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The genotype × environment interaction is one of the effective factors in

identifying and introducing cultivars with stable grain yield in different

environments. There are many statistical methods for estimating genotype ×

environment interaction, among which AMMI and GGE-biplot analyses provide

better and more interpretable results. The objective of this study was to assess

the genotype × environment interaction, as well as the adaptability and stability of

40 quinoa genotypes. The experiment was carried out in a randomized complete

block design with three replications in eight environments (four locations of Iran

and two years). The AMMI analysis of variance showed that the main effects of

genotype and environment, as well as the interaction effect of genotype ×

environment were significant on grain yield. Separation of genotype ×

environment interaction based on the principal component method showed

that the first six principal components were significant and accounted for 47.6%,

22.5%, 9%, 7%, 6% and 4.3% of the genotype × environment interaction variance,

respectively. Based on the AMMI model, genotypes G16, G19, G35, G30, G39,

G24, and G18 were identified as high-yielding and stable genotypes with high

general adaptability. In contrast, genotypes G36, G27, G38, G9, G28, G29, G23,

G34, G13, and G12 were the most unstable genotypes in the studied

environments. In GGE-biplot analysis, two mega-environments were identified,

and genotypes G16, G19, G25, and G17 were also identified as high-yielding and

stable genotypes for these environments. Also, based on the biplot diagram of

the ideal genotype, genotypes G16, G19, G17, and G35 were the nearest

genotypes to the ideal genotype. In total, the results of various analyses

showed that the three genotypes G16 and G19 were the superior genotypes of

this experiment in terms of grain yield and stability. These genotypes can be

introduced as high-yielding and stable genotypes to the climatic conditions of

the studied areas.
KEYWORDS

grain yield, ideal genotype, mega-environment, genotype × environment interaction,
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1 Introduction

Quinoa (Chenopodium quinoa Willd.) is a crop plant from the

Amaranthaceae family. The origin of this crop is the Andes regions

in Bolivia, Chile and Peru (Stanschewski et al., 2021). Quinoa is a

self-pollinated plant, but some cultivars may show cross-pollination

of about 4-20% (Anchico-Jojoa et al., 2023). Quinoa can grow in

hard and stressful conditions such as salinity and drought stresses

(Anchico et al., 2020; Manjarres-Hernández et al., 2021). The grain

yield of quinoa cultivars varies between 2.2-9.8 tons per hectare

(Vásquez et al., 2024). Different cultivars have different stem

diameter, plant height, and grain length and diameter (Manjarres-

Hernández et al., 2021). The growth and development of quinoa is

strongly influenced by day length and photoperiod, so that its

growth period in different cultivars and environmental conditions is

approximately 90-240 days (Apaza et al., 2015; González

et al., 2015).

The main product of quinoa is its grain, which is called

vegetable caviar because of its high nutritional value (Ng and

Wang, 2021). Quinoa grains have a lower sodium content but

higher levels of calcium, magnesium, potassium, iron, manganese,

and zinc compared to common cereals such as wheat, barley, and

maize (Singh, 2019; Ayas ̧an, 2020; Thiam et al., 2021; Abdelshafy

et al., 2024). Quinoa contains 9.1-15.7 grams of protein, 4-7.6 grams

of fat, and 8.8-14.1 grams of fiber per 100 grams of fresh weight

(Nowak et al., 2016). In addition to quinoa grains, young quinoa

leaves can be used as a fresh and cooked vegetable (Pathan et al.,

2019). Therefore, due to the nutritional value and high production

potential of quinoa, attention to this crop plant has increased

worldwide to sustainably replace the nutrition of the growing

world population (Gómez et al., 2021; Mohamed Ahmed

et al., 2021).

Climate changes in the world along with drying and salinization

of the soils have caused many problems such as the loss of large

parts of suitable agricultural soils and, finally, the migration of

farmers and villagers to the cities. Quinoa is a very valuable crop

plant in terms of tolerance to many environmental stresses,

including drought and salinity. It can be cultivated in hard

conditions and may be able to solve a significant part of these

problems. Since different quinoa varieties have a very different

range of tolerance, from sensitive to resistance to environmental

stresses, it is necessary to investigate their adaptability and stability

under different environmental conditions and to identify and

introduce compatible and stable varieties to each environment

(Ruiz et al., 2014; Bazile et al., 2015).

Genotype × environment interaction is of particular importance

for plant breeding researchers and one of the complex issues of

breeding programs to identify high-yielding and stable genotypes

(Dessie et al., 2020; Teressa et al., 2021). Evaluation of genotype ×

environment interaction is necessary to introduce genotypes with

higher average grain yield and lower fluctuations (stable) in

different environments (Tariku et al., 2013; Bocianowski et al.,

2019). Powerful methods are needed to investigate genotype ×

environment interaction and determine the stability of genotypes.

There are many different methods, including univariate and

multivariate methods, to evaluate the stability of genotypes, which
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one or more methods can be used according to the experimental

conditions. Among all stability analysis methods, it seems that two

multivariate methods, additive main effects and multiplicative

interactions or AMMI (Crossa et al., 1991; Gauch, 2006), and

genotype plus genotype by environment interaction or GGE-

biplot (Yan, 2001; Yan et al., 2010) are better and more successful

methods to identify high-yielding and stable genotypes.

Kempton (1984) was the first researcher to use the AMMI

model to analyze grain yield data. The AMMI method is a

combination of analysis of variance and principal components

analysis, in which analysis of variance is used to determine the

main effects of genotype and environment, and principal

components analysis is used to determine interaction effects. This

analysis is an effective method to investigate the stability of

genotypes in different environments because it calculates a large

part of the sum of squares of the genotype × environment

interaction and separates the main and interaction effects (Gauch,

2006). Considering that the effect of the environment is very large in

most cases and cannot be used, removing the effect of environment

and focusing on the main and genotype × environment interaction

effects can be important (Yan and Kang, 2002; Gauch, 2006).

Among the multivariate stability methods, the GGE-biplot

graphical method, which is based on principal component

analysis, is also a very useful tool for evaluating the role of

genotypes, environments, and their interaction. To evaluate the

stability of genotypes in this method, the effects of genotype and

genotype × environment interaction are used to obtain more

reliable results (Yan and Kang, 2002; Yan et al., 2007). The

presence of different graphs in this method allows a better

interpretation of the results, so that, it is possible to identify

genotypes with higher grain yield and general stability for all

environments, genotypes with specific stability for each of the

target environments, and the best environments using the GGE-

biplot tool (Yan and Kang, 2002; Yan et al., 2007; da Silva

et al., 2021).

Many researchers have used AMMI and GGE-biplot methods

to investigate the adaptability and stability of cultivars and

genotypes in quinoa (Ali et al., 2018; Thiam et al., 2021; Al-

Naggar et al., 2022; Anchico-Jojoa et al., 2023), maize (Al-Naggar

et al., 2021; Patel et al., 2023; Greveniotis et al., 2023a), wheat

(Mohamed et al., 2022; Omrani et al., 2022; Gupta et al., 2023), rice

(Hasan et al., 2022; Abebe et al., 2023) and sorghum (Al-Naggar

et al., 2018a, b). Ali et al. (2018) used univariate and multivariate

methods to evaluate the stability of five quinoa genotypes in ten

different environments in Egypt during two crop years, 2016 and

2017. They reported that the stability parameters and AMMI

method were similar in identifying stable genotypes. Thiam et al.

(2021) used the AMMI method to evaluate the stability of 14 quinoa

genotypes in five different environments in Morocco, and classified

the genotypes into three groups, stable, relatively stable and

unstable. Al-Naggar et al. (2022) studied the stability and

adaptability of 37 quinoa genotypes in 12 environments under

different nitrogen fertilizer sources and level conditions in Egypt.

They reported that the results obtained from both AMMI and GGE-

biplot methods were different and each method introduced three

different genotypes as stable and adaptable genotypes. Anchico-
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Jojoa et al. (2023) reported a significant difference between

environments, genotypes, and genotype × environment

interaction using the AMMI method to evaluate the stability and

adaptability of eight quinoa genotypes in Brazil and Colombia

during 2018 and 2019 and introduced four quinoa genotypes with

high grain yield and general adaptability.

A few studies have been conducted in Iran on the adaptability

and stability of quinoa. Bagheri et al. (2021) studied the stability and

adaptability of ten different quinoa genotypes in four environments

in cold and temperate locations of Iran during the 2017 and 2018

crop years, and introduced the stable and adaptable genotypes using

the AMMI method. Also, Etaati et al. (2023) evaluated the

adaptability and stability of ten quinoa genotypes in different

locations of Iran using different parametric and non-parametric

methods , and ident ified a high-y ie ld ing , s table and

adaptable genotype.

Iran is a vast country located in the Asian continent and in the

Middle East region and has a very diverse climate but with an

average annual temperature of 17.6°C and an average rainfall of 266

mm (Abbasi et al., 2019), it is generally classified as a hot and dry

climate. Therefore, it will be successful to cultivate plants that can
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tolerate the hard conditions caused by drought and heat stresses in

most regions of Iran. It seems that the cultivation of quinoa as a

valuable crop, especially in terms of tolerance to environmental

stresses such as drought, can be successful in these conditions.

Quinoa is a new crop plant in Iran, and suitable genotypes for

different locations have not been introduced. The objective of the

current study was to identify high-yielding and stable genotypes for

the study regions, as well as to compare multivariate AMMI and

GGE-biplot methods and introduce the best method for identifying

stable and high-yielding genotypes.
2 Materials and methods

2.1 Plant materials and
experimental locations

The plant materials of this study were 40 quinoa genotypes

originating from Peru, Chile and Bolivia (Table 1). All genotypes

were obtained from the IPK Gene Bank, Leibniz Institute of Plant

Genetics and Crop Plant Research, Germany. The experiment was
TABLE 1 Quinoa genotypes studied in this research.

Row Genotype
ID

(Code)
Origin

Seed
color

Altitude
(m)

Row Genotype
ID

(Code)
Origin

Seed
color

Altitude
(m)

1 CHEN67 D2190 Peru Brown 3000 21 CHEN167 D9346 Chile Yellow 2600

2 CHEN68 D2191 Peru
Golden-
brown

3030 22 CHEN171 D9350 Chile Bright-white 2500

3 CHEN71 D2196 Chile Light brown 2500 23 CHEN172 D9351 Peru White 3000

4 CHEN83 D2194 Bolivia Bright-white 3800 24 CHEN179 D9358 Chile White 2700

5 CHEN84 D2195 Bolivia White 3870 25 CHEN182 D9392 Peru White 3200

6 CHEN89 D5078 Bolivia Bright 3700 26 CHEN205 D9416 Chile White 2600

7 CHEN90 D5079 Chile White 2800 27 CHEN206 D9417 Chile Golden 2800

8 CHEN91 D5081 Bolivia Golden 3800 28 CHEN207 D9418 Chile Bright 2700

9 CHEN115 D9316 Bolivia White 3870 29 CHEN209 D9420 Chile Bright-white 2900

10 CHEN119 D9319 Bolivia
Whitish-
yellow

3800 30 CHEN210 D9421 Chile White 2900

11 CHEN121 D9336 Chile Yellow 2900 31 CHEN212 D9426 Chile Golden 3000

12 CHEN123 D9428 Peru White 3200 32 CHEN214 D9429 Peru White 3100

13 CHEN126 D9339 Peru Bright 3150 33 CHEN215 D9730 Peru Bright 2800

14 CHEN128 D9320 Chile
Whitish-
yellow

2600 34 CHEN216 D9431 Peru White 3150

15 CHEN133 D9361 Bolivia Yellow 3850 35 CHEN217 D9432 Chile Bright 2500

16 CHEN146 D9374 Bolivia Bright-white 3860 36 CHEN218 D9434 Chile
Whitish-
yellow

2600

17 CHEN151 D9382 Chile White 3000 37 CHEN220 D9439 Peru Yellow 3000

18 CHEN154 D9385 Peru White 3100 38 CHEN223 D9442 Chile Bright-white 2700

19 CHEN156 D9390 Chile Golden 2700 39 CHEN225 D9443 Peru White 3200

20 CHEN159 D9376 Bolivia Brown 3770 40 CHEN255 D9502 Chile White 2900
fro
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carried out in a randomized complete block design (RCBD) with

three replications in four locations (Buin Zahra and Takestan in

Qazvin province, and Kuhdasht and Poldokhtar in Lorestan

province, Iran), during 2022-2023 and 2023-2024 cropping years.

The geographical and climatic characteristics of the experimental

locations are presented in Table 2.

To provide suitable moisture for plowing as well as to stimulate

the germination and emergence of weed seeds buried in the soil for

better control of weeds, the experimental field was irrigated twice

before tillage. After irrigation and reaching soil moisture to the field

capacity, field preparation including plowing, discing, and leveling

was performed. The physical and chemical characteristics of the

experimental soil are presented in Table 3. Before planting and at

the same time of plowing, 50, 100 and 65 kg.ha-1 of N, P and K were

used from the CH4N2O, P2O5 and K2O sources, respectively.

Moreover, 50 kg.ha−1 of urea fertilizer was used as a topdress at

two stages: half in the 6-8 leaf stage and the other half before the

flowering stage. The seeds of all genotypes in all four locations and

in both years, were planted on April 10. The length and width of the

experimental plots were 5 and 3 m and the distance between the

rows and between plants on the rows were 50 and 25 cm,

respectively (Bazile et al., 2016). A sprinkler irrigation system was

used to irrigate quinoa plants. The first irrigation was done after

sowing the genotypes, the second and third irrigation were set 4

days apart, while subsequent irrigation was scheduled between 7

and 15 days later. Soil moisture was monitored using tensiometers,

and irrigation was applied when moisture levels fell below 60-80%

of field capacity. The irrigation schedule was adjusted based on

seasonal rainfall and key growth stages, such as germination,

flowering, and seed filling, to enhance crop resilience and

maximize yield. Moreover, weeds were manually removed for the

entire growing season to keep the soil bare. To control pests,

especially the Caradina armyworm (Spodoptera exigua), two liters

per hectare of Cypermethrin 40% insecticide were used in two

stages before the flowering phase. Harvesting was done at the full

maturity of the grains. To measure the grain yield, all plants of each

plot after removing the border effect were harvested, and the weight

of grains was calculated in kg.ha-1.
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2.2 Data analysis

AMMI and GGE-biplot methods were used to investigate the

stability of the grain yield of genotypes. In the AMMI method, the

main effects of genotypes (G) and environments (E) as well as G×E

interaction were separated based on the following statistical model

(Equation 1) as described by Gauch (1988):

Yij = μ + gi + ej +op
n=1lndinhjn + qij + eij (1)

Where Yij is the grain yield of the ith genotype in the jth

environment, μ is the total mean, gi is the main effect of the

genotype, ej is the main effect of the environment, Ln is the

singular value of the nth principal component, din is the eigen

vector score for the ith genotype of the nth principal component of

the G×E interaction, ɳjn is the eigenvector score for the jth

environment of the nth principal component of the G×E

interaction,Qij is the residual effect and eij is the experimental error.

The F-test is used to check the significance of the sources of

variation, assuming normality and independence of the linear

model. Because the AMMI model is a reduction model and the

eigen values do not have the chi-square distribution, it is necessary

to use corrected F-tests. Therefore, the significance tests of G×E

interaction components were performed using the FR or Cornelius

test based on the Equation 2 (Cornelius et al., 1992):

FR =
SSGEI −on

k=1l̂
2

fs2
(2)

Where SSGEI is the sum of squares of the G×E interaction,

on
k=1l̂

2 is the sum of squares of the nth principal component, f is

the Cornelius degree of freedom (Equation 3), and S2 is the error

mean square.

f = ðg� 1�mÞðe� 1�mÞ (3)

In this formula, g is the number of genotypes, e is the number of

environment and m is the number of main components. FR or

Cornelius test was performed based on IML procedure in SAS

software (SAS Institute, 2017).
TABLE 2 Geographical location, elevation and soil chemical analysis for the experimental plots (Source: I.R. of Iran Meteorological Organization
(https://ndc.irimo.ir/far/wd/4641%D8%A8%D8%A7%D8%B1%D8%B4.html).

Location Year
Spring temperature (°C)

Summer temperature
(°C)

Solar Radiation
(h)

Rainfall (mm) Longitude Latitude Elevations (m)

Min Max Average Min Max Average Spring Summer

Buin Zahra
2022 10.1 25.0 17.5 17.3 34.5 25.9 779.6 1051.4 241.9 50°4´E 35°46´N 1210

2023 11.9 26.1 19.0 17.3 34.5 25.9 900.4 1084.5 224.4

Takestan
2022 9.2 23.3 16.3 16.5 32.6 24.5 761.1 1081.2 269.2 46°42´E 36°4´N 1265

2023 11.0 24.4 17.7 16.4 32.2 24.3 866.2 1034.0 272.8

Kuhdasht
2022 9.6 29.0 19.3 17.8 35.2 26.5 797.2 1091.3 454.6 47°39´E 33°31´N 1197

2023 9.9 29.3 19.6 18.2 36.4 27.3 834.3 1105.3 405.4

Poldokhtar
2022 19.9 33.6 26.8 24.1 38.3 31.2 847.4 1149.7 368.7 47°43´E 33°9´N 714

2023 18.3 32.9 25.6 21.2 38.6 29.9 934.5 1203.1 443.5
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AMMI stability value (ASV) was calculated using the Equation

4 (Purchase et al., 2000):

ASVi =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½SSIPCA1
SSIPCA2

ðIPCA1 ScoreÞ2 + ðIPCA1 Score)2�
s

(4)

Where IPCA1 and IPCA2 scores are the values of the first and

second interaction principal components for each genotype, and

SSIPCA1 and SSIPCA2 are the sum of squares of the first and second

interaction principal components, respectively.

In the AMMI method, a distribution diagram of genotypes and

environments is drawn based on the average grain yield and the first

principal component score (AMMI1 biplot) to identify stable and

high-yielding genotypes. Additionally, a diagram resulting from the

scores of the first two principal components is drawn to identify

stable genotypes in all environments and to identify unstable

genotypes (Gauch, 1988).

The GGE-biplot method, which is actually a type of principal

component analysis for the sum of the main effect of genotype and

the interaction effect of G×E, and uses the singular value

decomposition (SVD), was performed based on the following

statistical model (Yan, 2001):

Yij = μ + ej + l1di1h1j + l2di2h2j + eij (5)

In Equation 5, Yij is the grain yield of the ith genotype in the jth

environment, μ is the total mean, ej is the main effect of

environment, L1 and L2 are the singular values of the first two

principal components, PC1 and PC2, respectively, di1 and di2 are the
eigen vectors of the ith genotype for PC1 and PC2, respectively, ɳ1j
and ɳ2j are the eigen vectors of the jth environment for PC1 and

PC2, respectively, and eij is the residual value that cannot be

explained by G×E interaction effect.

In the GGE-biplot method, theWhich-Won-Where diagram was

drawn to identify mega-environments and stable genotypes in each

mega-environment. The GGE-biplot vector view was drawn to study

the relationships between the studied environments. The GGE-biplot

mean versus stability diagram was drawn to compare the studied

genotypes with ideal genotypes, and the environment ranking pattern

was drawn to compare the studied environments with the ideal

environment. Using the graphs obtained from the GGE-biplot, the

best environment, the best genotype for each environment, and the

general stable genotype with higher grain yield for all environments

were identified (da Silva et al., 2021). Stability analysis based on both

AMMI and GGE-biplot methods was performed using PB Tools

version 1.4 software (http://bbi.irri.org/products).
Frontiers in Plant Science 05
3 Results

3.1 AMMI analysis

The combined variance analysis of grain yield data of 40 quinoa

genotypes in eight environments (Table 4) showed that the effects of

G, E, and G×E interaction were highly significant (P ≤ 0.01),

indicating a significant difference in average grain yield among

environments and genotypes, as well as the fluctuation of the grain

yield of quinoa genotypes from one environment to another.

Therefore, it is possible to identify high-yielding genotypes with

general stability for all environments as well as suitable and high-

yielding genotypes for each environment using stability analysis.

The results of the AMMI analysis of variance (Table 4) also showed

that G, E, and G×E interaction explained 63.0%, 4.3% and 29.7% of

the total variation, respectively. The higher contribution of the

genotype can be attributed to the high genetic diversity of the

studied genotypes. Also, the description of 29.7% of the total

variation by G×E interaction can be related to the difference

between genotypes and the difference in climatic conditions of the

studied environments, so that these differences led to different

reactions of quinoa genotypes in different environments.

Separation of the G×E interaction based on the principal

component analysis method also showed that the effects of the

first six principal components were significant and explained 47.6%,

22.5%, 9%, 7%, 6%, and 4.3% of the G×E interaction variance,

respectively. Also, these six principal components justified 14.1%,

6.7%, 2.7%, 2.1%, 1.8%, 1.3%, and 1.1% of the total variance,

respectively (Table 4). The distribution diagram of genotypes and

environments based on average grain yield and the first principal

component score (AMMI1 biplot) is presented in Figure 1. Based

on this biplot, by increasing the contribution of the first principal

component in explaining the variance of the G×E interaction, stable

genotypes can be identified more accurately.

The average grain yield of the studied environments along with

the IPCAe1 and IPCAe2 scores and the AMMI stability values

(ASVs) are presented in Table 5. The environments of Buin Zahra

and Takestan in 2022 had the lowest ASV values. In other words,

the yield fluctuations of genotypes in these two environments were

less than the other environments, but these environments had a

lower average grain yield than the total mean (2721 kg.ha-1).

Among the studied environments, however in 2023, Takestan and

Buin Zahra with 3030 and 3021 kg.ha-1, respectively, had a higher

average grain yield than the total mean (Table 5; Figure 1). The

comparison of IPCAe1 and IPCAe2 scores also showed that
TABLE 3 Soil characteristics of the experimental fields.

Location Clay (%) Silt (%)
Sand
(%)

Available
K

(ppm)
N (%)

Available
P

(ppm)

Organic
carbon
(%)

pH
EC

(ds/m)

Buin Zahra 16 22 62 273 0.2 4.2 1.6 7.9 6.8

Takestan 22 26 52 510 0.5 11.6 4.7 6.2 7.4

Kuhdasht 39 40 21 325 0.1 4.6 0.87 7.5 4.6

Poldokhtar 38 35 27 123 0.3 5.2 0.45 7.6 3.6
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Takestan and Poldokhtar environments had the lowest and highest

values for the first and second components in 2022, respectively,

indicating that quinoa genotypes had the lower and higher

fluctuations in these environments compared to the other

environments, respectively (Table 5). ASV values also showed

that Takestan was a better environment and quinoa genotypes
Frontiers in Plant Science 06
had less fluctuations in this environment, while Poldokhtar was not

a suitable climate for the studied genotypes (Table 5).

The average grain yield, IPCAg1 and IPCAg2 scores as well as the

ASV values for the studied genotypes are shown in Table 6. The

average grain yield of quinoa genotypes ranged from 1070 kg.ha-1 in

the G40 genotype to 4977 kg.ha-1 in the G16 genotype (Table 6).
FIGURE 1

AMMI1 biplot of quinoa genotypes and environments based on the first principal component and grain yield.
TABLE 4 AMMI analysis of variance for grain yield of 40 quinoa genotypes across eight environments.

Source
of variation

df Sum of square
Mean
square

df
Cornelius

F
Cornelius

Total variance
proportion

(%)

G×E variance
proportion

(%)

Treatment 319 1330815058 4171834** 97.1 –

Genotype 39 864054870 22155253** 63.0 –

Environment 7 59506151 8500879** 4.3 –

Block (Environment) 16 3342338 208896** 0.2 –

Interaction 273 407354037 1492139** 29.7 –

IPCA1 45 193814423 4306987 228 7.90** 14.1 47.6

IPCA2 43 91489321 2127659 185 5.56** 6.7 22.5

IPCA3 41 36669307 894373.3 144 5.00** 2.7 9.0

IPCA4 39 28449892 729484.4 105 4.57** 2.1 7.0

IPCA5 37 24611587 665178 68 4.01** 1.8 6.0

IPCA6 35 17420554 497730.1 33 3.81** 1.3 4.3

Residual 33 14898953 451483.4 1.1 3.7

Error 624 37002556 59298.97 2.7 –

Total 959 1371159952 1429781 – –
frontiersin.org

https://doi.org/10.3389/fpls.2024.1487106
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Jokarfard et al. 10.3389/fpls.2024.1487106
Genotypes G15, G16, G18, G6, G12, G19, G11, G24, G26 and G4 had

the lowest IPCAg1 score, respectively (Table 6). The ASV index also

identified genotypes G16, G19, G11, G24, G21, G39, G2, G35, G18,

and G30 with the lowest score as the stable genotypes (Table 6). It

should be noted that the ASV index emphasizes only the stability

aspect of the genotypes, while the grain yield of the genotypes should

also be considered. Therefore, among the above-mentioned genotypes,
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genotypes G16, G19, G35, G30, G39, G24, and G18 (with higher grain

yield than total average and located at the origin of the AMMI biplot)

are introduced as general stable genotypes (Figure 2). In contrast,

genotypes G36, G27, G38, G9, G28, G29, G23, G34, G13, and G12

with the highest ASV value (Table 6) and located in the farthest points

from the origin of the biplot (Figure 2), are introduced as the most

unstable genotypes in the studied environments.
TABLE 6 Mean, IPCA-1 and IPCA-2 scores, and AMMI stability value (ASV) of 40 quinoa genotypes for grain yield.

Genotype
Mean

(kg.ha-1)
IPCAg1 IPCAg2 ASVg Genotype

Mean
(kg.ha-1)

IPCAg1 IPCAg2 ASVg

G1 2871 -10.99 8.01 17.89 G21 1404 7.60 -2.00 11.24

G2 1989 -8.79 4.67 13.61 G22 2476 -16.11 -2.92 23.62

G3 2646 -10.21 -16.15 21.94 G23 2706 -20.37 4.49 29.98

G4 1418 6.86 20.66 22.94 G24 3125 -5.17 6.15 9.72

G5 2978 12.35 -14.54 23.11 G25 3699 -18.02 -7.01 27.14

G6 1730 1.40 -16.92 17.04 G26 2101 -6.36 14.03 16.80

G7 3290 8.55 -12.13 17.38 G27 1547 28.00 -3.44 40.88

G8 1607 -18.68 -0.23 27.18 G28 3131 -17.22 20.09 32.11

G9 2582 -23.61 1.31 34.38 G29 3298 17.19 19.51 31.72

G10 2629 -14.00 -9.94 22.67 G30 3603 11.41 -1.93 16.71

G11 1816 -5.03 -2.50 7.73 G31 3854 -12.36 9.03 20.13

G12 1839 3.97 27.36 27.96 G32 1783 -16.80 -4.82 24.92

G13 2769 17.03 13.66 28.30 G33 3698 12.51 -0.45 18.21

G14 2953 14.29 -12.84 24.44 G34 2903 17.40 -12.83 28.39

G15 2636 -0.50 -26.89 26.90 G35 4263 8.35 6.35 13.72

G16 4977 -0.58 -2.11 2.27 G36 1752 28.63 9.70 42.77

G17 4418 13.32 1.49 19.45 G37 2001 -16.04 -7.63 24.55

G18 2785 -0.98 -16.18 16.24 G38 1842 23.92 -11.24 36.58

G19 4901 -4.11 0.81 6.03 G39 3206 -7.59 -2.23 11.26

G20 2556 -12.42 8.50 19.97 G40 1070 13.12 11.12 22.10
TABLE 5 Mean, IPCAe1and IPCAe2 scores, and AMMI stability value (ASV) of eight environments (four locations and two years).

Location Year ID (Code) Mean (kg.ha-1) IPCAe1 IPCAe2 ASVe

Buin Zahra
2022 E1 2641 -31.97 -3.82 46.69

2023 E2 3021 -33.17 -24.17 53.98

Takestan
2022 E3 2663 -20.74 7.91 31.20

2023 E4 3030 -37.54 4.46 54.80

Kuhdasht
2022 E5 2887 22.21 34.47 47.26

2023 E6 2359 23.84 42.26 54.67

Poldokhtar
2022 E7 2814 41.93 -30.86 68.38

2023 E8 2356 35.43 -30.25 59.78

Total mean
2022 – 2751 – – –

2023 – 2692 – – –
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3.2 GGE-biplot analysis

GGE-biplot analysis showed that the first two principal

components accounted for 83.3% of the variance of G + G×E

interaction, of which 68.1% and 15.2% were explained by the first

principal component (PC1), and the second principal component

(PC2), respectively. To determine the best genotypes for each of the

studied environments, the GGE-biplot polygon view (Which-Won-

Where pattern) was presented (Figure 3). GGE-biplot identified two

mega-environments, including Buin Zahra and Takestan locations in

both years (E1, E2, E3 and E4), and Kuhdasht and Poldokhtar in both

years (E5, E6, E7 and E8), respectively. Also, genotypes G16, G19,

G25, G9, G8, G40, G27, and G17 were placed in the vertices of

polygon, but genotypes G16, G19, and G25 (with grain yield of 4977,

4901 and 3699 kg.ha-1, respectively) in the first mega-environment

and genotype G17 (4418 kg.ha-1) in the second mega-environment

were identified as superior genotypes with higher adaptability.

Moreover, genotypes G31, G39, G24, G28, and G18 in the first

mega-environment and genotypes G35, G33, G30, G7, G29, G5, G14,

and G34 in the second mega-environment showed a high correlation

with the genotypes of the vertices of polygon, and with relatively

suitable grain yield were compatible genotypes to these

environments, the Genotypes G9, G8, G40, and G27 were also

placed in the vertices of polygon, but they did not produce high

grain yield in any of the studied environments (Figure 3).

The vector view of GGE-biplot was used to study the

relationships between environments (Figure 4). The results

showed that the angle between the vectors of Buin Zahra and

Takestan in both years (E1, E2, E3 and E4) as well as Kuhdasht

and Poldokhtar in both years (E5, E6, E7 and E8) was small,
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which indicated a high correlation between them. The

correlation between Buin Zahra and Takestan in both years

with Kuhdasht and Poldokhtar in both years (E1, E2, E3 and

E4 with E5, E6, E7 and E8) was low due to the large angle between

their vectors. In total, the biplot study of the relationships

between environments showed a high discrimination power in

all the experimental environments. While all environments had

long vectors, the vector length of Takestan and Buin Zahra in

2023 (E2 and E4) was longer than the vector length of other

environments , indicat ing the high influence of these

environments on differentiating genotypes compared to other

studied environments. On the other hand, Kuhdasht had the

smaller length vectors in both years (E5 and E6) compared to

other environments (Figure 4), indicating lower fluctuations and

higher stability of the grain yield of quinoa genotypes in

this location.

The comparison of the ideal genotype with the studied quinoa

genotypes is shown in Figure 5. The vertical line on the average

environment axis (AEA) indicated with two arrows, is used to

determine the stability of genotypes. Genotypes closer to the

origin of AEA are more stable than genotypes closer to the end

of this axis (Esan et al., 2023; Kebede et al., 2023). Therefore,

genotypes G16, G19, G17, G35, and G31, which are closer to the

AEA (Figure 5), were more stable than other genotypes in all

environments. These genotypes with higher grain yield than total

mean, had a relatively constant grain yield ranking in all

environments. While genotypes G36, G27, G38, G9, G8, G32,

G37, G28, G29, and G22 had less stability due to the longer

distance from the AEA (Figure 5). Furthermore, the GGE-biplot

genotype view showed that genotypes G16 and G19, followed by
FIGURE 2

AMMI biplot based on the first and second principal components.
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G17, G35 and G31, which were placed in the center of the

concentric circles, were the most ideal genotypes in this

experiment. In contrast, genotypes G40, G4, G21, G27, G36,

G38, and G32 were the weakest quinoa genotypes in terms of

grain yield and stability in this experiment.
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The GGE-biplot environment ranking pattern to compare the

studied environments with the ideal environment is shown in Figure 6.

The ideal environment (center of the concentric circles) as a

representative of other studied environments, has the highest ability

to differentiate genotypes (Esan et al., 2023; Kebede et al., 2023).
FIGURE 4

The vector view of GGE-biplot to study the relationships between the studied environments.
FIGURE 3

“Which-Won-Where” pattern of GGE-biplot polygon view to determine the superior genotypes in different environments.
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The results showed that Takestan in 2022 (E3) can be introduced as the

best environment due to the smallest distance from the ideal

environment as well as the smallest angle with the AEA vector. After

that, Kuhdasht in both 2022 and 2023 years (E5 and E6) were suitable

environments for the studied quinoa genotypes in this

experiment (Figure 6).
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4 Discussion

Quinoa is known as a key crop for food security in many

countries of the world, which can produce products in more than

120 countries, but on the one hand, the high climatic diversity in

different regions and, on the other hand, the existence of
FIGURE 6

The GGE-biplot ‘environment ranking’ pattern to compare the studied environments with the ideal environment.
FIGURE 5

‘Mean vs. stability’ pattern of GGE-biplot to compare the studied genotypes with the ideal genotype.
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environment × genotype interaction, requires the introduction and

cultivation of stable and adapted genotypes to these areas (Alandia

et al., 2020). There are various statistical methods to study genotype

× environment interaction and identify stable genotypes, among

which AMMI and GGE-biplot provide better and more

interpretable results (Gauch et al., 2008). In the AMMI method,

the genotype × environment interaction is separated from the

environment and genotype effects, and then this interaction is

analyzed using PCA (Zobel et al., 1988), While in the GGE-biplot

method, only the environment effect is removed, and the total

effects of genotype and genotype × environment interaction are

used to identify stable genotypes, and by presenting different biplot,

ideal and stable environments and genotypes are introduced (Yan

et al., 2007).

The variance analysis of the data in this study showed that the

effects of genotype, environment, and genotype × environment

interaction were significant. The significant genotype ×

environment interaction indicates the fluctuation of the grain

yield of the genotypes from one environment to another (Thiam

et al., 2021; Allaoui et al., 2023; Ruswandi et al., 2023). This means

that the grain yield of the genotypes was affected by environmental

conditions and produced different grain yields in different

environments. The separation of the contribution of each factor

also showed that genotype, environment, and genotype ×

environment interaction justified 63.0%, 4.3%, and 29.7% of the

total variation, respectively. Describing 30% of the total grain yield

variation by genotype × environment interaction makes the

necessity of stability analysis and identification of stable

genotypes unavoidable. The results of this study were consistent

with the results of many researchers who reported the contribution

of the effects of genotype and genotype × environment interaction

more than the environment effect (Hmwe et al., 2018; Katsenios

et al., 2021; Hossain et al., 2023; Wodebo et al., 2023). On the other

hand, some researchers also estimated the environmental effect is

more than the effects of genotype and genotype × environment

interaction (Ali et al., 2018; Wardofa et al., 2019; Thiam et al., 2021;

Al-Naggar et al., 2022).

The description of nearly 50% of the variance of the genotype ×

environment interaction by the first component and nearly 71% of

this variance by the first two components indicates the existence of a

strong interaction between the studied genotypes and

environments. Tekdal and Kendal (2018) also investigated the

stability of 122 different durum wheat genotypes in two

environments using the AMMI model, and they reported that

genotype, environment, and genotype × environment interaction

explained 59.8%, 3.5%, and 36.7% of the data variation, respectively.

Other researchers also reported a high percentage of the first and

second principal components in the AMMI method (El-Sadek,

2017; Ali et al., 2018; Allaoui et al., 2023; Hossain et al., 2023).

The studied environments were located far from the origin of the

AMMI biplot, which indicated strong interaction forces with the

genotype, and the angles between the studied environments

(Figure 2) indicate the distinctiveness in the selection of

genotypes (Balakrishnan et al., 2016; Jain et al., 2019). Therefore,
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using the values of the first principal component, the mean grain

yield of the genotypes (Figure 1), and the values of the first and

second principal components (Figure 2), the AMMI diagram was

drawn to show the effects of genotypes and environments and the

distribution of genotypes in the eight studied environments.

The results showed that the genotypes located on the right side of

the AMMI1 diagram (Figure 1) had higher grain yield than the total

mean. Among these genotypes, genotypes G16, G19, G17, and G35

produced the highest grain yield with 4977, 4901, 4418 and 4263

kg.ha-1, respectively. According to Figure 2, genotypes G25, G28,

G31, G9, and G23 with Buin Zahra and Takestan environments in

2022 and 2023 (E1, E2, E3, and E4) and genotypes G34, G12, G14,

and G5 with Kuhdasht and Poldokhtar environments in 2022 and

2023 (E5, E6, E7 and E8) were adaptable. Thiam et al. (2021) also

identified the genotypes adapted to each environment using the

graph obtained from the first two components in the AMMI model

according to the proximity of the genotype to the environment

vector. The difference in grain yield between Lorestan province

(Kuhdasht and Poldokhtar) and Qazvin province (Takestan and

Buin Zahra) can be attributed to several factors. Sparrow (Passer

domesticus) infestation during the flowering and harvesting of

quinoa had a greater impact on yield in Lorestan province due to

the absence offields or cover crops to deter sparrow attacks, while in

Qazvin province, the cultivation of sunflowers alongside quinoa

helped reduce the impact of sparrows. Additionally, the soil in

Qazvin province was more suitable for quinoa cultivation, with a

lighter texture compared to Lorestan province. Furthermore, high

temperatures during flowering and physiological maturity in

Lorestan province led to a decrease in the number of seeds and

ultimately a decrease in grain yield.

The IPCAg index is one of the parameters that is calculated to

determine the degree of interaction of each genotype with the

environment and to identify stable genotypes in the AMMI

method. Based on this, genotypes with a large IPCAg1 Score

(positive or negative) have a high interaction with the

environment, and on the contrary, genotypes with an IPCAg1

score close to zero have a low interaction and are stable

genotypes (Purchase et al., 2000). Investigation of the IPCAg1

values showed that genotypes G15, G16, G18, G6, G12, G19, G11,

G24, G26, and G4 were the most stable studied genotypes in this

experiment with the lowest IPCAg1 score, respectively. The AMMI

stability value (ASV) is another parameter of the AMMI method

that expresses the variation between genotypes so that genotypes

with less ASV and close to zero are considered stable (Mohammadi

and Amri, 2008; Kebede and Getahun, 2017). The ASV index, like

the IPCAg1 index, identifies similar and identical stable genotypes.

Considering that genotypes must be introduced that have high grain

yield in addition to stability and fewer yield fluctuations in different

environments, the examination of the grain yield of these genotypes

showed that only genotypes G16, G19, G35, G30, G39, G24, and

G18 had higher grain yield than the population means. These

genotypes were also placed at the origin of the AMMI biplot

(Figure 2) and as a result, stable genotypes with high general

adaptability were introduced.
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The results of the GGE-biplot method also showed that the

first two principal components, explained 68.1% and 15.2%,

respectively, and in total about 83% of the variation of the

genotype and genotype × environment interaction. According

to many researchers, the GGE-biplot method is one of the most

appropriate methods to investigate the stability of genotypes

(Chandrashekhar et al., 2020; Haile and Kebede, 2021;

Greveniotis et al., 2023b) because in this method, by removing

the environment effect as an uncontrollable source, the sum of the

effects of genotype and the interaction of genotype ×

environment are used, and as a result, the total controllable

effects are used to study the response of genotypes and identify

stable genotypes. Many researchers have reported the high

contribution of the first principal component in explaining

diversity of the genotype and genotype × environment

interaction in different plants, including quinoa (Afiah et al.,

2018; Thiam et al., 2021; Hafeez et al., 2022), rice (Hasan et al.,

2022; Ghazy et al., 2023), maize (Shojaei et al., 2022; Ninou et al.,

2023), wheat (Elfanah et al., 2023; Han et al., 2024), barley (Akan

et al., 2023) and sorghum (Wang et al., 2023) which was

consistent with the results of this study.

Considering that about 83% of the variance of the genotype

and genotype × environment interaction in this study were

described by the first and second components, therefore,

different biplot diagrams can be drawn to study the distribution

of genotypes in different environments and to choose the best

genotypes and environments. One of these diagrams is the

polygon biplot which is presented in Figure 3, and it can be

used to identify superior genotypes adapted to any environment

(Gao et al., 2022; Esan et al., 2023). In this diagram, vertical lines

are drawn from the origin of the biplot to each side of the polygon,

and the studied genotypes and environments are divided into

several sections so that the genotypes placed in each part of the

polygon diagram have high specific adaptability with the

environment of that part, especially the genotypes located at the

vertices of the polygon, which have the highest specific

adaptability with the respective environment (Bojtor et al., 2021;

Sissoko et al., 2024). Based on the study, it was found that

Poldokhtar was the most unfavorable environment for grain

yield, while Takestan was the most favorable. Several genotypes

were identified as superior in each environment, with some

performing well in one region but not in another. This

information can be valuable for selecting appropriate genotypes

for different environmental conditions to optimize grain yield. In

addition to the stable and high-yielding genotypes introduced in

all locations, genotypes G7, G30, G33, and G34 can be introduced

as superior genotypes in the Poldokhtar environment, which did

not provide optimal yield in the Takestan environment. Also,

genotypes G25, G31, and G39 had optimal grain yield in the

Takestan environment, but produced low grain yield in the

Poldokhtar environment.

Another diagram that is drawn in the GGE-biplot method is the

biplot diagram to investigate the relationships between the studied

environments. The cosine of the angle between the environment
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vectors in this diagram shows the correlation between

environments. A zero-degree angle means +1 correlation, a 90-

degree angle means no correlation, an acute angle means positive

correlation and an obtuse angle means negative correlation (Yan

and Tinker, 2006). In addition, based on the length of the

environment vectors in this diagram, the studied environments

can also be examined in terms of the power of distinguishing

genotypes, so that the environments with a longer vector length

have more power and the ability to differentiate (Esan et al., 2023;

Kebede et al., 2023). Correlation between the eight studied

environments in this experiment showed that the angle between

the vector of Buin Zahra and Takestan environments in both

cropping years (E1, E2, E3, and E4) and Kuhdasht and

Poldokhtar in both cropping years (E5, E6, E7, and E8) is smaller,

which means that these environments are more similar to each

other and there is a high correlation between them, while the angle

between the environment vectors of Buin Zahra and Takestan with

the vectors of Kuhdasht and Poldokhtar environments in both

cropping years (E1, E2, E3, and E4 with E1, E2, E3, and E4) is larger

and indicates the greater difference between these environments

and less correlation between them. Considering that the

information obtained from environments with high correlation is

similar and identical, therefore, to increase the efficiency of the

experiments, one of the environments with high correlation can be

selected and future experiments can be performed in this

environment and eliminate other environments and finally reduce

the costs of performing experiments (Sharma et al., 2020;

Karuniawan et al., 2021; Ruswandi et al., 2021; Taleghani et al.,

2023). The investigation of the length vector of the environment

also showed that all the eight studied environments in this

experiment had large length vectors, which meant a high

discrimination power in all the experiment environments,

However, the vector length of Takestan and Buin Zahra

environments in 2023 (E2 and E4) was more than the other six

environments, which indicated the greater impact of these

environments in differentiating genotypes compared to other

studied environments (Figure 4). In other words, Takestan and

Buin Zahra environments in 2023 (E2 and E4) had a greater

contribution to the formation of the genotype × environment

interaction than the other six environments. Therefore, the length

of the environment vectors is a measure to determine the stability of

environments and there is an inverse relationship between them, so

that an environment with a smaller environment vector size is more

stable (Esan et al., 2023; Kebede et al., 2023). Taking into account

that the length of the vectors of the Kuhdasht environment in both

cropping years (E5 and E6) was smaller than the vectors of other

environments, these environments had higher stability and the

grain yield fluctuation of quinoa genotypes in these environments

was less than in other environments. This environment can be used

for planning to select superior quinoa genotypes (Ansarifard

et al., 2020).

Another diagram drawn in the GGE-biplot method is the Biplot

diagram to compare genotypes with the ideal genotype. Based on

this diagram, the genotypes are ranked and placed in concentric
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circles, and the genotypes placed in the center of these concentric

circles are known as the ideal genotypes. In addition, the distance

from the Average Environment Axis (AEA) is also an indicator to

determine the stability of genotypes and has an inverse relationship

with stability (Kebede et al., 2023; Ninou et al., 2023). The unique

feature of the GGE-biplot is that it allows the comparison of

genotypes with the ideal genotype. Examining the ‘Mean vs.

stability’ pattern (Figure 5) showed that the genotypes G16, G19,

G17, G35, and G31 were placed in the center of the concentric

circles, and in contrast, the genotypes G40, G4, G21, G27, G36, G38,

and G32 were located farther away from the concentric circles.

Genotypes G16, G19 and G17 had the highest mean and genotypes

G40, G4, and G21 had the lowest mean in the environment.

According to this figure, genotypes G16, G19, and G17 were

recognized as ideal genotypes in this study. Following this,

genotypes G35 and, G31 were identified as superior and stable

genotypes. Finally, using Figure 6., ideal environments were

identified. In this diagram, the smaller the angle of the

environment vector with the Average Environment Axis (AEA)

and the intended environment placed in concentric circles, the

more ideal that environment is (Ye et al., 2019). Therefore, the

Takestan environment in 2022 (E3) and then the Kuhdasht

environments in 2022 and 2023 (E5 and E6) were recognized as

ideal environments for cultivating the studied quinoa genotypes.

Al-Naggar et al. (2022) also introduced ideal genotypes and ideal

fertilizer environments for quinoa cultivation by evaluating 37

quinoa genotypes using this biplot. These environments can be

used to improve quinoa genotypes because they consistently

produce the highest grain yield. GGE-biplot diagrams allow the

evaluation of environments and genotypes based on the power of

differentiation and representation, so this method is more favorable

than the AMMI method (Aktas ̧, 2016).
5 Conclusion

In this study, genotype × environment interaction and grain

yield stability were investigated in 40 quinoa genotypes using

AMMI and GGE-biplot methods. The variance analysis of the

data in this study showed that the effects of genotype,

environment, and genotype × environment interaction were

significant. The significant genotype × environment interaction

indicates the fluctuation of grain yield of genotypes from one

environment to another due to the variation in climatic and

edaphic factors. The breakdown of the contribution of each factor

reveals that genotype accounts for 63.0% of the total variation,

environment for 4.3%, and genotype × environment interaction for

29.7%. The fact that genotype × environment interaction explains

30% of the total grain yield variation underscores the importance of

conducting stability analysis and identifying stable genotypes. The

results of AMMI analysis showed that the six principal components

explained of the variance of genotype × environment interaction.

The description of nearly 50% of the variance of the genotype ×
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environment interaction by the first component and nearly 71% of

this variance by the first two components indicates the existence of a

strong interaction between the studied genotypes and

environments. Among the genotypes studied, genotypes G16,

G19, G17, and G35 had the highest grain yield with 4977, 4901,

4418, and 4263 kg/ha respectively. Also, various statistical analyses

showed that Pol Dokhtar was the most unfavorable and Takestan

was the most favorable environment for grain yield. Based on

AMMI graphs, genotypes G25, G28, G31, G9, and G23 were

adaptable to the environments of Buin Zahra and Takestan, and

genotypes G34, G12, G14, and G5 were adaptable to the

environments of Kohdasht and Pol Dokhtar. The results of the

GGE-biplot method also showed that the first two principal

components, explained about 83% of the variation of the

genotype and genotype × environment interaction. The polygon

diagram (Figure 3) separated the environments studied in this

experiment into two mega-environments. The first mega-

environment included the environments of Buin Zahra and

Takestan, while the environments of Kuhdasht and Poldokhtar

were placed in the second mega-environment. Among the studied

genotypes, genotypes G16, G19, and G25 had the highest specific

adaptability with the first mega-environment, and genotype G17

with the second mega-environment. The grain yield analysis of 40

studied quinoa genotypes in this experiment with both AMMI and

GGE-biplot analysis methods identified genotypes G16 and G19 as

stable and high-yielding genotypes. Also, both AMMI and GGE-

biplot methods were beneficial in studying genotype × environment

interaction and identifying stable and high-yielding genotypes.

However, the GGE-biplot method, due to presenting different

graphs, determining mega-environments, and identifying ideal

genotypes, was a more useful tool for stability analysis. High-

yielding and stable genotypes identified in this experiment can be

introduced as suitable cultivars for the studied environments.
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Gómez, M. J. R., Prieto, J. M., Sobrado, V. C., and Magro, P. C. (2021). Nutritional
characterization of six quinoa (Chenopodium quinoa Willd.) varieties cultivated in
Southern Europe. J. Food Composit. Anal. 99, 103876. doi: 10.1016/j.jfca.2021.103876
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