.1 Plant materials and field experiments

As described previously (Feng et al., 2022), a total of 361

soybean accessions from the NEC were used in this study. These

accessions involve six soybean maturity groups, namely, III, II, I,

0, 00, and 000 (Fu et al., 2020a). Accessions in MG III matured

later, whereas accessions in MG 000 matured earlier. Field

experiments were performed at Tieling, Liaoning in 2013–2014.

All accessions were grouped into six blocks according to maturity

group and were planted using the “blocks in replication” design

with four replications. Normal field management including weed

control and fertilization was used. The matured seeds were

harvested and dried under 35–40°C. The 100SW (g) was

measured on 100 randomly selected seeds, and the SOC was

determined by the near-infrared grain analyzer Infratec 1241

(FOSS, Hilleroed, Denmark).
2.2 Statistical analysis

Statistical analysis was performed using the SAS Studio

software through SAS OnDemand for Academics (https://

welcome.oda.sas.com/). Joint analysis of variance (ANOVA) was

conducted using the PROC GLM procedure, while the variance

components were calculated using PROC VARCOMP in which

genotype, environment, replication within environment, and

genotype × environment were considered as random effects. The

heritability (h2) was estimated as h2 = s 2
ɡ=(s 2

ɡ + s 2=r) for the single

environments and h2 = s 2
ɡ=(s 2

ɡ + s 2
ɡt=t + s 2=tr) for the combined

data over multiple environments, where s 2
ɡ , s 2

ɡt   and s 2 are

variance of the genotype, genotype × environment, and random

error; t is the number of environments; and r is the number of

replications (Hanson et al., 1956).
2.3 Genotyping and haplotype block
marker construction

The genotype data of the 361 accessions were obtained from Fu

et al. (2020a). Whole-genome sequencing of the accessions were

carried out using RAD-seq (restriction-site associated DNA

sequencing) at BGI Tech, Shenzhen, China. The genomic DNA

was isolated from the young leaves of soybean seedlings according

to the conventional CTAB method (Murray and Thompson, 1980).
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Paired-end sequencing was conducted on an Illumina HiSeq2000

platform through the multiplexed shotgun genotyping method

(Andolfatto et al., 2011). All sequence reads were aligned against

the genome of Williams 82 using the SOAP2 software (Li et al.,

2009; Schmutz et al., 2010). RealSFS (Yi et al., 2010) was utilized to

detect SNP loci, which were filtered with a maximum missing and

heterozygous allele call rate of ≤20% and a minimum minor allele

frequency (MAF) of ≥1%. The fastPHASE software (Scheet and

Stephens, 2006) was used for genotyping the SNP imputation

resulting in 82,966 high-quality SNPs. The SNPs after quality

control were grouped into 15,501 SNPLDBs based on the LD

threshold of D’ ≥0.7 according to He et al. (2017), while

haplotypes were treated as alleles of a QTL.
2.4 Detection of the QTL-allele system and
the establishment of matrix/sub-matrices

The RTM-GWAS software (https://gitee.com/njau-sri/rtm-

gwas) was used to detect the QTL-allele system of 100SW and

SOC in the NECSGP. The genetic similarity between accessions was

estimated based on genome-wide SNPLDBs, and the top 10

eigenvectors of the genetic similarity coefficient matrix were used

as the covariates to correct the population structure bias. A

threshold of p = 0.05 was used at the first stage of RTM-GWAS

for candidate marker preselection, and a significance level of p =

0.05 was used for QTL detection through stepwise regression at the

second stage of RTM-GWAS. The detected QTLs (associated

SNPLDBs) with their allele effects for each accession were used to

establish the QTL-allele matrix, which was further separated into

maturity group sub-matrices for further analysis on

evolutionary motivators.
2.5 Candidate gene annotation

The candidate genes for 100SW and SOC from the detected

QTLs were annotated through the following steps: (1) the genes of

soybean genome Wm82.a1.v1.1 within the genomic interval of a

detected QTL (with a 50-kb flanking expansion) were retrieved

from SoyBase (https://www.soybase.org); (2) the independence of

SNP(s) between an identified SNPLDB and gene(s) within the

genomic interval was statistically tested using the chi-square

criterion at a significance level of 0.05; and (3) the Gene Ontology

(GO) annotations of significantly correlated genes were retrieved

from SoyBase (https://www.soybase.org).
2.6 Recombination potential prediction
and optimal cross design

All possible 64,980 crosses (361×360/2) were generated in silico.

For each cross, the genotype data of 2,000 homozygous progenies

were simulated through continuous selfing starting from F2
generation under the linkage model, where the number of

crossovers on each chromosome was simulated randomly
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according to the Poisson distribution with chromosome length as

a parameter. The predicted genotypic values of each progeny were

calculated as the sum of all allele effects plus the population mean

(He et al., 2017). Different percentiles of the progeny population

were calculated and used as the predicted recombination potential.

The cross program (https://gitee.com/njau-sri/cross) was used for

simulation. In addition, the crosses were also grouped according to

maturity groups, then the recombination potential within and

among maturity groups was also analyzed.

Three strategies were proposed in this study for two-trait

optimal cross design of soybean with both high 100SW and SOC.

In the first strategy (designated 100SW-first), the top 100 crosses

with the highest recombination potential for 100SW were selected

firstly, and then the top 10 crosses with the highest recombination

potential for SOC were selected from the 100 crosses. In the second

strategy (designated SOC-first), the top 100 crosses with the highest

recombination potential for SOC were selected firstly, and then the

top 10 crosses with the highest recombination potential for 100SW

were selected from the 100 crosses. The third strategy (designated

100SW-SOC-balance) involved balanced selection for 100SW and

SOC; firstly, all possible crosses were arranged in descending order

according to the recombination potential for 100SW and SOC,

respectively, and then the top 10 most common crosses were

selected from the top 2,000 100SW and SOC crosses.
3 Results

3.1 Variation of 100SW and SOC in
the NECSGP

The joint ANOVA over 2 years indicated that the 100SW and

SOC varied both significantly among accessions (genotypes), as well

as their genotype × environment interactions (GEI, Supplementary

Table 1) in the NECSGP. However, the estimated GEI variances

were relatively small compared to the genotypic variance, indicating

that the interaction between genotype and environment (year) was

weak for the two traits in the NECSGP. Both 100SW and SOC

exhibited higher heritability values over two environments, 82.46%

and 86.34, respectively. The 100SW in the NECSGP ranged from

9.00 to 27.20 g across 2 years, with an average of 18.37 g (Table 1;

Figure 1A), which was not as wide as that in the Chinese soybean

landrace population (CSLP, ranging from 4.59 to 40.35 g in Zhang

et al., 2015). The SOC in the NECSGP ranged from 18.80% to

24.85% across 2 years, with an average of 22.45% (Table 1;

Figure 1E), which was similar to the CSLP (ranging from 14.95%

to 26.42%) in Zhang et al. (2018). The genetic coefficient of

variation (GCV) of SOC varied relatively less (4.12%) than that of

100SW (11.77%) (Table 1). The above results indicate that the

variability of 100SW and SOC in the NECSGP is not better than

those of CSLP; the improvement of the two traits needs to explore

their recombination potential.

There were some variations of 100SW and SOC among different

maturity groups in the NECSGP, but the major difference was

within maturity groups. Overall, the 100SW and SOC in the late

maturity groups (MG I+II, except for III for the former, and MG II
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+III, except for I for the latter) were smaller than those in early

maturity groups (MG 000 + 00 + 0) (Supplementary Table 2). This

suggested that both 100SW and SOC had been genetically improved

in the NECSGP when adapting to high latitude with days to

maturity shortened.

The top 10 100SW accessions (F67, F326, F406, F147, F58,

P004, P085, F36, P188, and F315 in descending order) ranged from

25.16 to 23.05 g (average for 2 years), with their SOC ranging from

22.60% to 20.38%. On the other hand, the top 10 SOC accessions

(F82, F386, F135, F79, F32, F155, F53, F305, F306, and F351 in

descending order) ranged from 24.73% to 24.09% (average for 2

years), with their 100SW ranging from 21.04% to 15.64%. No

accession had both the highest 100SW and the highest SOC in

the NECSGP. The correlation analysis showed that 100SW and

SOC did not exhibit a significant Pearson correlation coefficient (r =

0.008, p = 0.8722), suggesting that simultaneous improvement of

seed size and oil content might be possible in the NECSGP. To

effectively improve both 100SW and SOC in soybean breeding, a

thorough detection of the whole-genome QTL-allele constitution

for these two traits is an essential requirement.
3.2 Genome-wide detection of 100SW and
SOC QTL-allele systems in the NECSGP

As described previously in Feng et al. (2022), a total of 15,501

SNPLDBs were constructed from 82,966 SNPs in a RAD-seq

procedure in the NECSGP. In the first stage of RTM-GWAS

under the single-locus model, 8,272 and 8,863 out of 15,501

SNPLDBs were preselected for 100SW and SOC, respectively. In

the second stage under the multi-locus model, 80 and 92 QTLs were

detected for 100SW and SOC, respectively (Figures 1B, C, F, G).

For 100SW, 80 QTLs were identified (Supplementary Table 3;

Figure 1D). These QTLs were distributed on 19 chromosomes

except for chromosome 16, with seven QTLs located on

chromosome 13 being the highest. Among the 80 QTLs, 42 had

the main effect only, 8 QTLs had the QEI effect only, and 30 QTLs
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had both the main effect and QEI effect. The phenotypic

contribution of the 72 QTLs with a significant main effect varied

continuously from 0.06% to 6.58% in a total of 54.11% phenotypic

variation (Table 2). The 16 large-contribution QTLs (main effect R2

≥1%, around the inflection point of the phenotypic contribution

curve) explained 34.60% phenotypic variation, and 56 small-

contribution QTLs (main effect R2 <1%) explained 19.51%

phenotypic variation. A total of 230 alleles were identified on the

80 QTLs, with the number of alleles per QTL ranging from 2 to 8,

and 27 QTLs had at least 3 alleles (Figure 1I).

For SOC, 92 QTLs were identified (Supplementary Table 4;

Figure 1H). These QTLs were distributed on all 20 chromosomes,

with 10 QTLs on chromosome 9 being the highest. Among the 92

QTLs, 38 had the main effect only, 10 QTLs had only the QEI effect,

and 44 QTLs had both the main effect and QEI effect. Thus, 82

QTLs had significant main effects that varied continuously from

0.04% to 4.70% in a total of 70.07% phenotypic variation. The 25

large-contribution QTLs explained 53.10% and 57 small-

contribution QTLs explained 16.96% phenotypic variation

(Table 2). There were 299 alleles on the 92 QTLs, with the

number of alleles per QTL ranging from 2 to 8, and 38 QTLs

with 3 or more alleles (Figure 1J).

The allele effect of main effect QTLs ranged from −4.53 to 3.00 g for

100SW and from −1.79 to 1.75% for SOC (Figures 1I, J). The 72 and 82

main effect QTLs and their allele effects for each of the 361 accessions

were organized as a QTL-allele matrix, respectively (Figures 2A, B), a

compact form of the genetic constitution of the two traits in the

NECSGP. In addition, the QTL-allele matrix was further separated into

sub-matrices corresponding to the six maturity groups for comparisons

and evolutionary changes of 100SW and SOC among maturity groups.

The QTL-allele constitution of the top 10 accessions of the

highest 100SW and SOC is shown in Figures 2C, D, respectively.

These accessions contained many alleles of negative effects on most

QTLs, indicating large improvement potential for both 100SW

and SOC.

In the following text, the focus will be on the main effect QTL-

allele matrices, while the GEI matrices will be left for future analysis,
TABLE 1 The distribution and descriptive statistics of 100-seed weight and seed oil content in the NECSGP.

Trait Year Midpoint N Mean Range
GCV
(%)

h2

(%)

100SW
(g)

9.0 10.5 12.0 13.5 15.0 16.5 18.0 19.5 21.0 22.5 24.0 25.5 27.0

2013 1 1 1 2 8 57 90 83 66 30 14 6 2 361 19.31 9.18–27.20 12.50 87.08

2014 1 1 2 22 45 107 86 55 27 10 5 361 17.44 9.00–24.63 13.06 79.67

Mean 1 1 0 5 22 87 97 84 38 18 7 1 361 18.37 9.09–25.16 11.77 82.38

SOC
(%)

19.0 19.5 20.0 20.5 21.0 21.5 22.0 22.5 23.0 23.5 24.0 24.5 25.0

2013 1 5 7 21 16 38 60 64 74 46 21 7 1 361 22.39 18.80–24.75 4.79 92.41

2014 2 1 12 15 37 58 88 70 42 27 4 1 357 22.52 19.55–24.85 3.99 92.25

Mean 1 0 3 15 16 37 71 78 62 59 13 6 361 22.45 19.21–24.73 4.12 86.26
frontie
100SW, 100-seed weight; SOC, seed oil content. N, the number of accessions. GCV, the genetic coefficient of variation defined as genetic standard deviation divided by phenotype mean. h2, trait
heritability. The SOC was evaluated with the near-infrared grain analyzer Infratec 1241 (FOSS, Hilleroed, Denmark), and its value might be inflated at some degree. However, all the evaluation of
SOC was kept under the same environment and comparable.
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as the environment factor of year varied not definitely

but randomly.
3.3 Annotation of the candidate gene
system of 100SW and SOC in the NECSGP

Among the detected 100SW QTLs, 87 genes were annotated

from 37 QTLs, while no candidate genes were annotated

for the remaining 43 QTLs, according to SoyBase (https://

www.soybase.org). These 87 genes were distributed on 17

chromosomes, excluding Gm01, Gm08, and Gm16. Similarly, 132

genes were annotated from 40 SOC QTLs, while no candidate genes

were annotated for the remaining 52 SOC QTLs. These 132 genes

were distributed on 16 chromosomes, excluding Gm01, Gm05,

Gm08, and Gm16. GO annotations indicated that these genes

involved cellular components, molecular functions, and biological

processes, especially the latter, including 16 function groups

(Figure 1K). This suggested that the candidate gene systems of

the two traits involved multiple different groups of functions. The

QTL qSW-11-2 with the highest explained phenotypic contribution

to 100SW (R2 = 6.58) had nine associated genes, among which

Glyma11g12120 (vacuolar proton ATPase A3) and Glyma11g12230

(clathrin adaptor complexes medium subunit family protein) were

highly expressed in soybean pod and seed (SoyBase, http://

www.soybase.org). In the SOC QTL qSOC-18-2 with the highest

explained phenotypic variation (R2 = 4.7%), three genes were

annotated including Glyma18g03450, a HAD superfamily

phosphatase highly expressed in soybean pod and seed. In

addition, based on the gene models for which there was a

significant change of gene expression in seed developmental

stages (Severin et al., 2010), three genes (Glyma09g25490,

Glyma10g05580 , and Glyma13g36780) and four genes

(Glyma07g32050 , Glyma09g32980 , Glyma11g10600 , and

Glyma19g42380) were identified from the annotated genes for
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100SW and SOC, respectively. In particular, two genes,

Glyma09g32980 and Glyma11g10600, were annotated from two

large-contribution SOC QTLs (qSOC-9-8 with R2 = 4.07 and

qSOC-11-1 with R2 = 3.87). These findings provide insights into

the genetic architecture underlying 100SW and SOC and highlight

specific genes that may be important for these traits.
3.4 Genetic differentiation of QTL-allele
from late to early maturity groups

During the evolutionary process from the late (MG I+II+III)

to early (MG 0 + 00 + 000) maturity groups, all 225 alleles for

100SW and 292 out of 294 alleles for SOC were retained (Table 3),

suggesting that inheritance or migration was the major genetic

dynamics for these two traits. Seven positive effect alleles emerged

in the early maturity groups for 100SW. Two negative and three

positive alleles emerged, and one negative and one positive allele

were excluded in the early maturity groups for SOC. Between MG

0 + 00 + 000 and MG I+II+III, only a few allele changes happened

for the two traits. However, the QTL-allele structure of both

100SW and SOC exhibited genetic fluctuation among the three

early maturity groups, particularly with a large number of

excluded alleles. Among the early maturity groups, MG 000

inherited only 156 100SW alleles and 186 SOC alleles from the

late maturity groups (MG I+II+III), with 30% (69/225) of the

100SW alleles and 37% (108/294) of the SOC alleles excluded,

while newly emerged alleles increased very little. In this case, for

the two major genetic dynamics, allele emergence was quite

limited whereas allele exclusion fluctuated; therefore, genetic

recombination among alleles on different QTLs might play

an important role in generating phenotypic variation

among maturity groups. This might be the major genetic basis

of the predicted transgressive optimal crosses with linkage

obstacles deleted.
TABLE 2 Summary of the QTL-allele system for 100-seed weight and seed oil content in the NECSGP.

QTL-allele

100-seed weight Seed oil content

Main effect QTL×Year Main effect QTL×Year

QTL (R2, %) 54.11 (72, 0.06–6.58) 7.34 (38, 0.08–0.53) 70.06 (82,0.04–4.70) 9.08 (54, 0.03–0.75)

LC QTL (R2, %) 34.60 (16, 1.05–6.58) 53.10 (25, 1.02–4.70)

SC QTL (R2, %) 19.51 (56, 0.06–0.95) 7.34 (38, 0.08–0.53) 16.96 (57, 0.04–0.97) 9.08 (54, 0.03–0.75)

Unmapped QTL (R2, %) 28.35 0.58 16.28 0.27

Heritability (h2, %) 82.46 7.92 86.34 9.35

Total allele 232 (–4.53–3.00) 464 (–1.75–1.75) 299 (–1.79–1.75) 598 (–1.11–1.11)

Positive allele 121 (0.00–3.00) 232 (0.00–1.75) 161 (0.00–1.75) 299 (0.00–1.11)

Negative allele 111 (–4.53–0.04) 232 (–1.75–0.00) 138 (–1.79–0.00) 299 (–1.11–0.00)
Main effect: main-effect QTL. QTL×Year: QTL by Year interaction. R2: phenotypic variation explained. LC QTL: large-contribution QTL (R2 ≥ 1%). SC QTL: small-contribution QTL (R2 < 1%).
In parentheses of QTL rows, the first number is the number of identified QTLs, followed by a range of single QTL contributions to phenotypic variance. In parentheses of allele rows is the range of
single allele effects.
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3.5 Optimal cross design for the
improvement of individual and
simultaneous improvement of 100SW
and SOC in the NECSGP

The genetic recombination potential for 100SW and SOC in the

NECSGP was predicted based on their respective QTL-allele matrix.
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As the breeding target is high 100SW or SOC, the 95th percentile of

predicted 100SW or SOC in the progeny population was used as an

indicator for the recombination potential of a parental cross in the

NECSGP. As shown in Table 4 and Figures 2E, F, the transgressive

potential of the progenies for all possible 64,980 crosses among the

361 accessions was predicted for the respective traits in the

NECSGP. For 100SW, the average recombination potential was
FIGURE 1

QTL-allele detection for 100-seed weight and seed oil content in the NECSGP. (A–D) Genome-wide association study of 100-seed weight:
histogram of phenotype data (A), Manhattan plot (B) and quantile–quantile plot (C) of marker p-values, and phenotypic contribution (R2) of the
main-effect QTLs in ascending order (D) with blue color for small-contribution QTL (R2 < 1%) and red color for large-contribution QTL (R2

≥ 1%).
(E–H) Genome-wide association study of seed oil content: histogram of phenotype data (E), Manhattan plot (F) and quantile–quantile plot (G) of
marker p-values, and phenotypic contribution (R2) of the main-effect QTLs in ascending order (H) with blue color for small-contribution QTL
(R2 < 1%) and red color for large-contribution QTL (R2

≥ 1%). (I) Allele effects of main-effect QTLs for 100SW. (J) Allele effects of main-effect QTLs
for SOC. (K) Candidate gene annotation for 100SW and SOC QTLs.
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21.62 g, reaching a maximum of 30.42 g. This surpassed the

observed 100SW in the NECSGP, which had a mean of 18.37 g

and a maximum of 25.16 g, leading to a maximum improvement.

Similarly, the average recombination potential for SOC was 24.42%,
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reaching a maximum of 27.73%, surpassing the observed average

(22.45%) and maximum (24.73%) in the NECSGP.

Among the top 100 optimal crosses out of the 64,980 ones for

100SW, 13 crosses had both parents from the top 10 100SW
FIGURE 2

QTL-allele matrix and recombination potential of 100-seed weight and seed oil content in the NECSGP. (A) Graphical representation of the QTL-
allele matrix of 100SW. The horizontal axis represents accessions, while the vertical axis represents QTL arranged in a rising order of their positive
allele frequency. Each row represents the allele distribution among accessions for a QTL, while each column indicates the allele constitution of an
accession over all QTLs. Allele effects are expressed in color cells with warm colors indicating positive effects and cool colors indicating negative
effects, and the color depth indicates effect size. (B) Graphical representation of the QTL-allele matrix of SOC. (C) The QTL-allele matrix of 100SW
for the 20 best accessions. (D) The QTL-allele matrix of SOC for the 20 best accessions. (E) Distribution of predicted 100SW of progenies in all
possible crosses, with the maximum and minimum (upper and lower horizontal dotted lines). (F) Distribution of predicted SOC of progenies in all
possible crosses, with the maximum and minimum (upper and lower horizontal dotted lines). (G) Graphical representation of the QTL-allele matrix of
100SW for the top 10 optimal crosses (1–10 in Supplementary Table 5) each with P1, P2, and the best progeny. (H) Graphical representation of the
QTL-allele matrix of SOC for the top 10 optimal crosses (1–10 in Supplementary Table 6) each with P1, P2, and the best progeny.
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accessions, and 52 crosses had only one parent from the top 10

100SW accessions (Supplementary Table 5; Figure 2G). There were

35 crosses that did not include any of the top 10 100SW accession.

Similarly, among the top 100 optimal crosses for SOC, there were 14

crosses with both parents from the top 10 SOC accessions, and 48

crosses with only one parent from the top 10 SOC accessions

(Supplementary Table 6; Figure 2H). Additionally, 38 crosses did

not involve any of the top 10 SOC accessions. Even some were
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involved with the top ones, but not ranking in the front position.

This indicated that the top 10 accessions might play an important

role in breeding for 100SW and SOC, but a breakthrough

improvement may not be readily achieved through crossing the

best accessions only. On the other hand, the best predicted cross for

SOC had its parent without any of the top 10 SOC accessions. This

indicated that complementary potential lay in specific pairs of the

accessions, not necessarily in only the best accessions of the
TABLE 4 Predicted 95th percentile of 100SW and SOC of all possible crosses in/between maturity groups in the NECSGP.

Maturity group N
100-seed weight (g) Seed oil content (%)

Min. Max. Mean Min. Max. Mean

Entire 64,980 15.76 30.43 21.62 21.32 27.73 24.20

I+II+III 10,153 16.03 29.54 21.21 21.32 27.14 23.94

0 + 00 + 000 23,653 16.72 28.57 21.84 21.81 27.12 24.35

0 12,246 16.48 29.52 21.68 22.07 27.12 24.37

00 990 17.48 27.74 22.38 22.16 26.44 24.39

000 120 18.89 26.31 21.90 22.44 25.07 23.93

0 + 00 + 000 vs. I+II+III 31,174 15.76 30.43 21.59 21.54 27.73 24.17

0 vs. I+II+III 22,451 15.98 30.43 21.49 21.54 27.42 24.18

00 vs. I+II+III 6,435 15.76 29.99 21.89 22.16 27.73 24.21

000 vs. I+II+III 2,288 17.52 29.27 21.67 21.78 26.73 23.98

0 vs.00 7,065 16.58 28.87 22.04 21.99 27.10 24.40

0 vs. 000 2,512 17.66 28.62 21.79 21.81 26.41 24.16

00 vs. 000 720 18.08 27.93 22.11 22.12 26.42 24.15
N: The number of crosses. SD, standard deviation. The predicted phenotypic value for each cross was defined as the 95th percentile of the predicted progeny. 0 + 00 + 000 vs. I+II+III means
crosses between 0 + 00 + 000 and I+II+III, and the same is true for the others.
TABLE 3 The QTL-allele changes of 100 seed weight and seed oil content among maturity groups.

Trait

Maturity
group

Total Inherent Emerged Excluded

Contrast Allele QTL Allele QTL Allele QTL Allele QTL

100SW I+II+III 225 (111,114) 80

0 vs. I+II+III 226 (109,117) 80 219 (109,110) 80 7 (0,7) 7 6 (2,4) 6

00 vs. I+II+III 196 (92,104) 80 190 (92,98) 80 6 (0,6) 6 35 (19,16) 27

000 vs. I+II+III 156 (72,84) 80 156 (72,84) 80 0 (0,0) 0 69 (39,30) 52

0 + 00 + 000 vs.
I+II+III

232 (111,121) 80 225 (111,114) 80 7 (0,7) 7 0 (0,0) 0

SOC I+II+III 294 (136,158) 92

0 vs. I+II+III 293 (133,160) 92 288 (131,157) 92 5 (2,3) 4 6 (5,1) 5

00 vs. I+II+III 239 (97,142) 92 235 (96,139) 92 4 (1,3) 4 59 (40,19) 51

000 vs. I+II+III 188 (81,107) 92 186 (81,105) 92 2 (0,2) 2 108 (55,53) 74

0 + 00 + 000 vs.
I+II+III

297 (137,160) 92 292 (135,157) 92 5 (2,3) 4 2 (1,1) 2
100SW, 100-seed weight; SOC, seed oil content. The number outside parentheses is the total of alleles; the numbers in parentheses are the number of negative effect alleles and positive effect
alleles, respectively. Inherent allele means alleles passed from the compared maturity group(s); Emerged allele means the alleles new to the compared maturity group(s); Excluded allele means the
alleles excluded in the maturity group(s).
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NECSGP. Therefore, evaluation of each accession’s QTL-allele

constitution for finding the best complementary potential pairs is

necessary in a germplasm/breeding population. In other words, for

100SW and SOC in the NECSGP, “specific combining ability” or

“specific recombination potential” is more important.

Although there were significant differences in 100SW and SOC

among different maturity groups, the predicted recombination

potentials within MG I+II+III, MG 0 + 00 + 000, and MG 0

differed slightly from others with the 95th maximum percentile of

100SW being more than 28.57 g and that of SOC being more than

27.12%. Those between MG 0 + 00 + 000 and MG I+II+III, MG 0

and MG I+II+III, MG 00 and MG I+II+III, and MG 000 and MG I

+II+III showed more recombination potential than the others with

the 95th maximum percentile of 100SW being more than 29.99 g

and that of SOC being more than 27.73%. It means that crosses

from different MGs, especially those crossed with the late MGs (MG

I+II+III), might have more potential in 100SW and SOC due to a

broader genetic background while the crosses between the early

maturity groups have less potential due to a narrowed genetic

background (Table 4).

To design optimal crosses for the simultaneous improvement of

100SW and SOC, three strategies were applied. Firstly, sequential

selection was applied to screen optimal crosses for simultaneous

improvement in 100SW and SOC. Taking 100SW as the priority,

the top 10 crosses with the highest SOC were selected from the 100

optimal crosses for 100SW, and marked as 100SW-first crosses for

simultaneous improvement in 100SW and SOC (Table 5). The

recombination potential of the top 10 100SW-first crosses ranged

from 27.96 to 30.33 g for 100SW while that of SOC ranged from

24.79% to 25.82%. On the other hand, taking SOC as the priority,

the top 10 crosses with the highest 100SW were selected from the

100 optimal crosses for SOC, and marked as the SOC-first crosses

for simultaneous improvement in 100SW and SOC. The

recombination potential of the top 10 SOC-first crosses ranged

from 26.60% to 27.11% while that of 100SW ranged from 22.55 to

24.07 g. As for the 100SW-SOC-balance strategy, the top 10 joint

crosses were selected by lining up all the predicted crosses in

descending order for 100SW and SOC, respectively. The top 10

common crosses from both sides were marked as the 100SW-SOC-

balance crosses for simultaneous improvement of 100SW and SOC.

Its predicted recombination potential ranged from 25.48 to 26.29 g

for 100SW and from 25.95% to 26.12% for SOC.
4 Discussion

4.1 Relative completeness and
comparability in dissecting the QTL-allele
systems of 100SW and SOC in the NECSGP
through RTM-GWAS

A thorough detection of all QTLs and their multiple alleles is the

key to efficient utilization of superior genes–alleles in the

germplasm population in plant breeding. In this study, the QTL-

allele system of 100SW and SOC in the NECSGP was detected using
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the RTM-GWAS procedure. A large amount of the genetic variation

of these two seed traits was explained by the detected QTLs, both

large- and small-contribution QTLs, as well as their alleles. Many

QTLs had a phenotype contribution of less than R2 < 1%, but

altogether explained 19.51% and 16.96% phenotypic variation for

100SW and SOC in the NECSGP, respectively. Despite the high

efficiency of RTM-GWAS in whole-genome QTL-allele detection,

there were still unmapped genetic variations (28.27% and 16.54%

for 100SW and SOC, respectively) that remained to be explored

through further improvement of experiment resolution. The QTLs

with a significant interaction effect with the environment were also

detected in this study, but the phenotypic variation explained by the

QTL × environment interaction (QEI) was relatively smaller than

the main effect QTL. This may be due to the variability of the

random environment factor (different years) in this study.

For comparison of QTLs detected in this study with previous

studies, the worldwide information of 310 and 325 QTLs of 100SW

and SOC at SoyBase (https://www.soybase.org) was retrieved,

respectively. A total of 106 and 131 QTLs with a supporting

interval of less than two centimorgans were used for comparisons

with 23 and 32 QTLs overlapping to previously reported 100-SW

and SOC QTLs, respectively. Previous results were mainly obtained

from bi-parental populations using linkage mapping under different

environments, whereas the present study utilized the NECSGP in

association mapping under a uniform environment. Consequently,

the identified QTL-allele system of 100SW and SOC should be

relatively more comprehensive and comparable in NEC. This may

be more relevant to the genetic operation of the QTL-allele systems

in breeding for cultivars fitting the requirements under the

environmental conditions of NEC, to design the optimal crosses

in the present study.

From the above, the relative completeness and comparability in

dissecting the QTL-allele systems of 100SW and SOC in the

NECSGP are mainly through RTM-GWAS. This is due to the

large germplasm population with broad genetic variation and the

increased efficiency with two innovative procedures as indicated in

the Introduction section.
4.2 Genome-wide QTL-allele dissection of
a germplasm or breeding population helps
the optimal utilization of
complementary alleles

Recombination breeding is based on the QTL-allele or gene-

allele dissection of the breeding or germplasm population, for which

the establishment of a QTL-allele matrix through RTM-GWAS

provided a promising approach to realize the breeders’ targets.

Previously, the breeders usually design their crosses based on the

phenotypic values of their parental lines. Now, based on the

identification of the genome-wide QTL-allele or gene-allele

system, the breeders can design crosses genetically. However,

sometimes the geneticists consider only individual genes with

their alleles while the breeders have to consider the whole QTL-

allele or gene-allele system because they do not want to leave
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TABLE 5 Optimal crosses selected for simultaneous improvement of 100SW and SOC in the NECSGP.

Strategy Order
P1 P2

Predicted
progeny

ID MG 100SW SOC ID MG 100SW SOC 100SW SOC

100SW-first 1 F32 0 20.94 24.31 F35 III 20.78 20.98 28.11 25.82

2 F406 0 24.15 22.60 P087 I 21.84 23.70 28.35 25.28

3 F229 0 20.54 21.95 F364 0 19.89 22.98 28.33 25.00

4 F35 III 20.78 20.98 F49 0 20.45 23.06 28.09 24.98

5 F326 III 24.28 20.38 P087 I 21.84 23.70 28.23 24.98

6 F58 0 23.84 22.60 P087 I 21.84 23.70 27.97 24.86

7 F28 0 21.56 23.41 F35 III 20.78 20.98 27.96 24.85

8 F49 0 20.45 23.06 F67 III 25.16 21.00 28.19 24.82

9 F312 0 22.78 23.06 F35 III 20.78 20.98 28.64 24.80

10 F326 III 24.28 20.38 F364 0 19.89 22.98 30.33 24.79

Mean 28.42 25.02

SOC-first 1 F386 0 19.34 24.54 F49 0 20.45 23.06 24.07 26.80

2 F386 0 19.34 24.54 F79 0 21.04 24.33 23.77 26.77

3 F32 0 20.94 24.31 F386 0 19.34 24.54 23.48 26.91

4 F32 0 20.94 24.31 F343 II 18.84 23.45 23.46 27.11

5 F305 0 17.46 24.16 F32 0 20.94 24.31 23.24 26.60

6 F306 0 17.83 24.10 F32 0 20.94 24.31 23.14 26.69

7 F140 0 18.29 23.88 F79 0 21.04 24.33 22.91 26.65

8 F109 II 17.29 24.00 F313 0 22.18 23.05 22.84 26.62

9 F244 0 20.21 23.70 F343 II 18.84 23.45 22.73 26.71

10 F343 II 18.84 23.45 F386 0 19.34 24.54 22.55 26.93

Mean 23.22 26.78

100SW-SOC-
balance

1 F309 0 22.66 23.33 F386 0 19.34 24.54 25.51 26.12

2 F197 0 20.05 22.51 F32 0 20.94 24.31 25.48 26.09

3 F53 0 20.58 24.19 F087 I 21.84 23.7 25.54 26.07

4 F109 II 17.29 24.00 F35 III 20.78 20.98 25.45 26.07

5 F140 0 18.29 23.88 F309 0 22.66 23.33 25.70 26.05

6 F344 II 16.29 24.01 F364 0 19.89 22.98 25.63 25.99

7 F109 II 17.29 24.00 F364 0 19.89 22.98 25.49 25.96

8 F32 0 20.94 24.31 P087 I 21.84 23.70 26.29 25.95

9 F306 0 17.83 24.10 P087 I 21.84 23.70 25.54 25.95

10 F140 0 18.29 23.88 F35 III 20.78 20.98 25.96 25.95

Mean 25.66 26.02
F
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P1, P2, parents 1 and 2 of a cross; ID, accession name; MG, maturity group; 100SW, 100-seed weight (g); SOC, seed oil content (%); 100SW- and SOC-first, the top 10 optimal crosses selected
from the 95% percentile of offspring of 100SW and SOC. 100SW-SOC-balance, the predicted respective 100SW and SOC crosses were arranged in descending order, and the top 10 joint crosses
from both sides were selected as the best crosses for balanced 100SW and SOC. The parental accessions in boldface are the top 10 100SW accessions, i;e., F67, F326, F406, F147, F58, P004, P085,
F36, P188, and F315 in descending order, and those in italic boldface are the top 10 SOC accessions, i;e;, F82, F386, F135, F79, F32, F155, F53, F305, F306, and F351 in descending order in
the NECSGP.
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inferior ones in a cultivar’s genetic background, especially for

complex traits.

In Table 5, Supplementary Tables 5 and 6, the optimal crosses

for single traits and two simultaneous traits are selected with the top

10 parents for each of the two traits marked. Not many predicted

crosses with their two parents located in the top 10 accessions for

each trait in the NECSGP; only a portion of predicted crosses have

one parent located in the top 10 accessions for each trait in the

NECSGP; even many predicted crosses do not have their one parent

from the top 10 accessions for each trait in the NECSGP. This

means that the complementary alleles scattered in different parental

accessions. This further emphasizes the importance of whole-

genome dissection for the utilization of the whole-genome

complementary potential.

In addition, in the evolution from late to early maturity groups,

allele emergence was quite limited whereas allele exclusion was

fluctuating; this fact also supports that the evolutionary changes

may be caused by the release of complementary potential due to

many recombinations in history that generate phenotypic variations

among maturity groups.
4.3 Genomic selection for multi-trait
optimal cross design

The breeding by design concept was proposed for designing

optimal crosses and selecting superior progeny, in which detecting

the QTLs and their alleles was its prerequisite (Peleman and van der

Voort, 2003). Breeding by design provided a basic framework for

pyramiding a few major genes. Since a quantitative trait is generally

controlled by numerous QTLs or genes, plant breeding

breakthrough should involve in fact most QTLs and their alleles,

including both large and small effect loci. Therefore, the germplasm

population rather than the bi-parental population should be studied

for a relatively thorough detection of the QTL-allele system. In this

study, computer simulation was used to generate the progeny

genotype, and the progeny genotypic value was predicted using

the QTL-allele matrix. Then, optimal crosses can be selected based

on progeny phenotype distribution (e.g., the 95th percentile). This

in silico work is efficient and could not be done in the field because

of the impossible large scale. The QEI QTL-allele data set can also

be organized into a matrix if it is needed (Fu et al., 2020b). However,

the environmental factor in the present study varied randomly, and

no fixed environmental parameter was available to provide useful

information in breeding for quantitative traits. Therefore, the QEI

information was not used in the present analysis.

In this study, 100SW and SOC were simultaneously considered

for optimal cross design. Since tight linkage between loci may exist,

the two traits cannot be improved independently to achieve an ideal

situation. To address this challenge, this study proposed three types

of optimal crosses for the simultaneous improvement of 100SW and

SOC in the NECSGP. The 100SW-first optimal crosses prioritized

improving 100SW as the primary focus, with SOC being considered

as the secondary objective. In contrast, the SOC-first optimal

crosses focused on SOC at first and then 100SW. In addition,

100SW-SOC-balance optimal crosses focused not on the extreme
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value of one trait, but the best overall. Instead of separately focusing

on the extreme values of one trait, this study aimed to also identify

optimal crosses that would result in the best overall improvement of

both 100SW and SOC. Here, the top 2,000 crosses were used for

ordering in each trait. It depends on the number cases, and 2,000

crosses for each trait are enough in this study. Based on these three

types of optimal crosses, this study presented a preliminary attempt

at multi-trait cross design in the NECSGP. The improvement of

100SW and SOC responding to the three simultaneous selection

strategies may raise both traits’ levels, but different from each other.

The researchers can choose their preferred one based on their

requirements. For example, the SOC-first strategy may be

considered because SOC is economically more important than

100SW. In addition, the method can be extended to simultaneous

selection for more traits. However, it is important to note that the

methods based on a composite selection index may offer more

sophisticated approaches for multi-trait selection in breeding.

The concept of GS using genome-wide markers was introduced

as a method of predicting breeding values of a group of traits. This

approach, proposed by Meuwissen et al. (2001), aimed to leverage the

information provided by the entire genome rather than focusing on

specific loci of some specific traits, especially in animal breeding. In

classical GS, it is assumed that all markers across the genome have

effects on the trait of interest. These effects are then estimated using a

reference or training population, which serves as the basis for

establishing a prediction model. By considering the collective

influence of multiple markers, GS offers the potential to capture the

polygenic nature of many complex traits. However, it is important to

note that genetic mechanisms governing different quantitative traits

can vary significantly. The complexity of these mechanisms can also

differ, making it challenging to apply a uniform approach to all traits.

Therefore, it becomes crucial to consider the specific characteristics of

the trait under consideration when implementing GS.

The use of QTL-allele matrices allows for a more targeted and

tailored approach to GS. By focusing on the specific alleles

associated with QTLs, breeders can gain insights into the genetic

basis of the trait and make informed decisions regarding optimal

crosses. This approach acknowledges the unique characteristics and

complexities of different quantitative traits, offering a more suitable

framework for designing breeding strategies in plants. Therefore,

genome-wide breeding by design in fact is the GS based on the

genome-wide QTL-allele (or gene-allele) matrix, which should be

more appropriate in designing optimal crosses in plants.
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