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Pine Wilt Disease (PWD) is a devastating forest disease that has a serious impact

on ecological balance ecological. Since the identification of plant-pathogen

protein interactions (PPIs) is a critical step in understanding the pathogenic

system of the pine wilt disease, this study proposes a Multi-feature Fusion

Graph Attention Convolution (MFGAC-PPI) for predicting plant-pathogen PPIs

based on deep learning. Compared with methods based on single-feature

information, MFGAC-PPI obtains more 3D characterization information by

utilizing AlphaFold and combining protein sequence features to extract multi-

dimensional features via Transform with improved GCN. The performance of

MFGAC-PPI was compared with the current representative methods of

sequence-based, structure-based and hybrid characterization, demonstrating

its superiority across all metrics. The experiments showed that learning multi-

dimensional feature information effectively improved the ability of MFGAC-PPI in

plant and pathogen PPI prediction tasks. Meanwhile, a pine wilt disease PPI

network consisting of 2,688 interacting protein pairs was constructed based on

MFGAC-PPI, which made it possible to systematically discover new disease

resistance genes in pine trees and promoted the understanding of plant-

pathogen interactions.
KEYWORDS

protein-protein interaction, pine wilt disease, deep learning, multi-dimensional feature,
pine wood nematode (Bursaphelenchus xylophilus)
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1 Introduction

Pine Wilt Disease (PWD) is a devastating and prevalent forest

disease caused by the pine wood nematode (Bursaphelenchus

xylophilus), which is known as the “cancer” of pine trees and the

“avian flu” of pine forests. The disease can harm most pine (Pinus)

plants, and it can destroy entire pine forests within 3 to 5 years from

the initial infection, the pine forest resources, natural landscape and

ecological environment caused serious damage (Xu et al., 2023).

Therefore, exploring the pathogenic mechanisms of pine wilt

disease and achieving effective early prevention have become top

priorities in global forest protection.

Protein-protein interactions (PPI) between plants and pathogens

are fundamental to understanding infection mechanisms and host

response strategies. The first line of defense for plant disease

resistance is to recognize pathogen-associated molecular patterns

(PAMPs) through cell surface receptors (PRRs), which activates

pattern-triggered immunity (PTI) (Yuan et al., 2021). At this stage,

to destroy the host immune system, pathogens will secrete effector

proteins that interact directly or indirectly with plant proteins,

interfering with the plant’s PTI response. To counteract pathogen

virulence, plants initiate a second line of defense that specifically

recognizes effectors through intracellular resistance proteins (R),

thereby activating effector-triggered immunity (ETI) (Naveed et al.,

2020). In summary, the interactions between host resistance proteins

and pathogen-effector proteins play a pivotal role in plant-pathogen

molecular recognition (Cardoso et al., 2024). The interaction between

the pine wood nematode and pine tree serves as a quintessential

model of plant-pathogen relationships, encompassing both the

processes of pathogen infection and destruction of the host, as well

as host perception and defense against invasion. Therefore,

investigating the protein-protein interaction networks between the

pine wood nematode and its host pine trees is crucial for elucidating

the pathogenic mechanisms of pine wood nematode disease. This

understanding is of great significance for achieving early pest control,

maintaining forest health and ecosystem balance.

Traditional methods for protein-protein interactions

identification, including yeast two-hybrid screen(Y2H) (Uetz

et al., 2000), affinity purification-mass spectrometry (AP-MS)

(Gavin et al., 2002), and co-immunoprecipitation (Co-IP)

(Bennett et al., 2010), were initially widely used in human-virus

PPI studies (Zhou et al., 2023; Kim et al., 2023). These techniques

laid the foundation for phytopathology network studies, resulting in

a series of plant-pathogen PPI databases such as HPIDB (Ammari

et al., 2016), PHI-base (Winnenburg et al., 2007), and UVPID

(Jiehua et al., 2019). However, these methods are time-consuming

and costly, which make the study of disease resistance mechanisms

in non-model plants generally lack of holistic nature, and

experimentally validated PPIs between Pinus sylvestris and Pinus

sylvestris nematodes are even fewer (Meng et al., 2017; Liu et al.,

2021). Consequently, there is an urgent need to develop a fast and

accurate plant-pathogen PPI prediction method to elucidate the

pathogenic system of pine wilt disease.

Computational prediction methods for PPIs play an increasingly

important role benefiting from the rapid development of
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computational biology. Methods based on machine learning (ML)

have been widely applied in early computational modeling studies of

cross-species PPI (Tang et al., 2023). A range of ML methods, have

demonstrated effectiveness in PPI prediction tasks for species like

human hepatitis C virus and Arabidopsis (Wang et al., 2021; Ahmed

et al., 2021; Lei et al., 2023). With the increasing availability of high-

throughput sequencing data, traditional ML methods are becoming

inadequate for handling vast amounts of data, and deep learning

(DL) has attracted wide attention in the field of bioinformatics due to

its powerful model expression ability (Zhang et al., 2024). Protein

sequences serve as the primary data source for PPI prediction, and

many models leverage sequence information to conduct predictive

research, such as DNN-PPI (Li et al., 2018), DeepFE-PPI (Yao et al.,

2019), PIPR (Chen et al., 2019), and so on. A series of results have

also been achieved in plant-pathogen PPI prediction research work,

for example, Zheng (Zheng et al., 2023) fused protein sequence,

structural domain and gene ontology (GO) information to construct

a deep learning framework based on the combination of word2vec

and RCNN to predict protein-protein interactions in Arabidopsis

thaliana, and validated its ability to cross-species prediction in

different datasets. Pan (Pan et al., 2022) fuses protein sequence

information with behavioral information to predict interactions

between different plant proteins using DNN and obtains more

than 92% accuracy in a variety of datasets. Li (Li et al., 2022)

proposes a plant-pathogen prediction model by combining

position-specific scoring matrices (PSSMs) and evaluates the

effectiveness of the model in Arabidopsis thaliana, Zea mays, and

Oryza sativa datasets.

Recently, the general interest of researchers in predicting PPI

based on structural information has been driven by the rapid

growth of three-dimensional (3D) structural data of proteins,

especially by the vacated introduction of AIphaFold (Jumper

et al., 2021; Varadi et al., 2022), a series of structural and

graphical neural network-based prediction models have emerged,

such as DensePPI (Halsana et al., 2023), GraphPPIS (Yuan et al.,

2022), TAGPPI (Song et al., 2022), and Struct2Graph (Baranwal

et al., 2022). Zheng (Zheng et al., 2021) proposed a computational

framework based on structural and homology modeling, which not

only predicted the PPI networks of rice and the rice blast fungus,

generating an interactions network with 2,018 protein pairs, but

also analyzed the network to make systematic discovery of plant

disease resistance genes possible. Improvement of PPI prediction in

combination with AIphaFold may be a solution to this problem by

making predictions based on primary structure, which in turn

results in more protein structural information that can be used

on a genome-wide scale (Homma et al., 2023; Bryant et al., 2022).

In summary, the structural information of proteins is more

conserved relative to sequences during evolution and can be

obtained with higher accuracy, but the sequence evolution

information of proteins is crucial for predicting functionally

relevant interactions. Models relying solely on structural

information might overlook such vital biological data, limiting

their applicability and generalization capability (Kang et al., 2023;

Vajdi et al., 2020). Therefore, an approach that fuses sequence and

structural features by integrating a deep learning framework can
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reveal the details of protein interactions, which can be beneficial for

generalization to species-wide prediction efforts and elucidation of

genome-to-phenomenon (Sledzieski et al., 2021).

In this study, Graph Convolutional Networks (GCN) and

attention mechanisms focused on critical interaction nodes,

combined with AlphaFold, were used to predict the PPIs between

pine wood nematodes and their host pine trees. Compared to the

sole use of amino acid sequences or protein structure data, the

proposed method took a multi-level feature fusion approach to

acquire more comprehensive protein representation information,

thereby reducing evolutionary differences in cross-species PPIs and

improving predictive accuracy. Moreover, by converting structural

data into graph data, it was represented in the form of graph theory

to identify new interaction residues in the plant-pathogen system in

an unsupervised manner. In addition, PPIs for pine and pine wood

nematode proteins were constructed using a multidimensional

feature fusion method, providing valuable insights for

systematically understanding plantpathogen interactions and the

pathogenic mechanisms of Pine wilt disease.
2 Materials and methods

2.1 Construction of datasets

High-quality training data is crucial for deep learning models,

but the availability of known PPI data between plants and

pathogens is very limited. Therefore, training models on known

protein interaction datasets to predict PPIs in new host-pathogen

systems becomes particularly important. In this study, to improve

the accuracy of the model while preserving the biological

significance to the greatest extent, protein-related data of pine

nematode and host pine as well as PPI data verified by biological

experiments, were selected to build a dataset suitable for training a

pine nematode-pine PPIs prediction model.

First, the raw protein sequence data for both the pine wood

nematode and pine tree, which served as the basis for subsequent

construction of protein 3D structures and extraction of sequence

features, was obtained. The protein sequence data for the pine wood

nematode was gained from the NBIC database (Taxonomy ID: 6326),

totaling 53,412 sequences. The protein sequence data for the pine tree

was obtained from UNIPROT(https://www.uniprot.org), totaling

200,806 sequences. The genome annotation project database for

pine trees was TreeGenes (https://www.treegenesdb.org). To

minimize potential errors from raw protein sequence data,

sequences containing short protein sequences (e.g., lengths less

than 50 bp) and homologous sequences were removed.

The experimentally validated protein-protein interaction data

between the pine wood nematode and its host pine tree was gained

from the PHI-base (https://www.phi-base.org) database.

PPI data for both the pine wood nematode and pine tree were

queried from the STRING database. Specifically, there were 6,231

interaction pairs for the pine wood nematode and 2,009 interaction

pairs for the pine tree. All interaction data selected here were

physical interactions, excluding weak and transient interactions.

The interaction data between the two were analyzed and compared,
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and the overlapping data was regarded as interspecific interaction.

Finally, combining data obtained from PHI-base, 8,259 protein-

protein interaction pairs were constructed using 4,792 proteins,

including 5,258 positive reference datasets. It is worth noting that

protein interactions can take various forms, only direct physical

interactions were considered as positive data. Non-interacting

proteins cannot be directly obtained from PPI databases, so

proteins with no interactions in the PPI network were marked as

negative samples not recorded in the PPI dataset.

AlphaFold can obtain the representation information of 3D

structure through protein sequences. Therefore, AlphaFold DB

would be used to view the structural information of protein

interactions generated based on the above rules, and structure

prediction would be made for protein sequences lacking structural

information to generate PDB files to establish a protein structure

database for PPI prediction of pine wood nematode disease.

According to the structural graph of protein network

interactions, an interaction between two proteins was marked as

1, otherwise as 0. There were 8,259 positive and negative samples in

total, which were divided into training, testing sets in an 8:2. The

validation set was used to determine the optimal parameters for the

model, and the trained model with the determined optimal

parameters was used for training. To improve model

performance, different proportions of positive and negative

samples were set, and 1/2 of the positive (negative) samples from

the training set were mixed with the negative (positive) samples

from the training set to enhance the model’s generalization

capability under imbalanced sample conditions.
2.2 Network overall framework

An end-to-end deep learning framework MFGA-PPI was

introduced for identifying plant-pathogen PPIs. Here, we take the

sequence and structure information of the two proteins as input and

define it as a binary classification problem, with the final output being a

set of 0 or 1 predictions as to whether they interact or not. The overall

architecture of the MFGAC-PPI model is shown in Figure 1. This

model architecture consisted of three parts: the feature extraction

module, the feature aggregation module, and the prediction module.

In the first part, to better represent protein structures, both tertiary and

primary structure information and design feature extraction modules

were used for each. The second part used a linear interpolation method

to effectively combine the two feature vectors, achieving a

multidimensional protein representation. The third part inputed the

resulting protein pairs into an attention network, calculated attention

scores, and used them for PPI prediction.

2.2.1 Construction of graph data
After encoding the 3D structural features, the spatial

information of protein pairs needed to be converted into

corresponding protein graphs, and inputed into the graph neural

network for processing.

The protein feature coding process was divided into two parts:

extraction of tertiary structure features and extraction of primary

structure features.
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As shown in Figure 1, the protein feature encoding process was

divided into two parts, i.e., extracting tertiary structure features and

extracting primary structure features. Firstly, the main chain of the

protein was selected for feature extraction. Due to the different

atoms composing the 20 amino acids, each atom had distinct

characteristics in different amino acids.

According to the atoms that made up the amino acid residues,

four atomic features, namely van der Waals radius, electronic

charge, B-factor and atomic mass, were extracted from the PDB

file of the tertiary structure, and are used to represent

Fi,j
� �

i=1,:::,4;j=1,:::,N , where Fi,j
� �

represents the ith feature of the

jth atom in the residue. Then, the average of each atomic feature

within the residue is calculated and represented by fif gi= 1,…,4, where

i represents the ith atomic feature of the residue, and fi indicates the

average feature value of all atoms in the residue. Finally, a four-

dimensional atomic feature for each residue was obtained. The

calculation formula is as follows:

fi =
1
No

N

j=1
Fi,j (1)
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After the atomic features were obtained, the geometric structure

of the protein was analyzed to measure the distances between

residues and assess the possibility of interactions.

There are various methods to construct geometric shapes based

on atomic spatial coordinates. Borgwardt (Borgwardt et al., 2005)

described spatial contacts between atoms through van der Waals

forces or hydrogen bonds. Based on the idea of graph theory, Cha

(Cha et al., 2022)took the atomic positions after averaging as the

spatial position coordinates of amino acids and regarded them as

the vertices of the graph.

Given that graph theory-based methods can reveal the

topological structure of protein networks, the concept of graph

theory was firstly adopted by aggregating amino acids based on

group numbers and calculating the average distance between atoms

within the group to obtain the coordinates of each residue.

Subsequently, using the residue coordinates, the pairwise distances

between residues were calculated using the Euclidean distance.

Generally, if the distance between two amino acids in space was

less than 8 Å, they were considered to be in contact. Therefore, a

spatial proximity relationship was determined if the distance between
FIGURE 1

Overall structure of the model.
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residues was less than 8.0 Å (Mou et al., 2023). The protein graph of

length l is a square matrix C =   ca, bf g of order l, where

Ca,b =
1 if aa,b < 8:0Å

0 otherwise

(
(2)

Finally, we construct an n × n residue matrix was constructed and

the amino acid residues to unique integer identifiers were mapped,

being added to the atomic features to generate the node feature matrix

Xv ∈ Rn�4, where n is the number of residues and 4 represents the

four-dimensional node vector extracted. The constructed protein graph

object can be denoted asG =  (V , E,A), whereV is the set of vertices, E

is the set of edges between them, vertices represent amino acid residues,

edges represent spatial proximity relationships between residues, and A

is the adjacency matrix, A ∈ Rl�l .

Protein sequence features were extracted based on the main

chain, which typically consists of three atoms: nitrogen (N), alpha-

carbon (Ca), and carbonyl carbon (C). The alpha-carbon (Ca)
atom is commonly used to mark the position of amino acids (Lin

et al., 2022). The ESM-2 model was employed to extract features

from protein sequences. ESM2 is a language model based on the

Transformer architecture, which maps protein sequences to

representations in a high-dimensional space (Liu and Shen, 2023).

First, the coordinates of the Ca in the protein structure information

were used as reference points for amino acids and traversed each

main chain and residue to obtain the amino acid sequence. Then,

we use the ESM2 model was used to encode the protein sequence,

mapping each protein sequence to a 1280-dimensional vector and

obtaining embeddings at the protein level. Finally, the sequence

embeddings were added to the graph embeddings computed by the

GCN block, which were then normalized to the final output

embeddings to obtain the sequence feature vector Fg ∈ R1�20.

2.2.2 Improved graph convolutional network
processes protein graph

GCN is a convolutional neural network for processing graph

data, where nodes represent residues and edges represent

relationships between residues. Here the features of different

nodes in the protein graph data are aggregated using the

improved GCN module, which continuously learns and updates

the node features.

Node features first enter a 1D convolution layer to extract local

features, followed by processing through a bidirectional gated

recurrent unit (GRU) to capture global dependencies of the

residue node features and output a feature sequence. Finally, an

average pooling layer compressed the GRU output to generate

fixed-size feature representations. For the stability of convolution

operations, the adjacency matrix A is normalized. The feature was

propagated to the neighbor node through the adjacency matrix A1

and A2, which were the adjacency matrices of two proteins

respectively, and the updated feature of this node containing the

neighbor node was saved. The main calculation formula of GCN

module is as follows:

H(l+1) = s   ~D−1
2   ~A~D−1

2

� �
H(l)W(l) (3)
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where ~A = A + I, A is the adjacency matrix and I is the identity

matrix. Similarly, ~D = D + I, where D is the degree matrix of A, and

I is the identity matrix. H(l) represents the updated features of the

l-th layer residue nodes. When l = 0, it indicates that the node has

not been updated, thus H(0) = Xv , where Xv represents the initial

residue node features. W(l) is the trainable weight matrix of the l-th

layer, and s() is the nonlinear activation function. The feature of

the last updated residue node was inputted into Fg , and a total of

3 residue node updates were carried out in this experiment.

Therefore, for a pair of proteins A and B, we can extract richer

structural feature vectors can be extracted as F1g and F2g , F1g ∈
R1�20, F2g ∈ R1�20. Finally, the resulting structural feature vectors

were combined with the ESM output F1s and F2s to obtain F1 and F2,

where F1 = F1g + lF1s, and F2 = F2g + lF2s, with l being an

adjustable parameter.
2.2.3 Attention network for PPI prediction
The scaled dot-product attention mechanism was employed to

compute the attention between F1 and F2. A scaling factor was

introduced before the dot-product calculation to balance the

magnitude of the results, evaluating which residues play critical

roles in the interaction.

When calculating the attention of F1 on F2, the scaled dot-

product attention primarily accepted three parameters: Query (F1),

Key (F2), and Value (F2). First, the attention score(AS) was

computed by taking the dot product of the query and key

matrices. Secondly, to control the range of attention scores and

prevent gradient explosion or vanishing, the key vector dimension

dk was used to scale it and the scaled attention score (SAS) was

obtained. Finally, the attention weight matrix was multiplied by the

value matrix to compute the weighted sum. The formula of the

attention network is as follows:

SA = F1� F2T (4)

SAS =
F1� F2Tffiffiffiffiffi

dk
p (5)

S1 = softmax(
F1� F2Tffiffiffiffiffi

dk
p ),  S2 = softmax(

F2� F1Tffiffiffiffiffi
dk

p ) (6)

The final attention scores S1 and S2 were concatenated to obtain

s =  ½S1, S2�, which served as the output of the attention mechanism.
2.2.4 FNN layer
A fully connected layer was used to predict the model output.

The vector s obtained from the attention layer was used as the input

to the fully connected layer, which produced the vector z =  ½Z1,Z2�.
Finally, a softmax activation function was applied to yield the binary

classification result.

y pre = softmax(z) = ½ ez1

ez1 + ez2
,

ez1

ez1 + ez2
� (7)
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2.3 Model training and
hyperparameter setting

In this study, Intel(R) Xeon(R) Gold 6354 CPU @ 3.00GHz×2,

NVIDIA GeForce RTX 3090×4 graphics processor, 256.0GB

memory, 19TB MR9364-8i storage were used, and operating

system was Ubuntu 18.04.4 LTS.

In the process of model training, 5-fold cross-validation was

adopted. For each fold training set, 1000 samples were randomly

selected for training. For each selected sample, the characteristics

and labels of the sample were obtained. In this experiment, the

Adam optimizer was used to optimize the model. The initial value

of the learning rate was 1 × 10−3, and the learning rate attenuated to

half of the original value after every 10 rounds of training to prevent

the model from jumping out of the optimal solution. In this model,

three layers of GCN neural networks are used, and the embedding

dimension of GCN in each layer was 20, which reduces the

computational overhead on the premise of ensuring sufficient

feature information capture. The feature dimension of the protein

sequence captured by ESM was 1280 dimensions. Binary cross-

entropy is used as the loss function of the model in this paper, and

the formula is as follows:

Loss = ( − y log(p) + (1 − y) log(1 − p)) (8)

where, y is the true label and p is the probability that the model

predicts 1. y log(p) represents the loss when the true label is 1 and

(1 − y) log(1 − p) represents the loss when the true label is 0.
2.4 Evaluation metrics

In the experiment, eight common indicators were used to

evaluate the model: Precision, Recall, Accuracy, Specificity, F1-

score, Matthews Correlation Coefficient (MCC), Area Under the

P-R Curve(AUPRC) and Area Under the ROC Curve (AUROC).

Their relevant definitions are as follows:

Precision = TP
TP+FP ,Recall =

TP
TP+FN (9)

Accuracy = TP+TN
TP+FN+FP+TN (10)

Specificity = TN
TN+FP , F1 = 2�Precision�Recall

Precision+Recall (11)
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MCC = TP�TN−FP�FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(TP+FP)(TP+FN)(TN+FP)(TN+FN)

p (12)
3 Results

3.1 Ablation experiment

The basic framework of the MFGAC-PPI model mainly

consisted of four submodules: ESM, improved GCN, Scaled dot-

product attention, and FNN. According to the aforementioned

hyperparameter settings, each submodule was treated as a

different variable and the “control variable method” was used to

investigate the influence and contribution of each submodule to the

proposed model. Therefore, 5-fold cross-validation was used to

conduct ablation studies on these four structures, six indicators

were used for evaluation, and the maximum value of the results of

each ablation was selected, as shown in Table 1. It can be seen that,

when any of the sub-modules was ablated, the overall prediction

performance of the model was degraded, indicating that each

submodule played a role, and the structural design was reasonable

without structural redundancy. Similarly, it was found that, the

model performance decreases the most among the evaluation

metrics when the improved GCN module was ablated, especially

specificity and MCC, which dropped by 1.73% and 2.19%,

respectively. In contrast, when the FNN module was ablated, the

model performance changed the least across all metrics, with

precision only dropping by 0.01%, and the largest change being

in MCC, which decreased by 1.39%.

From the results, it was evident that the improved GCNmodule

contributed the most to the overall model and significantly affected

its prediction performance. In contrast, the FNN had the least

impact on the predictive ability of the model.

To assess the importance of each sub-module more intuitively

and comprehensively, the results of the five-fold cross-validation in

each fold of the six evaluation metrics are presented here using box

plots, as shown in Figure 2. It can be visually observed from the

figure that when the improved GCN was ablated, the model showed

the lowest average values and the lowest outliers across all metrics.

The model without FNN showed the most stable performance in

the five-fold cross-validation, with the highest average values across

all metrics. However, in precision and specificity, it had nearly the

same values as the model without the attention module, but the

model without attention had lower dispersion points. In summary,
TABLE 1 The performance results for different modules.

Module ablation Accuracy Precision Recall Specificity F1 MCC

Attention 0.9779 0.9915 0.9796 0.9770 0.9816 0.9400

ESM 0.9751 0.9887 0.9756 0.9770 0.9802 0.9431

GCN 0.9723 0.9836 0.9741 0.9655 0.9761 0.9340

FNN 0.9779 0.9915 0.9798 0.9809 0.9638 0.9420

All 0.9812 0.9916 0.9893 0.9828 0.9904 0.9559
*Best performance is shown in bold.
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each sub-module had an important contribution and influenced the

model’s effectiveness to some extent. Among them, the improved

GCN contributed the most to the model’s overall performance,

followed by the ESM module, both of which reflected the

importance of feature fusion to some extent. Then there was

attention and FNN, with FNN having the smallest impact on the

overall model.

The model constructed in this study differed from the GAT

module by introducing a Scaled dot-product attention to capture

subtle differences within proteins and their interaction interfaced

while retaining more interpretable biological characteristics, which

helped to identify amino acid residues with important functions, and

had better robustness when dealing with proteins of different lengths.

To validate that the introduction of the scaling factor improved the

predictive ability of the model, as well as to explore the impact of

different attention mechanisms on the model, three new models were

added to the original structure: self-attention replacing scaled dot-

product attention, mutual-attention replacing scaled dot-product

attention, and multi-head-attention replacing scaled dot-product

attention. Keeping other sub-modules and hyperparameters

unchanged, these models were subjected to ablation experiments

using 5-fold cross-validation, and evaluated using three

comprehensive metrics: specificity, F1, and MCC for evaluation.

Table 2 shows the maximum values in the cross-validation.

To clearly illustrate the variation of each fold value in cross-

validation, radar charts of Specificity, F1, and MCC on the

validation dataset were plotted as shown in Figure 3. It can be

seen that the model using mutual-attention had the smallest area in

the metrics, while the MFGAC-PPI model using the scaled dot-

product attention mechanism had the largest area in the three
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comprehensive metrics, indicating a significant reduction in false

positive (FP) samples and an increase in true positive (TP) samples.

Moreover, it was apparent from Figures 3A, C that the Specificity

indicator’s area for the multi-head-attention model was much larger

than that for the self-attention model, but the area in MCC was

the opposite.

This may be due to the different focus of the two attention

mechanisms when processing input data. Multi-head-attention

captured different feature subspaces through multiple heads,

performing better on negative sample features, while self-

attention uses a single attention head to compute attention

globally, focusing on optimizing overall performance, thus

performing better in F1 and MCC metrics.

Combining Table 2 and Figure 3, it was found that the

applicability of the attention modules, from highest to lowest, was

scaled dot-product attention > self-attention > multihead-attention

> mutual-attention.

Additionally, different l values were tested to evaluate the

contribution of sequence and structural features to the model
TABLE 2 The performance results of different attention modules.

Attention module Specificity F1 MCC

Mutual-Attention 0.9743 0.9795 0.9370

Self-Attention 0.9798 0.9842 0.9545

Multihead-Attention 0.9655 0.9808 0.9418

All 0.9828 0.9847 0.9559
*Best performance is shown in bold.
FIGURE 2

The 5-fold cross-validation of performance results.
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during feature fusion. During model training, the l value for feature

fusion in the constructed MFGAC-PPI model was adjusted while

keeping other parameters constant, and the results are shown in

Table 3. It can be seen that when the l values were set to 0.5 and 0.7,

the performance of various evaluation metrics was the optimal,

especially when l=0.7, F1 and MCC reached the best.
3.2 Comparison with other
competitive methods

The constructed MFGAC-PPI model were compared with five

classic PPI prediction models: DeepPPI (Du et al., 2017), PIPR (Chen

et al., 2019), Struct2Graph (Baranwal et al., 2022), AFTGAN (Kang

et al., 2023), and TAGPPI (Song et al., 2022), and the results were

shown in Table 4. The proposed model exhibited the best

performance across accuracy, precision, recall, specificity, and F1,

although MCC was slightly lower than that of Struct2Graph.

TAGPPI’s performance was close to the best across all metrics,

particularly specificity, which was only 0.0017 lower than MFGAC-

PPI. The sequence-based models PIPR and DeepPPI showed

relatively low performance in MCC but maintained a relatively

balanced performance across other metrics. Meanwhile, AFTGAN
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showed poor performance on the constructed dataset, significantly

lagging behind other methods in key metrics such as F1 and recall,

which were 0.1588 and 0.1555 lower than MFGAC-PPI, respectively,

indicating a notable deficiency in recognizing positive samples.

To further assess the robustness and generalization capability of

the model, the proposed model was compared with five other

competitive algorithms using the original dataset and an

independent dataset, ara data (Zheng et al., 2023). The AUROC

and P-R curves for these models on both datasets were calculated, as

shown in Figures 4, 5.

As shown in Figure 4A, in the constructed original dataset, the

model’s AUC area was the largest, reaching 0.95, which was 0.03,

0.09, 0.13, 0.17, and 0.19 higher than TAGPPI, Struct2Graph, PIPR,

DeepPPI, and AFTGAN, respectively. Additionally, the analysis of

the P-R curve in Figure 5A indicated that MFGAC-PPI and

Struct2Graph performed the best. The results were consistent

with the performance of various metrics in Table 4, where the top

three models in overall performance on the constructed dataset

were MFGAC-PPI, TAGPPI, and Struct2Graph, respectively. As

shown in Figure 4B, when training on the independent dataset, the

AUC of MFGAC-PPI dropped by 0.03, whereas TAGPPI increased

by 0.03, making TAGPPI to be the best performance in AUROC.

The AUROC curves of the other models remained relatively stable,

similar to the results on the original dataset, although Struct2Graph

shows a slight decline. In addition, the analysis of Figure 5B showed

that the performance of MFGAC-PPI on the P-R curve in the ara

data dataset declined slightly, while Struct2Graph exhibited the

best performance.

In general, MFGAC-PPI demonstrated the best performance in

predictive ability and comprehensive metrics, but its performance

declined when tested in different data sets, indicating that its

generalization ability had room for improvement.
3.3 Verification of unbalanced data

In actual biological systems, most proteins interact with specific

proteins rather than random combinations. Therefore, only a small
FIGURE 3

The 5-fold cross-validation radar map. (A) specificity 5-fold cross-validation radar map. (B) F1 5-fold cross-validation radar map. (C) MCC 5-fold
cross-validation radar map.
TABLE 3 The performance results for different l values.

l values Accuracy Specificity F1 MCC

0 0.9735 0.9565 0.9789 0.9439

0.1 0.9831 0.9743 0.9797 0.9454

0.3 0.9763 0.9655 0.9761 0.9522

0.5 0.9812 0.9828 0.9833 0.9528

0.7 0.9807 0.9733 0.9904 0.9559

0.9 0.9708 0.9742 0.9818 0.9437

1 0.9704 0.9731 0.9833 0.9419
*Best performance is shown in bold.
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TABLE 4 The performance evaluation results of different methods.

Methods Accuracy Precision Recall Specificity F1 MCC

DeepPPI 0.9435 0.9503 0.9527 0.9702 0.9515 0.9436

PIPR 0.9609 0.9617 0.9756 0.9613 0.9609 0.9316

Struct2-Graph 0.9796 0.9830 0.9725 0.9543 0.9777 0.9725

AFTGAN 0.8437 0.8295 0.8338 0.9511 0.8316 0.9582

TAGPPI 0.9781 0.9710 0.9726 0.9811 0.9718 0.9525

MFGAC-PPI 0.9812 0.9916 0.9893 0.9828 0.9904 0.9559
F
rontiers in Plant Scien
ce
 09
*Best performance is shown in bold.
FIGURE 4

AUROC results compared with competing methods. (A) ROC curve verified using the dataset built in this article. (B) ROC curve verified using the ara
data dataset.
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fraction of protein pair combinations has true interactions,

especially when PPI-related data is scarce, and the imbalance

between positive and negative samples in protein interactions can

reach a ratio of 1:100 or more. To verify the superiority of the

proposed model in the case of unbalanced samples, the MFGAC-

PPI model was trained using the constructed dataset with balanced

(1:1) to unbalanced (1:3, 1:5, 1:10, 1:20, 1:30) data, using precision,

recall, and MCC as evaluation metrics to illustrate the advantages of

the proposed model in imbalanced datasets.

The results are shown in Table 5, the MFGAC-PPI model

showed better performance in various indexes in unbalanced data

sets. Although the performance of each index decreased with the

increase of the degree of imbalance, the precision and MCC

remained above 91%. At the same time, recall remained relatively
FIGURE 5

P-R results compared with competing methods. (A) P-R curve verified using the dataset built in this article. (B) P-R curve verified using the ara
data dataset.
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TABLE 5 The performance evaluation results of unbalanced dataset.

P:N ratio Precision Recall MCC

1:1 0.9916 0.9893 0.9559

1:3 0.9798 0.9873 0.9496

1:5 0.9655 0.9502 0.9460

1:10 0.9258 0.9455 0.9319

1:20 0.9131 0.9421 0.9201

1:30 0.9124 0.9322 0.9157
*Best performance is shown in bold.
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stable, indicating that the model can correctly identify positive

samples even under highly imbalanced conditions. Overall, the

MFGA-PPI model was robust, but its overall predictive

performance decreased with increasing unevenness, especially

affecting precision and MCC.
3.4 Generated protein interaction network
in pine wood nematode disease

The optimized plant-pathogen PPI prediction model was used

to predict 20,765 sets of pine nematode and pine tree protein

interaction data, and the full prediction results are shown in

Supplementary Table 1. In particular, protein pairs with

interaction scores greater than 0.5 were judged to have

interactions, and a total of 2,688 pine-pine wood nematode

protein-protein interaction networks were generated, which

contained 46 pine wood nematode proteins and 354 pine

proteins, with the results shown in Supplementary Table 2.

Among the predicted pine-pine wood nematode PPIs results, 16

predicted PPIs were validated by previous biological experiments.

Meanwhile, the comparison of different models revealed that about

19% or so of the PPIs could be derived from sequence-based

prediction models, and there existed about 21% of the interaction

pairs that could be predicted by structure-based methods, and there
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was a high degree of overlap between these two parts of the PPIs.

These results indicated that a multi-dimensional feature fusion

approach can effectively uncover new PPI data and was

successfully applied in the study of the pine wilt disease system.

A topological analysis of the predicted PPI network revealed

that pine-pine wood nematode PPIs exhibited scale-free properties

similar to other biological networks. Notably, pine nematode

proteins had more interaction links than pine proteins, with one

pine nematode protein able to interact with an average of four pine

proteins and at least 20 pine wood nematode proteins interact with

over 10 pine proteins each. Here the nodes with higher degrees were

analyzed for centrality, and the results are shown in Supplementary

Figure 1, and a PPI network diagram was drawn as shown in

Figure 6A. From Supplementary Figure 1 and Figure 6A, it can be

seen that the proteins with the most links are the effector protein

BxSap1 of pine nematode as well as the autophagy gene BxATG16,

which played crucial roles in the virulence of the pine wood

nematode. This was followed by A0A1l7SCF8 BURXY, Bx tlp 1 of

pine wood nematode and P41649.2 protein of pine. This result

suggested that potentially pathogen-associated proteins were more

involved than resistance-associated proteins in the pine nematode

system. Surface representations of the 3D structures of the

interacting proteins are shown in Figures 6B, C, demonstrating

that MFGAC-PPI can efficiently predict regions of plant-pathogen

protein interaction residues, illustrated by the surface interaction
FIGURE 6

Schematic diagram of protein-protein interaction networks. (A) protein-protein interaction network diagram of pine wood nematode disease system.
(B) is the schematic diagram of the interaction between effector protein SapB3 and P41649.2, and (C) is the schematic diagram after 180 rotation.
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between effector proteins SapB3 (blue) and P41649.2 (green), with

the interaction region in red. By revealing 3D structural analysis and

protein surface interaction regions, it helped understand molecular

communication between pine trees and pathogens, explaining how

pathogens evaded or suppressed the host immune response and

effectively invaded host cells.
4 Conclusion

Bursaphelenchus xylophilus is one of the most devastating forest

pathogens worldwide. Predicting and analyzing plant-pathogen protein

interactions is a crucial step in understanding the molecular

mechanisms of plant diseases. In this study, we propose MFGAC-

PPI, an improved graph attention convolutional network-based deep

learning method for plant-pathogen PPI prediction. It was leveraged

multi-level feature fusion to provide a comprehensive research

perspective and accurately predict protein-protein interactions. By

utilizing AlphaFold to obtain more 3D structural information of

pathogen proteins and extracting features from both amino acid

sequences and structural information using the Transformer

structure and GCN, the prediction accuracy was enhanced.

Additionally, the scaled dot-product attention mechanism identified

important interacting residues in an unsupervised manner, facilitating

downstream analysis. Experimental results indicated that MFGAC-PPI

achieved high accuracy on two datasets, with an AUC exceeding 92%,

and performed well on imbalanced datasets. It outperformed current

state-of-the-art prediction methods, making it suitable for plant-

pathogen interaction prediction tasks.

Through the optimized plant-pathogen interaction prediction

model, we generated a pine wood nematode disease PPIs

comprising 2,688 interacting protein pairs involving 36 Pinus

proteins and 356 B. xylophilus proteins. Notably, B. xylophilus

proteins exhibited more interaction relationships and partners

compared to Pinus proteins. This involved pathogen-related

proteins in plant-pathogen interactions, potentially due to co-

evolutionary arms race dynamics. The predicted PPI networks

successfully identified interactions such as BxSap1 effector with

Pinus PR protein (PtPR-1b), previously validated through

experimental methods (Hu et al., 2019). The results demonstrate

that the MFGAC-PPI model’s successful application in the pine wilt

disease system provides a comprehensive PPI network, aiding in the

identification of resistance genes and advancing our understanding

of plant-pathogen interaction mechanisms.

This study revealed that embedding protein sequence

information into protein structural representations can extract

more effective biological information, improving the accuracy of

PPI prediction tasks. The performance metrics of this approach

surpassed those of single-dimension protein feature learning

methods. In the future, it is expected that new strategies for protein

representation learning will be applied to other prediction tasks, such

as protein function prediction. By combining these strategies with the

protein structure prediction techniques, more high-precision

structural data can be obtained, thereby expanding the model

applicability and enhancing its generalization capabilities.
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