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Palms (Arecaceae) are an important group of plants widely distributed

throughout the world. The Arecaceae family comprises a great diversity of

species, however, many of them are threatened with extinction due to their

unbridled exploitation in search of economically important resources. An

overview of palms biology will be presented, with emphasis on genetics and

genomic resources of several species, as well as their socioeconomic impact

worldwide, highlighting the main advances in recent research. Our discussion

also covers the demand for urgent measures toward conservation and

preservation of palms since they play key roles in maintaining biodiversity and

providing essential ecosystem services. Fundamentally, this article is to raise

awareness about the importance of palms and to encourage the protection and

conservation of these valuable species.
KEYWORDS
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Introduction

The Neotropical region is one of the six biogeographical regions of the planet, covering

Central America, a large part of South America as well as the Caribbean islands, the Antilles

and tropical areas of Mexico, presenting similarities in fauna and flora, and is considered an

area with great biodiversity, having the largest number of species of both animals and plants

(Lima et al., 2018). Among the great wealth of species we find palm trees (Arecaceae).

The Arecaceae family, which comprises all palms, includes approximately 181 genera,

with 2.600 species distributed in five subfamilies, Calamoideae, Nypoideae, Arecoideae,

Coryphoideae and Ceroxyloideae (Baker and Dransfield, 2016). Among the wide variety of
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flora, the greatest diversity of genera and species of the family is

distributed in regions with a tropical climate at low latitudes,

influenced by environmental and biotic factors, and some taxa are

found at higher latitudes, up to 44°N and S (Bjorholm et al., 2006;

Henderson et al., 1995). Although it occurs predominantly in

tropical and subtropical areas, the diversity of palm genera and

species varies around the globe, with the greatest diversity of species

(992) occurring in Malaysia followed by the Americas (730), with

the latter surpassing the former in terms of the number of genera

(65 versus 50) (Figure 1).

Considering only the American continent, it can be seen that

both the highest number of species and genera is recorded for South

America (437 species - 50 genera), followed by Central America

(251 species - 39 genera) (Figure 2).

Due to their wide distribution in tropical regions and diversity

of forms, palm trees are of great importance to the functioning of

ecosystems, participating in the structure and composition of

vegetation and fundamental as a food resource for frugivorous

animals and pollinators (Dransfield et al., 2008; Henderson et al.,

1995; Zona and Henderson, 1989) and as a subsistence resource for

various peoples in the form of food, wood and medicinal products

(Uhl and Dransfield, 1987; Balick and Beck, 1990; Ellison, 2001).

Several species are commercially exploited as non-timber forest

resources providing different types of products such as wax, fiber,

oil, ornamental and others, being cultivated on a large scale such as

Bactris gasipaes for palm heart production (Galdino and Clemente,

2008) and others with regional use such as Astrocaryum aculeatum

G.Mey. pulp in the Amazon region (Didonet and Ferraz, 2014).

This research consists of a literature review on the potential of

palm trees as a non-timber forest product, in order to encourage

their knowledge, preservation and appreciation of the goods and

services they provide to ecosystems and human beings.
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Methodology and strategies

Data on native Neotropical palms was collected from available

printed literature and online databases listed throughout the

manuscript. The taxonomic characterization and geographical

distribution of the species cited were checked in specialized

literature (Henderson et al., 1995; Dransfield et al., 2008; Lorenzi

et al., 2010) and online flora databases (Tropicos.org, Flora do Brasil).

The use of the palmswas classified as: (i) human food (HF); (ii) animal

food (AF); (iii) medicinal use (MU), (iv) construction (C), (v)

ornamental (O), (vi) handicrafts (H) and, additionally indicated if

the use of the species occurs only as (i) extractivism for local use, (ii)

extractivism for commercial use. The main native, non-domesticated

species with occurrence in two or more countries in the Americas

(non-endemic) and with known potential use were considered for

the article.

Overall, this review was produced following four main steps: (i)

identification of the proposed theme and problem question; (ii)

establishment of criteria for analysis; (iii) selection of articles; and

(iv) data interpretation and results. The basic problem questions of

our review were: “What is the socioeconomic importance of palm

trees? How can population genetic and genomic studies help us to

understand the importance of these species?”. The selection of articles

was conducted in Portuguese, Spanish and English using indexed

platforms: National Library of Medicine (PubMed), Scopus, Scientific

Electronic Library Online (SciELO) and Google Scholar. All articles

were selected within a period of 40 years. Studies that did not contain

the proposed theme, were incomplete or duplicated were excluded

from this review. After the literary search, 162 articles were selected

for the preparation of this review (Figure 3). The evaluation and

analysis of the selected studies allowed the identification of variables,

observations and data that gathered knowledge on the socioeconomic
FIGURE 1

Distribution of palm species diversity in the world. Western Indian Ocean - Madagascar, Western Indian Ocean Islands; Continental Asia - Western
Asia, Arabian Peninsula, Subcontinental India, Sri Lanka, Indochina, China; Malaysia - Malay Peninsula, Sumatra, Java, Borneo, Philippines, Sulawesi,
Papua, New Guinea, Bismarck Archipelago, Solomon Islands; Pacific - New Caledonia, Fiji, Vanuatu, Hawaii; Australasia - Australia, New Zealand. The
data is plotted on a logarithmic scale. Source: Dransfield et al. (2008).
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potential of palms. All data extracted from these articles were

developed in a descriptive manner, observing, classifying, and

organizing the knowledge generated on the properties of palms.
Genera and species

For this review, we considered 12 species distributed in 08

genera, occurring on the American continent and with a high

potential for use. Phylogenetically, we have representatives from 4

of the 5 subfamilies that exist in Arecaceae, as shown in Figure 4.

Taxonomy, morphological
characterization and
geographical distribution

Acrocomia aculeata (Jacq.) Lodd. ex Mart.

The genus belongs to the subfamily Arecoideae, Tribe Cocoseae

and Subtribe Bactridinae, the latter being represented by genera of

spinescent palms (Acrocomia, Aiphanes, Astrocaryum, Bactris and

Desmoncus) with a distribution restricted to the Americas,
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particularly South America (Dransfield et al., 2008). The species

occurs in tropical and subtropical regions of the American

continent, from Mexico and the Antilles to most of Brazil,

covering different environments (Henderson et al., 1995, Vianna

and Campos-Rocha, 2024).

The species is evergreen, heliophytic, occurring in greater

densities in open areas, associated with pasture areas, also

occurring in semi-deciduous forests and in places with rocky

outcrops (Vianna and Colombo, 2013). Morphologically, it is

easily recognized by the presence of thorns on the stipe and leaf

sheaths in greater density. The plants range from 4 to 15 m in height

on average, with cylindrical, ringed, spinescent stems and the

presence of leaf sheaths from fallen leaves. The crown is made up

of 20 - 40 pinnate compound leaves 4 - 5 m long, alternate leaflets

unevenly distributed along the rachis, which gives the leaves a

feathery appearance, often with some thorns on both the rachis and

the leaflets, and senescent leaves are often attached to the plant.

Inflorescences are interfoliate and branched, with several rachises

bearing female flowers at the base and male flowers at the apex of

the rachises, making it a monoecious species. The fruits are drupe,

globose, 3-5 cm in diameter, with a brittle epicarp, usually brownish

or yellowish-green in color; a fibrous, mucilaginous, yellow or

orange mesocarp; a bony, dark endocarp, strongly adhered to the
FIGURE 2

Distribution of palm species diversity in the Americas. The data is plotted on a logarithmic scale. Source: Dransfield et al. (2008).
FIGURE 3

Graphic methodology. Number of articles per year.
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mesocarp; seeds with a large amount of solid endosperm, attached

to the endocarp, with up to four seeds per fruit (Henderson et al.,

1995; Lorenzi et al., 2010, Vianna and Campos-Rocha, 2024).
Acrocomia totai Mart.

Belonging to the same subfamily, tribe and subtribe as A.

aculeata, the species occurs only on the South American

continent, restricted to Cerrado and Pantanal areas in parts of

Bolivia, Paraguay, Argentina and Brazil (Vianna and Campos-

Rocha, 2024). The palm can reach up to 15 m in height, with a

discreetly ringed stem and thorns mostly on young plants, devoid of

the remnants of the leaf sheath. The leaves may have thorns,

especially on the rachis, with clear abscission. The leaflets are

irregularly distributed and inserted in different planes, sometimes

forming clusters of 2 to 3 leaflets along the rachis. The

inflorescences are interfoliate and branched with the female

flowers arranged at the base of the rachis, always forming triads,

and the male flowers in the upper two-thirds of the rachis (Lorenzi

et al., 2010). The fruits are globose, measuring 2.5-3.5 cm in

diameter, with a brittle epicarp of varying colors, most commonly

brown and shades of yellow and orange, a fibrous, mucilaginous

mesocarp, also of varying color, a bony, dark endocarp and seeds

with a large amount of solid endosperm (Vianna et al., 2021).
Astrocaryum aculeatum G. Mey.

Similarly to Acrocomia, the genus belongs to the same group of

spiny palms in the Arecoideae subfamily, Cocoseae tribe and

Bactridinae subtribe, with geographical occurrence recorded for
Frontiers in Plant Science 04
countries in the Amazon region, such as Brazil, Colombia and

Venezuela (Dransfield et al., 2008). The solitary-stemmed palm can

reach up to 25 m in height, with internodes covered in long, black

spines up to 25 cm long. The leaves are pinnate, ascending, with the

sheath and petioles covered in spines, the leaflets are irregularly

inserted into the rachis in groups of 2-5 leaflets in different planes.

The branched inflorescences are interfoliate with the peduncular

bract also covered in spines, bearing female flowers in the basal

region of each of the numerous rachillas. The bunches are large

bearing hundreds of drupe fruits, globose to ellipsoid in shape,

smooth or brittle epicarp, variable in color, measuring 3 to 8 cm in

length by 2.5 to 6.5 cm in diameter, the mesocarp is fleshy, fibrous

to slightly fibrous, yellow to reddish oleaginous, hard and black

endocarp with a rounded seed, some fruits without seed or even

with two seeds (Vianna, 2024a; Oliveira et al., 2022a).
Astrocaryum murumuru Mart.

The spinescent palm occurs throughout the Amazon ecoregion

from Colombia, Ecuador, Peru, Bolivia, Guyana, French Guiana,

Suriname, Venezuela to Brazil. The species is cespitose, up to 15 m

high, with pinnate leaves, the rachis, sheath and petiole covered in

flat, black spines up to 30 cm long; numerous pinnules regularly

inserted in the same plane. Inflorescences are branched, erect, with

peduncular bracts densely covered in brown bristles and black

spines and rachises bearing only one female flower at the base.

The fruits are inverted conical, laterally flattened, rostrate, 6-8.5 cm

long by 3.8-4.4 cm in diameter with an epicarp covered in brownish

indumentum and bristles, a yellow, fleshy mesocarp, a hard, black,

conical endocarp; the endosperm is also conical, homogeneous and

whitish (Vianna, 2024a; Bezerra and Damasceno, 2022).
FIGURE 4

Arecaceae phylogeny at subfamily level with indication of species studied. Adapted from Baker and Dransfield (2016).
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Astrocaryum vulgare Mart.

A species that occurs predominantly in the eastern Amazon, it is

cespitose, reaching a height of 20 m with internodes covered in long,

black spines up to 22 cm long. The leaves are pinnate, with a sheath,

petiole and rachis covered in partially black spines, irregularly

inserted pinnules in groups of 2-6 on different planes.

Inflorescences and infructescences erect; peduncular bract densely

covered in spines, numerous rachises bearing 2-5 female flowers on

the basal portion, each flanked by two possibly sterile male flowers,

forming triads. Fruits globose to ellipsoid, 3.5-5 cm long × 2.5-4 cm

in diameter, rostrate; epicarp smooth, orange to red; mesocarp

orange, fleshy, fibrous and solid sweet endocarp, black; endosperm

homogeneous (Vianna, 2024a; Oliveira et al., 2003).

Attalea maripa (Aubl.) Mart.

Belonging to the subfamily Arecoideae, tribe Cocoseae, subtribe

Attaleinae (Baker and Dransfield, 2016), it has been recorded as

occurring in countries in the northern region of South America,

predominantly associated with the Amazon region, and in Brazil it has

also been recorded in some areas of the Cerrado. It is a tall palm,

which can reach 25 m in height, with a solitary, smooth-surfaced stipe,

with pinnate leaves, leaving part of the petiole attached to the stem for

a long time. The pinnules are irregularly distributed in the rachis and

inserted in different planes, giving the leaves a crisp appearance.

Inflorescences are branched, interfoliate, and may have exclusively

male, predominantly male, androgynous or predominantly female

flowers. The fruits are ellipsoid, measuring 3.9-6.0 cm in length by 1.8-

3.5 cm in diameter with a thin brown epicarp, a fleshy, fibrous and oily

mesocarp, beige to yellow in color; an ellipsoid and bony brown

endocarp and, externally, brown endosperm and internally whitish

and solid (Soares, 2024; Matos et al., 2017).

Butia odorata (Barb.Rodr.) Noblick

Belonging to the subfamily Arecoideae, tribe Cocoseae and

subtribe Attaleinae, the species is restricted to southern South

America (southern Brazil and eastern Uruguay). They are

monoecious palms, with solitary or cespitose stems, pinnate, arched,

grayish-green leaves and pseudopeciole with smooth or toothed

margins. The leaflets are arranged in an ascending “V” shape in the

rachis, distributed in the same plane. The inflorescences are branched,

bearing male flowers throughout the rachis, with a greater

concentration from the middle to the apex and the female flowers

from the middle to the base of the rachis, forming triads with two

males. The fruit can be ellipsoid, globose, oblong or ovoid with a

yellow, orange, reddish, greenish or brown epicarp, a fleshy mesocarp,

a brown endocarp and an ovoid or triangular endosperm (Heiden and

Sant’Anna-Santos, 2024; Rivas and Barbieri, 2017).

Copernicia alba Morong

As a curiosity, the genus was named after the rounded shape of

its crown in honor of the astronomer Nicolaus Copernicius, who
Frontiers in Plant Science 05
developed the heliocentric theory of the Solar System (Vianna,

2024b). Copernicia alba, is a South American species with a

distribution restricted to Bolivia, Argentina, Paraguay and a small

part of Brazil, associated with places with higher humidity such as

riparian and gallery forests, including the Pantanal wetlands,

occurring in some areas in high population densities, some only

with individuals of the species (monodominate formation) forming

the so-called “carandazal” (Tropicos.org, 2024; Vianna, 2024b).

The palm has a columnar, grayish and solitary stem, covered

entirely by the remnants of the base of the fallen leaves, with a very

typical appearance. The crowns are characteristically spherical, with

flabelliform (fan-shaped) leaves, waxy on the abaxial side, grayish-

green in youth and green with long petioles and spines on the sides

of the rachis. The inflorescences are interfoliate, branched, longer

than the leaves, with rachis bearing hermaphrodite flowers. The

fruits are berry-like, ovoid, small (1-2 cm long), with a smooth,

black epicarp, a thin, grayish-white mesocarp and a light brown

ovoid seed about 1.2 mm long (Vianna, 2024).
Mauritia flexuosa L.f.

A species belonging to the subfamily Calamoideae, tribe

Lepidocaryeae and subtribe Mauritiinae, very characteristic of

landscapes with wetter or periodically flooded areas in South

America (Henderson et al., 1995; Dransfield et al., 2008). It is a

dioecious palm, 3-25 m tall, with a solitary, smooth stem and aerial

roots at the base. Large flabelliform (fan-shaped) leaves, broken into

45-230 segments. The inflorescences are interfoliate, branched up to

the second order level, with the branched part measuring 1.4 - 2.4

m. There are staminate inflorescences (male flowers) and pistillate

inflorescences (female flowers) on different plants. The fruits are

ellipsoid-oblong (oval), 3.5-5.5 cm in diameter, epicarp

characteristically covered in overlapping scales, reddish-brown in

color, thin, fleshy, yellow-orange mesocarp, undifferentiated

endocarp and seed with solid, homogeneous endosperm (Vianna,

2024c; Rossi et al., 2014; Storti, 1993).
Oenocarpus bacaba Mart.

A monoecious palm belonging to the subfamily Arecoideae,

tribe Euterpeae with a distribution restricted to the Amazon region

in South America, it is even considered one of the hyperdominant

species in the Amazon (Tropicos.org, 2024; Steege et al., 2013).

Solitary or cespitose species, 12-25 m tall, with an erect stem,

densely covered with fibers resulting from the decomposition of

the leaf sheaths when young. Pinnate leaves with pinnules regularly

distributed in the same plane, or grouped and arranged in several

planes, silver-gray on the underside. Inflorescences are infrafoliate

when in bud and infrafoliate, branched at first order level when

open, bearing triads of flowers (one central female and two lateral

male) in their basal portion and male flowers arranged in pairs or

solitary in the apical portion. The bunches are large, about 1.5 m

long, with hundreds to thousands of ellipsoid or globose, dark
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purple fruits, with a whitish, oily mesocarp and kernels surrounded

by a thin, fibrous endocarp (Henderson et al., 1995; Lorenzi, 2024).
Oenocarpus bataua Mart.

A palm species native to the Amazon region and occurring in

Central and South American countries (Henderson et al., 1995)

with a solitary, smooth stem, 5-25 m high with fasciculated roots at

the base and no palm heart at the top. The leaves are pinnate,

greyish and waxy, distributed on the same plant, with a persistent

sheath on young plants and fibers on the margins and long fibers

with a woolly aspect on the ligule. The inflorescences are

intrafoliolar, pendulous, branched, with part of the rachis bearing

male flowers forming diads and the other with two male flowers

flanking a female flower forming triads. The fruit is an oblong to

ellipsoid drupe of variable size (2.5 - 4.7cm × 2.0 - 2.5cm), with a

smooth epicarp, green or violet when ripe, covered in a thin,

whitish, waxy layer; the mesocarp is fleshy, white, greenish or

purplish in color and the seed varies from ovoid-ellipsoidal to

globose, covered in flattened fibers (Oliveira et al., 2022b; Maciel

et al., 2021; Lorenzi, 2024).
Phytelephas macrocarpa Ruiz & Pav.

A species known as “vegetable ivory” due to the appearance of

the seed, its name is also a reference to elephants (Phyto = plant and

elephas = elephant). It is a small, dioecious palm, up to 5 m tall, with

a solitary, thick stem, rarely cespitose or underground with

apparent adventitious roots and the presence of the remnants of

the base of fallen leaves. Leaves are pinnate, arranged in a single

plane with a fibrous sheath. Dimorphic inflorescences: the male

inflorescence is spiky, and the female inflorescence is branched,

bearing intensely fragrant flowers. The bunches are large, formed by

aggregate fruits covered with projections similar to large woody

aculei, with a fleshy mesocarp and a yellow color. Each fruit

contains 8-12 seeds about 2 cm in diameter, with liquid and clear

endosperm when the seed is immature, becoming solid at maturity,

with an opaque white color which gives it an ivory-like appearance

(Vianna, 2024d, Costa et al., 2006).
Historical and socioeconomic
significance of palms

Historical importance

The Arecaceae family is distributed throughout the world,

mainly in tropical and subtropical areas, such as the equatorial

coast of Africa, Oceania, the Brazilian coast, the Amazon,

Indonesia, and the Antilles (Moore and Uhl, 1982). A previous

report showed that in 2008 the main cultivated species are oil palm

(Elaeis), coconut (Cocos nucifera), date palm (Phoenix dactylifera)

and betel palm (Areca catechu) with accounted for 14,585,811,
Frontiers in Plant Science 06
11,208,072, 1,264,611 and 834,878 hectares respectively (Food and

Agriculture Organization of the United Nations, 2010).

The use of palms by humans dates back to pre-historical times.

Ever since, in addition to being used directly from nature, palms

have been significantly important to the world, taking part in the

daily lives and lifestyles of millions of people (Campos and

Albuquerque, 2021). This is recorded in many ancient

documents, just as shown in Figure 5, in which archaeologists

found rock paintings representing the use and importance of palm

trees for pre-historic populations.
Traditional uses

The traditional medicinal uses that have been referred to most

of palms here reviewed have influence research projects devoted to

unraveling bioactive compounds of palms (Campos and

Albuquerque, 2021). For centuries, in different communities

around the world, they have been used due to their effectiveness

against numerous diseases (Sen and Samanta, 2014). Since Ancient

Mesopotamia and Egypt, and even in China, these plants have

played a substantial role in medicine, as they have been constantly

used in preventive medicine for the treatment and cure of acute and

chronic diseases (Yang et al., 2018).

According to the World Health Organization (2019), the use of

traditional medicine practices is increasingly growing. The major

uses of palms for that purpose are through extracts and oils. That

said, studies have initiated the isolation of molecules from bioactive

compounds to understand and formulate new herbal medicines for

treating infectious and chronic diseases (Dias et al., 2012). The

pharmacological potential of palms is due to their secondary

metabolism, that produces several compounds of pharmaceutical

interest (Kabera et al., 2014). Moreover, some of them are

biotechnologically exploited, to produce biodiesel, enzymes,

among others, where there is the ultimately expansion of the use

of plants by humanity (de Menezes et al., 2016).
FIGURE 5

Archeological record. Rock paintings of palm tree Mauritia flexuosa
(Buriti) from the Peruaçu Valley, Minas Gerais – Brazil. Worldwide
records of plants are very rare, which makes the Peruaçu Valley a
very particular place. Photo: Fábio O. Freitas/Embrapa Cenargen.
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Butia palms can be used in traditional medicine considering

their antibacterial, anti-inflammatory and antioxidant activity

(Schneider et al., 2017). The Euterpe genus comprises palms

reported for their anti-inflammatory, anticancer, antimicrobial,

antinociceptive, anticancer and anti-atherogenic, among others

(de Almeida et al., 2020; Cardoso et al., 2018). Elaeis palm

studied for antiparasitic and cicatrization abilities (Reddy et al.,

2019). The Syagrus genus is widely used by communities as a

nutritional source (Coimbra and Jorge, 2011). Moreover, Syagrus

palms are also therapeutic (Hughes et al., 2013), being a good option

for antiparasitic activities (Rodrigues et al., 2011), antioxidants

(Belviso et al., 2013) and hypoglycemia (Lam et al., 2008). It is

important to emphasize that although traditional communities use

these species for different treatments, research should be conducted

to prove their effectiveness, which requires much more work on the

great diversity of molecules available from such plants.
Biotechnological applications

With the use of palms by traditional communities as medicinal

compounds, the pharmaceutical industries began to apply natural

compounds such as nut oil and leaves/fruit extracts in their

formulations. Through biotechnological tools, it is possible to

improve the desirable characteristics of palms performing the

isolation of bioactive molecules (David et al., 2015), e.g. Genetic

Engineering: by modifying the genetic makeup of palm species, it’s

possible to enhance the oil yield and modify the fatty acid

composition to produce better-quality biodiesel. Techniques like

CRISPR/Cas9 can be used for precise genome editing (Zhu et al.,

2020). Omics technologies are also a viable alternative, such as: (i)

Genomics: Sequencing the genomes of palm species to identify

genes associated with oil production and quality (Schmutz et al.,

2010); (ii) Transcriptomics: Studying gene expression profiles under

different conditions to identify regulatory networks that control oil

biosynthesis (Wang et al., 2009); (iii) Proteomics: Analyzing the

protein profiles to understand the enzymes involved in oil

production (Lucas et al., 2015); (iv) Metabolomics: Profiling

metabolites to identify key intermediates and end-products in oil

biosynthesis pathways (Fiehn, 2002).

Tissue culture and genetic transformation have been employed

to produce plants with desirable traits such as improved resistance

to pests, drought and diseases, higher productivity and quality of

fruits and seeds (Patnaik et al., 1999; Gulzar et al., 2020). An

important case of study is the African oil palm, which proved to be

an important species to be invested for plant breeding, tissue

culture, machinery, agrochemicals, oil fractionation and

oleochemistry (Corley and Tinker, 2003). This oil palm presents

the highest yielding oilseed crop, averaging 3-4 tons per hectare/

year of mesocarp oil. This means that its productivity is higher than

most oilseeds (Wahid et al., 2005).

Syagrus also holds great potential. These palms produce several

bioactive compounds, properties capable of assisting in the

treatment of bacterial and parasitic infections (Syagrus coronata);

and are effective in the treatments and/or prevention of diseases

such as diabetes and Alzheimer’s (Syagrus romanzoffiana), as it
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presents anticholinesterase and anti a-glycosidase activity

(Coriolano et al., 2021).
Other applications and what is needed

In general, due to their variable chemical composition,

biotechnological tools are much promising for the production of

considering the production of high-quality biodiesel (de Menezes

et al., 2016), e.g. (i) Enzyme Engineering: Engineering enzymes

involved in lipid metabolism to enhance their activity or specificity,

thereby improving the efficiency of oil extraction and conversion to

biodiesel (Bornscheuer et al., 2012); and (ii) Lipidomics: This is a

subset of metabolomics focused specifically on lipids. It helps in

understanding the detailed lipid composition and how it can be

optimized for biodiesel (Han and Gross, 2005). However, it is

interesting to note their importance for other areas, as

pharmaceutics, for producing low-cost and more efficient drugs

and components. However, to achieve such a goal, much more

research is necessary to better acknowledge and understand the

genetic diversity and structure of natural populations of several

palms. That research is fundamental for next endeavors toward

genetic improvement for improving cultivation and productivity of

desirable products and molecules. Several potential products are

listed in Table 1.
Molecular tools in genomics and
molecular breeding

Population genomics

Advances in molecular and genetic research have provided a

better understanding of the genetic diversity and evolution of plant

species, as well as their potential use in various areas. DNA

molecular analysis has been used to investigate genetic diversity

in palms. Currently, population genetic and molecular breeding

studies have mainly been based on with next-generation sequencing

techniques (Azizi et al., 2020). Such studies have allowed the

identification of important genes for resistance to pests and

diseases (Murphy, 2014). To set an example, the ongoing research

on genetic diversity and adaptation in oil palms (Elaeis guineensis

and Elaeis oleifera), that are important sources of vegetable oil, have

delivered numerous findings in the literature. The genome

sequencing studies of these species have identified genes

responsible for oil production (Dussert et al., 2013).

Palms are an important source of genetic variability and can be

used to improve existing palm species and develop new varieties.

Germplasm banks have been established to preserve and document

palm genetic diversity worldwide. Preservation and documentation

of palm genetic resources are critical to ensure sustainable use of

plant genetic resources (Jaradat, 2015).

Palm population genomics has become an area of great interest

for researchers in recent years, since palms present a wide genetic

and morphological diversity, besides having great economic
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TABLE 1 Possible applications of American palm species.

Specie Plant part utilized Possible application References

Acrocomia
aculeata

Stipe Construction, production of fermented drink (sap) Brasil (2015); Coutiño et al. (2020)

Mesocarp (pulp)
Human food (fresh or processed), Animal feed

(cake) oil, biofuel, medicinal
Sant’Ana et al. (2023); César et al. (2015); Dias et al. (2021)

Endocarp Activated carbon, bioenergy, crushed stone Vieira et al. (2021); Alves et al. (2022); Calvani et al. (2020)

Acrocomia
totai

Thorns Medicinal potential Souza et al. (2017)

Leaves Bioenergy, medicinal potential Souza et al. (2021); Souza et al. (2019)

Mesocarp (pulp) Human food, oil, biofuel, animal feed Lapuerta et al. (2014); Peralta et al. (2013); Markley (1955)

Attalea
maripa

Stipe Bioenergy Nagaishi et al. (2019)

Apical meristem (palm heart) Human food, animal feed Lucas et al. (2023); Schons et al. (2024)

Mesocarp (pulp) Human food (fresh or processed), animal feed, oil Lucas et al. (2023); Barbi et al. (2019)

Astrocaryum
aculeatum

Epicarp (shell) Catalyzer (biodiesel production) Mendonça et al. (2019)

Mesocarp (pulp)
Food (fresh or processed), animal feed, drink, oil,

insecticide, medicinal

Brasil (2015); Santos et al. (2015); Santos et al. (2018);
Linhares et al. (2017); Carneiro et al. (2017); Guex

et al. (2020)

Endocarp Bio-jewelry, activated carbon Brasil (2015); Santos et al. (2018); Umpierres et al. (2017)

Endosperm (kernel) Oil (cosmetic), medicinal, biofuel Santos et al. (2018); Freitas et al. (2022)

Astrocaryum
murumuru

Leaves Cellulose industry Bezerra (2012)

Endosperm (kernel) Oil, cosmetics, animal feed
Santos et al. (2023); Bezerra (2012); Serra-Ferreira

et al. (2020);

Astrocaryum
vulgare

Stipe Civil construction Lima et al. (2013)

Endocarp Bio-jewelry Lima et al. (2013)

Butia
odorata

Mesocarp (pulp)
Human food (fresh or processed),

medicinal, antibiotic
Barbieri et al. (2014); Maia et al. (2019); Silveira et al. (2022);

Wagner et al. (2022)

Copernicia
alba

Leaves Handicrafts (fibers) Bortolotto et al. (2019)

Endosperm (kernel) Animal feed, oil, xylitol
Gorostegui et al. (2011); Castellani et al. (2014); Silva

et al. (2023)

Mauritia
flexuosa

Mesocarp (pulp)
Human food (fresh or processed), animal feed,

oil, biofuel

Brasil (2015); Freitas et al. (2020); Morais et al. (2019); Costa
et al. (2021); Lima et al. (2017); Amarante and Braga (2021);

Santos et al. (2015)

Endosperm (kernel) Oil, insecticides Santos et al. (2015)

Oenocarpus
bacaba

Stipe Construction, tools, medicinal Miller (2002); Vasconcelos et al. (2015); Mans et al. (2022)

root Medicine Vasconcelos et al. (2015); Leba et al. (2016)

Epicarp (shell) Drink Baldissera et al. (2023)

Oenocarpus
bataua

Inflorescence/
infructescence rachis

Animal feed (salt supply) Oliveira et al. (2022b); Miranda et al. (2009)

Mesocarp (pulp) Human food, functional food, oil, insecticide
Oliveira et al. (2022b); Rezaire et al. (2014); Montúfar et al.

(2010); Santos et al. (2015)

Endosperm (kernel) Human food, oil, handicrafts, bio-jewelry
Oliveira et al. (2022b); Montúfar et al. (2010); Miranda

et al. (2009)

Phytelephas
macrocarpa

Leaves Construction (roof), ropes (fibers) Ferreira (2005)

Mesocarp (pulp) Human food, animal feed Ferreira (2005)
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importance in several regions of the world. Thus, population

genomics can be used to understand the population structure,

genetic diversity, and ecological adaptations of palms.

According to Cutter (2013), population genomics can be used to

explore phylogenetic and biogeographic relationships, as well as to

investigate genetic variation among populations and identify the

molecular adaptations that allow species to adapt to different

environments. In addition, population genomics can help to

understand how climate change may affect palm distribution and

survival, thus enabling the implementation of more effective

conservation measures.

Baker et al. (2011) reported the use of population genomics in

palms to elucidate genetic diversity in different species, including

the identification of genetic polymorphisms and the analysis of gene

flow between populations. They also highlight the importance of

population genomics in the conservation of endangered palm

species, enabling the monitoring of genetic variation and

decision-making on management actions.
Breeding

Since the early 1900s, plant breeding has played a fundamental

role in the scientific and social field (Tester and Langridge, 2010). In

agriculture, radical climate changes such as heat and drought have

been directly affecting farmers worldwide, causing a decline in their

productivity and yield (Swaminathan and Kesavan, 2012).

Therefore, through molecular advances, plant breeding becomes a

resource capable of developing plants with characteristics to adapt

and develop under different environmental conditions (Bharadwaj,

2016), that is, a breeding toward climatic resilience.

Plant selection has been used in society for more than 10,000

years to create and identify plants with better nutritional values, a

method aimed at improving the status of different plants (Moose

and Mumm, 2008). Through scientific developments, it is possible

to obtain different innovations in plant breeding (Varshney et al.,

2006), making future foods and products to be increasingly based

on natural plants (Li et al., 2018), such as with palms (E.g. Bactris

gasipaes, Euterpe edulis, Acrocomia aculeata).

Finally, population genomics can also be applied in genetic

improvement studies in palm trees, as reported by Yue et al. (2021).

Population genomics can be used to identify traits of economic

interest, such as resistance to diseases and tolerance to

environmental stresses, thus allowing the selection of individuals

with desirable traits for commercial cultivation. Basically,

population genomics has a great potential in understanding the

diversity, evolution, and conservation of palm trees, besides being

able to be used in breeding programs for the commercial cultivation

of these species. Currently, there are several programs for genetic

improvement in palm trees, aiming to select individuals with

desirable characteristics, such as resistance to diseases, higher

fruit and seed production, greater resistance to environmental

stress, among others.

Palm tree breeding programs are important tools to increase the

productivity and resistance of the species, thus guaranteeing their

conservation and the sustainability of the ecosystems that shelter
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them. The domestication of species and genetic improvement

studies become attractive for financial investments in research

and biotechnology. In this way, studies that opt to work with the

diversity and genetic structure of natural populations can help in

the development of strategies that prioritize the preservation and

conservation of these important species.

Genetic improvement of palm trees has seen significant

advancements through various scientific studies, aiming to

enhance traits such as disease resistance, yield, and stress

tolerance. One notable example is the work on oil palm (Elaeis

guineensis) in Malaysia, where researchers have utilized marker-

assisted selection to identify and propagate individuals with

desirable traits. Studies by Rajanaidu et al. (2000) demonstrated

the use of molecular markers to accelerate breeding programs,

leading to the development of higher-yielding and more disease-

resistant oil palm varieties. Another case involves the peach palm

(Bactris gasipaes) in Brazil, where genetic improvement efforts have

focused on increasing fruit size and quality (Gazel-Filho and Lima,

2001). Research by Clement et al. (1988) employed genetic diversity

studies to select superior genotypes for cultivation, resulting in

improved varieties that support local economies and food security.

Furthermore, genomic studies on date palms (Phoenix

dactylifera) in the Middle East have identified key genes

associated with drought tolerance and fruit development. Al-Dous

et al. (2011) sequenced the date palm genome, providing a valuable

resource for breeding programs aimed at enhancing resilience to

climate change. These case studies underscore the potential of

genetic improvement in palms, leveraging advanced genomic

tools and traditional breeding techniques to meet agricultural and

economic demands.
Plastidial genomes

The plastome is represented as a single circular molecule

composed of two inverted and repeated regions (IR), a large

single copy (LSC) and a small single copy (SSC), with 120 to 130

genes, encoding ribosomal RNA (rRNA), transfer RNA (tRNA) and

peptides. The size of the plastome can reach from 107 kb to 218 kb,

varying between species (Menezes et al., 2018). According to Barrett

et al. (2016), Arecaceae plastomes have a low rate of variation,

however, the rate of diversification in palm genera seems to increase

and a convergent evolution has been reported among species over

the years (Ma et al., 2015; Faurby et al., 2016). Although most

plastids are conserved, some events have been described, such as

new RNA addition, loss of introns and high divergence of genes (He

et al., 2016; Chen et al., 2017). This factor may be related to adaptive

changes in plastid genes; however, it is still unknown whether the

adaptations in the genus are related to environmental conditions

(Lopes et al., 2018). Studies show an increasing number of new

species with plastidial genomes (plastomes) becoming available, a

useful tool for phylogenetics and evolution studies, as it assesses

gene content, arrangements in genomes, gene loss and transfer, and

recombination events (Park et al., 2017; Lopes et al., 2017).

Moreover, hypervariable regions in plastomes can provide

information that elucidates unclassified phylogenetic relationships
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(Smidt et al., 2020). The complete sequence of plastomes is a

prerequisite for the selection of target intergenic regions for

transgene insertion, moreover, it has been used in metabolic

engineering (Daniell et al., 2016) and presents itself in a feasible

way for the manipulation of plastidial biosynthesis and fatty acids

(Rogalski and Carrer, 2011). Therefore, knowledge on plastomes

has important applications in biotechnology (Daniell et al., 2016;

Zhang et al., 2017). Plastome assembly becomes effective for

understanding evolutionary aspects of plants at the gene level

(Park et al., 2017).
Genome assembly

Genome assembly is a method that has been increasingly used in

plant breeding and population genomics. It allows the reconstruction

of an organism’s DNA sequence, which can lead to important

discoveries regarding genome structure and function (Zhang et al.,

2016). Genome assembly has been proven a valuable tool in

identifying genes and genetic variants associated with desirable

traits, as well as understanding the genetic structure of plant

varieties (Elshire et al., 2011). As for traits, genomes resequencing

has assisted in the discovery of genomics regions associated with

disease resistance and tolerance to environmental stresses (Song et al.,

2023). This allows the creation of plant varieties that are more

resistant and adapted to specific environmental conditions.

It is well established that population genetics is a field of genetics

that deals with changes in allele frequency in populations over time.

In turn genome assembly adds up as an important resource to the

field as it allows a deeper understanding of the genetic structure of

populations and the identification of molecular markers associated

with specific traits (Allendorf et al., 2010; Wright, 1951).

As for palms, an example of the application of genome assembly

in population genetics is the study by Al-Mssallem et al. (2013), that

investigated the genetic diversity in Phoenix dactylifera L. The

results of this study revealed a great genetic diversity in these

populations, as well as the presence of adaptive genes associated

with traits such as disease resistance and tolerance to

environmental stresses.

It is valid to emphasize the importance of genome assembly as a

tool supportive of conservation of the biodiversity of palm species,

since it allows a thorough characterization of the genomic diversity

status and the genomic structure of populations under

investigation, enabling conservationists to design more effective

and targeted conservation strategies (Dransfield et al., 2008).

Currently, there are some palm species with their genomes

assembled and deposited to the National Center for Biotechnology

Information (NCBI), 2023. Our search showed the following species

with deposited assemblages: Cocos nucifera, Elaeis guineensis, Elaeis

oleifera, Phoenix dactylifera, Areca catechu, Phoenix roebelenii,

Metroxylon sagu, Calamus simplicifolius. It is important to note

that the list may be constantly being updated, as new species may

have their genomes assembled and made available to the

scientific community.
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Phylogeny

Phylogeny is the study of evolutionary relationships among

species and taxonomic groups, based on morphological, molecular

and/or behavioral characteristics. In palms, phylogeny has been

widely studied through molecular analyses, which allow the

reconstruction of evolutionary history and the understanding of

relationships between species (Baker et al., 2011). As palms are a

diverse group of plants, distributed worldwide, that are important to

humans as a source of food, raw material, and ornamentation, as

well as playing a crucial role in many ecosystems, especially in

tropical regions, phylogenetic studies prove to be extremely

important for addressing several biological and genetic questions

(Baker and Couvreur, 2012; Muscarella et al., 2019; Dransfield

et al., 2008).

Phylogenetic analyses are key to the understanding of biological

diversity. Additionally, it can also be used to identify species at risk

of extinction and to plan more effective conservation strategies. This

is because the most endangered species usually have older and/or

unique evolutionary lineages, which makes them more important

from a biological diversity perspective (Baker and Dransfield, 2016;

Muscarella et al., 2019, Baker et al., 2009).

There are several methods for phylogeny reconstruction in

palms, including DNA and RNA sequences, morphological traits

and both combined (Baker et al., 2011; Muscarella et al., 2019;

Eiserhardt et al., 2011). Molecular analyses are the most common

and include:
- Gene sequencing: genes that are commonly used in palm

phylogeny include rbcL (from chloroplast), ITS (internal

transcribed spacer of nuclear DNA), trnL-F (from

chloroplast) and matK (plastidial marker). These genes

show different rates of evolution and allow comparisons

among species at different taxonomic levels (Eiserhardt

et al., 2011; Meerow et al., 2009).

- Molecular markers: in addition to genes, molecular markers

such as microsatellites and SNPs (single nucleotide

polymorphisms) are also used for phylogeny reconstruction

in palms. The use of genetic markers together with DNA

sequences has proven to be an efficient strategy for the

inference of phylogenetic relationships in palm trees,

allowing the resolution of evolutionary relationships at

deeper levels and the identification of possible hybridization

events (Muscarella et al., 2020).
According to Muscarella et al. (2020), phylogenetic inferences

in palms have been used to understand the evolution of diversity

and adaptations of these plants to different environments. Crucial

information for understanding the evolution of palms and their

taxonomic classifications.

In addition, comparative genomics among palm species has

been used to identify common and unique features in their

genomes, which can lead to a better understanding of palm

evolution and better use of their genetic resources. Genetic
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analysis has also been used to differentiate species and subspecies, as

well as to understand phylogenetic relationships among palm

species (Dussert et al., 2013).
Socio-economic impact

Palm trees are a group of plants with great socioeconomic

importance worldwide, especially for populations living in tropical

and subtropical areas. The Arecaceae family stands out for their

diversity of uses, ranging from food production to the manufacture

of cosmetic products and medicines.

Palm trees have been used by traditional communities for

centuries, providing food, shelter, medicines, and other important

resources. According to Eiserhardt et al. (2011), Arecaceae palms

are important sources of edible oils, such as palm oil and coconut

oil, which are widely used in cooking around the world. In addition,

fibers from palm leaves are used in the manufacture of baskets, mats

and other craft items and are also used in the manufacture of

cosmetic products and medicines, such as palm kernel oil, which is

used in the production of soaps and skin creams.

The direct socioeconomic impact provided by palm trees is the

production of oil palm is an important economic sector in many

tropical countries, contributing significantly to employment and

income generation. According to Baker and Couvreur (2012), palm

oil production is a major source of income for rural communities in

many countries, including Indonesia and Malaysia.

In addition, oil palm production plays an important role in food

security by providing an important nutritional supplement for low-

income communities. According to Muscarella et al. (2020), oil

palm production has been associated with significant improvements

in the health and well-being of local populations. However, oil palm

production is also often associated with negative environmental

impacts, such as deforestation and degradation of natural habitat. It

is important to implement sustainable oil palm production practices

to minimize these impacts and ensure the conservation of

natural areas.
Economic, social, and environmental
indicators of neotropical palms

Economic indicator

- Income and Livelihoods: The economic impact of palm-

derived products is substantial, particularly in rural economies.

Direct income is generated from the sale of fruits, wood, fibers, and

oils, while indirect income comes from associated activities such as

tourism, crafts, and services. For example, the commercialization of

açai (Euterpe oleracea) has provided significant revenue to

Amazonian communities, transforming local economies and

improving livelihoods (Brondizio, 2008). Similarly, the harvesting
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of palm hearts has become a vital economic activity in various

neotropical regions.

- Contribution to GDP: Palm-related activities contribute

markedly to local and national GDPs. This includes both primary

production and secondary industries such as processing and

marketing. For instance, in some regions of Brazil and Colombia,

palm oil production is a major economic driver, contributing

significantly to the agricultural GDP (Koh and Wilcove, 2008).

- Employment: The palm industry generates numerous jobs, both

direct (cultivation, harvesting, processing) and indirect (marketing,

distribution, services). It is essential to consider the variety of

employment created, which includes temporary, permanent, skilled,

and unskilled positions (Feintrenie et al., 2010). The sector’s ability to

provide diverse employment opportunities helps in stabilizing local

economies and reducing poverty. E.g. (i) Direct Employment: The

cultivation and processing of palm oil in Indonesia generate a

considerable number of direct jobs. These include roles in

plantation management, harvesting, and processing facilities.

According to Feintrenie et al. (2010), the oil palm industry in

Bungo district alone supports a large workforce, with plantations

employing a mix of skilled and unskilled labor. The jobs range from

manual labor positions, such as fruit collection and processing, to

more specialized roles in plantation management and machinery

operation. (ii) Indirect Employment: In addition to direct

employment, the palm oil industry also creates numerous indirect

job opportunities. These include roles in marketing, distribution, and

services related to the palm oil supply chain. Feintrenie et al., highlight

that local economies benefit significantly from the ancillary businesses

that support the palm oil industry. For example, transportation

services for moving palm oil products, retail operations selling

palm-derived goods, and maintenance services for plantation

equipment are all essential components of the employment

landscape. Employment Characteristics: Feintrenie et al., emphasizes

the diversity of employment types within the palm oil sector.

Employment opportunities include temporary and permanent

positions, catering to a wide range of skill levels. The sector provides

critical income sources for local communities, contributing to poverty

alleviation and economic stability. Furthermore, the study notes that

the oil palm industry tends to offer more stable and higher-paying jobs

compared to other agricultural sectors, which is a significant factor in

its preference among local farmers and workers.

- Gender and Equity Considerations: An important aspect of

employment in the palm oil sector is the involvement of women and

efforts toward equitable distribution of benefits. According to Cramb

andMcCarthy (2016), women’s participation in the palm oil industry

is crucial, especially in roles such as nursery management, harvesting,

and processing. These opportunities provide women with

independent income sources, contributing to their empowerment

and improving household economic conditions.

- Marketing and Investment: The volume of palm product

production, market prices, and profit margins are critical indicators

of economic health. Additionally, significant investments in

plantations, processing facilities, infrastructure, and technology
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reflect the sector’s growth and potential (Santika et al., 2019). These

investments not only boost production capacity but also enhance the

quality and sustainability of palm products (Donald, 2004).
Social indicator

- Food Security: Palm products play a crucial role in the diet and

nutrition of local communities, thereby enhancing food security.

Palm fruits are rich in essential nutrients, contributing to the

sustenance and nutritional needs of rural populations (Johnson,

1998). For instance, the high-fat content in palm fruits can be

critical for energy intake in regions where food scarcity is an issue.

- Well-being: Economic benefits derived from palm cultivation

have a direct impact on the well-being of local populations.

Improvements in living conditions, such as access to clean water,

sanitation, education, and healthcare, are often linked to the

economic gains from palm-related activities (Sayer et al., 2012).

These improvements contribute to overall community health and

development (Schroth et al., 2004).

- Poverty Reduction and Equity: Equitable distribution of

benefits and the empowerment of women and vulnerable groups

are essential for sustainable development. The palm sector has the

potential to reduce poverty by providing income-generating

opportunities and promoting social equity (Chao, 2012).
Environmental indicator

- Sustainable Management Practices: Adopting environmentally

sustainable practices in palm plantations is crucial for long-term

viability. Certification schemes and sustainable management plans,

such as those promoted by the Roundtable on Sustainable Palm Oil

(RSPO), help mitigate negative environmental impacts (Koh and

Wilcove, 2008). Sustainable practices ensure the preservation of

natural resources and reduce the ecological footprint of palm

cultivation (Gaveau et al., 2016).

- Biodiversity Impact: Understanding the impact of palm

exploitation on biodiversity is essential for conservation efforts.

Palm ecosystems contribute significantly to biodiversity, offering

habitat and food resources for various species, (e. g. Euterpe edulis)

(Scariot, 2015). The role of palms in climate regulation, soil

protection, and water provision underscores their environmental

importance (Fitzherbert et al., 2008). Efforts to maintain and

enhance biodiversity within palm plantations can lead to more

resilient and sustainable ecosystems (Struebig et al., 2015).
Conclusion

Arecaceae, the palm family, is of great socio-economic

importance around the world, providing crucial resources for
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local communities and contributing significantly to the global

economy. Palm trees play a key role in maintaining biodiversity

and ecosystem services, but many species are threatened with

extinction. It is therefore essential to ensure that palm genetic

resources are conserved in a sustainable way, as this minimizes

negative environmental impacts and protects natural areas. The

socio-economic importance of palm trees is evident, covering

economic, social and environmental indicators. The economic

indicators highlight that the income generated by palm-derived

products, such as fruit, wood, fibers and oils, is vital to local

economies. Palm trees also contribute to the GDP of the

producing regions, reflecting their economic importance. The

sector generates numerous jobs, providing essential employment

opportunities. Social indicators emphasize the contribution of palm

products to food security and general well-being, linking the

economic benefits of oil palm cultivation to improved living

conditions and poverty reduction. Environmental indicators

highlight the importance of sustainable management practices,

biodiversity conservation and the ecosystem services provided by

oil palm ecosystems. Population genetic and genomic studies are

also fundamental to understanding the importance of palm species.

They reveal patterns of genetic variation that inform conservation

priorities and develop effective management strategies. These

studies facilitate the identification of genes associated with

important traits, such as disease resistance and stress tolerance,

which can improve sustainable palm cultivation. By integrating

genetic and genomic data with ecological and biogeographical

information, researchers can create comprehensive conservation

and management plans that ensure the long-term viability of palm

species and their ecosystems. In addition, preserving traditional

knowledge and strengthening social capital through community

cooperation are key to increasing the resilience and sustainability of

palm-related activities. These measures stimulate community

involvement and ownership, promoting sustainable development.
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do Meio Ambiente, Brasıĺia).
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Kunth.) composição mineral e cinética de enzimas oxidativas. Cien Technol. Aliment.
28, 540–544. doi: 10.1590/S0101-20612008000300006

Gaveau, D., Sheil, D., Husnayaen, Salim, M. A., Arjasakusuma, S., Ancrenaz, M., et al.
(2016). Rapid conversions and avoided deforestation: examining four decades of
industrial plantation expansion in Borneo. Sci. Rep. 6, 32017. doi: 10.1038/srep32017

Gazel-Filho, A. B., and Lima, J. A. S. (2001). Cultivo da Pupunheira (Bactris gasipaes
H.B.K.) para produção de fruto no Amapá (EMBRAPA, Circular Técnica). Available
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G. A. S. (2019). Caracterização Quıḿica, fıśica e tecnológia da farinha obtida a partir da
casca de Buriti (Mauritia flexuosa L. f.). Braz. J. Dev. 5, 23307–23322. doi: 10.34117/
bjdv5n11-050

Murphy, D. J. (2014). The future of oil palm as a major global crop: opportunities and
challenges. J. Oil Palm Res. 26, 1–24.

Muscarella, R., Bacon, C. D., Faurby, S., Antonelli, A., Kristiansen, S. M., Svenning, J.
C., et al. (2019). Soil fertility and flood regime are correlated with phylogenetic structure
of Amazonian palm communities. Ann. Bot. 123, 641–655. doi: 10.1093/aob/mcy196

Muscarella, R., Emilio, T., Phillips, O. L., Lewis, S. L., Slik, F., Baker, W. J., et al.
(2020). The global abundance of tree palms. Glob. Ecol. Biogeogr. 29, 1495–1514.
doi: 10.1111/geb.13123

Nagaishi, T. Y. R., Numazawa, S., Nagaishi, M. S. C. F., Mumazawa, C. T. S., Oliveira,
P. R. S., and Lobato, C. C. S. (2019). Use of the Inajá stipe (Attalea maripa (Aubl.)
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17, 343–353. doi: 10.1590/S0102-33062003000300002

Oliveira, M. S. P., Oliveira, N. P., Abreu, L. F., and Paracampo, N. E. N. P. (2022a).
“Astrocaryum aculeatum e A. vulgare - Tucumã-do-amazonas e tucumã-do-pará,” in
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bataua: Patauá. In: Espécies Nativas da Flora Brasileira de Valor Econômico Atual ou
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