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Common corn rust and southern corn rust, two typical maize diseases during

growth stages, require accurate differentiation to understand their occurrence

patterns and pathogenic risks. To address this, a specialized Maize-Rust model

integrating a SimAM module in the YOLOv8s backbone and a BiFPN for scale

fusion, along with a DWConv for streamlined detection, was developed. The

model achieved an accuracy of 94.6%, average accuracy of 91.6%, recall rate of

85.4%, and F1 value of 0.823, outperforming Faster-RCNN and SSD models by

16.35% and 12.49% in classification accuracy, respectively, and detecting a single

rust image at 16.18 frames per second. Deployed on mobile phones, the model

enables real-time data collection and analysis, supporting effective detection and

management of large-scale outbreaks of rust in the field.
KEYWORDS

maize, southern rust, common rust, SimAM, small target detection
1 Introduction

Maize is one of the most widely cultivated cereal crops in China, and it is often used as a

raw material for animal husbandry, light industry, and health care (Guan et al., 2024). Rust,

as a common disease affecting maize plants, propagates under warm and humid conditions,

particularly prevalent in both northern and southern cultivation regions of China

(Brewbaker et al., 2011). Puccinia sorghi Schw. and P. polysora Underw. are the causal

agents of common corn rust and southern corn rust of maize, respectively. These two

diseases represent typical pathogens in the maize production process, exerting significant

impacts on crop yield and quality. When rust first appears on a maize plant, it can be
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identified by the presence of yellow or brown summer spores that

form round or oval shapes on the leaves. These spores could be

easily spread by the wind and can reproduce quickly, thereby

forming a mixture of two types of rust diseases on healthy plants.

In the case of a widespread outbreak, common rust typically causes

a yield reduction of 20% to 30%, while southern rust can result in

losses of up to 50% or even total crop failure (Mei et al., 2023).

Although both types of rust may show similar symptoms during the

infection stage, their prevalence, distribution, and potential damage

levels can vary significantly, and the treatment methods for these

two types of rust diseases are different. Therefore, identifying the

type of rust accurately that affects maize plants is essential to protect

yields, prevent co-infections, realize the use of intelligent detection

systems to warn of diseases and thus reduce pesticide use.

Traditional methods for detecting maize rust rely on growers’

experience, reference to plant disease charts, or consultation with

plant disease specialists for field observations and identification.

However, this approach depends on a large number of plant

protection specialists heavily. Variations in experience and

knowledge among specialists often hinder disease identification

accuracy, resulting in irreparable losses for growers (Lv et al., 2020;

Cai et al., 2023). Moreover, molecular identification techniques have

been utilized for corn rust detection. Real-time fluorescence

quantitative PCR has been proven being effective in distinguishing

between P. polysora and P. sorghi (Crouch and Szabo, 2011).

Although the aforementioned methods have demonstrated a

high degree of reliability and accuracy, the cumbersome sample

pretreatment, high experimental costs, and long detection cycles

have limited their immediate application in field environments. In

recent years, optical imaging techniques, with their unique

advantages, have gradually become effective tools for early

detection and classification of crop diseases. These include

infrared imaging (Sinha et al., 2019), hyperspectral imaging

(Garhwal et al., 2020), multispectral imaging (Bebronne et al.,

2020), and fluorescence imaging (Yang et al., 2024). Due to their

non-destructive nature, high speed, and efficiency, these techniques

have been widely used in crop disease monitoring. However, despite

their ability to provide rich image information, high equipment

costs and operational complexity have hindered the widespread

adoption of these technologies in routine agricultural practices

(Yang et al., 2022). Consequently, it is crucial to develop an

economical and efficient diagnostic tool for timely and accurate

identification of crop diseases.

Integrated techniques of image processing and deep learning

has been applied in maize disease detection studies (Ferentinos,

2018; Khan et al., 2023). The support vector machine demonstrated

83.7% accuracy in classifying common rust, northern leaf blight,

and healthy leaves (Aravind et al., 2018). Yu et al. (2021) employed

K-means and an enhanced deep learning model, achieving an

average accuracy of 93% in diagnosing grey spot, leaf spot, and

rust, outperforming VGG and Inception v3. Ahila Priyadharshini

et al. (2019) proposed a LeNet network, improving a deep CNN

model with 97.89% accuracy in identifying maize images with

northern leaf blight, common rust, and grey leaf spot in the

PlantVillage dataset. A DenseNet model, based on an optimized

CNN architecture, was proposed to identify northern leaf blight,
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common rust, gray leaf spot, and healthy leaves with 98.06%

accuracy (Waheed et al., 2020). Chen et al. (2020) leveraged

transfer learning with the INC-VGGN architecture, obtaining a

validated accuracy of 91.83% for rice and maize disease recognition.

Peng et al. (2021) proposed an improved detection method, which

combines the advantages of CNN-based deep feature extraction and

support vector machine fusion classification, aiming to quickly and

accurately identify three common grape leaf diseases and healthy

leaves. An LDSNet model for recognizing maize common rust and

big blotch disease in complex background images was designed to

reduce computational parameters while effectively improving

recognition accuracy (Zeng et al., 2022). A lightweight SSV2-

YOLO model based on YOLOv5s was developed to achieve

efficient detection of small and high-density sugarcane aphids in

unstructured natural environments (Xu et al., 2023). Liu et al.

(2024) proposed the MAE-YOLOv8 model to accurately detect

small-sized crisp plums in real complex orchard environments. The

model accuracy and detection speed reached 92.3% and 68 frames/s,

respectively. In order to adapt to the edge computing equipment,

the improved lightweight YOLOv8n model was introduced to

achieve high-precision real-time peanut leaf disease classification

detection (Lin et al., 2024). Sun et al. (2024) introduced CASF-

MNet, a novel system that ingeniously combines cross-spatial

dimensional feature fusion to enhance accuracy by synergistically

fusing color and texture characteristics. Despite these advances,

current maize rust detection research faces two challenges, (1)

specialized datasets for common rust and southern rust were

lacked, and (2) the existing CNN-based detection methods are

complex for operation, high demand for computation, and with low

accuracy in detection results.

To address the above issues, the main research objectives of this

study are, (1) to construct a dedicated dataset for maize common

rust and southern rust, and (2) to develop an efficient and accurate

target detection algorithm with improved lightweight network

structure. The improved model performance on the constructed

dataset will be compared with existing methods using multiple

evaluation metrics to demonstrate its advantages.
2 Materials and methods

2.1 Image data acquisition

In this study, Zhengdan 958, the most widely planted maize

variety in China, was sown and planted at the greenhouse

demonstration base in Beibei District, Chongqing, China from

September 2022 to January 2023. When the maize plants grew to

the 4-6 leaf stage, two types of the rust pathogens, P. sorghi Schw.

(The causal agent of CCR) and P. polysoraUnderw. (The causal agent

of SCR), were inoculated in the middle or tip of the leaves. To ensure

that the pathogen can reproduce in large quantities, the ambient

temperature was controlled at 22°C -28°C, and the relative humidity

was more than 85%. From the second day after pathogen infection,

the Canon M50 camera (Resolution: 6000 × 4000 pixels; Producer:

Japan) collected leaf images of maize common rust and southern rust

from mild to severe infection, between 9:00-11:00 and 15:00-17:00
frontiersin.org

https://doi.org/10.3389/fpls.2024.1490026
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Wang et al. 10.3389/fpls.2024.1490026
every day (including sunny, rainy and cloudy weather conditions). In

order to enrich the diversity of the dataset, different photographing

distance, angles and plant growth stages were also considered during

the image collection. All the images were saved as.jpg format. Figure 1

illustrates the images of rust pathogen infested leaves phenotypes

under different meteorological conditions.
2.2 Image preprocessing and labeling

The quality of the dataset plays a crucial role in the efficacy of

model training. To mitigate manual labeling errors, this study

enlisted the expertise of rust disease recognition specialists. The

identification of rust disease on plant leaves was based on

observable symptoms such as faded green or yellowish spots,

along with brown raised spore spots on either the abaxial or

adaxial leaf surfaces. For the labeling process, the visual

calibration tool LabelImg software was employed to annotate the

image dataset. Each infected sample was meticulously labeled after

disease type determination, with labels saved in.xml format.

Figure 2 shows the foliar phenotypic symptoms of the two

pathogen types after different time treatments.

To thoroughly train the network model, enhance its accuracy,

and mitigate overfitting and non-convergence issues, this study

implemented various enhancements to the original dataset. By

employing image processing techniques, such as flipping, scaling,

and rotating (as illustrated in Figure 3), the dataset was augmented

to 8,730 images. The augmented images were subsequently

partitioned into training, validation, and test sets, adhering to a

ratio of 7:2:1.
2.3 Network model design

YOLOv8 from Ultralytics is an advanced model that extends the

capabilities of previous YOLO iterations (Reis et al., 2024),

showcasing exceptional accuracy and speed in detection, making

it a preferred choice for numerous object detection and image

classification tasks. The model architecture comprises an input

layer, a backbone network, and a detection head, where the

backbone network includes the PANet network and the Detect

structure, aimed at achieving feature fusion and target detection
Frontiers in Plant Science 03
specifically for rust detection. In the PANet framework,

fundamental components such as FPN and PAN play critical

roles. FPN extracts feature layer information from top to bottom,

facilitating the fusion of details from higher and lower layers to

enhance the network’s ability to detect objects of varied sizes.

Conversely, PAN operates by extracting features from bottom to

top, ensuring precise positional information retrieval. Additionally,

the Detect structure, featuring three branches of differing sizes,

generates classification results and target coordinate data.

In this study, a Maize-Rust model based on YOLOv8 network

was designed for the identification of common rust and southern

rust. As shown in Figure 4, the SimAM, BiFPN, and DWConv

structures were integrated into the YOLOv8 backbone and necking

network effectively. This enhanced network not only boosted

detection capability and speed but also mitigated false alarms and

missed detections within the model.

2.3.1 SimAM architecture
When using the YOLOv8 model to extract the characteristics of

CCR and SCR, the model often fails to achieve the expected

detection results due to the subtle phenotypic changes and feature

leakage of these diseases. In order to overcome this challenge, this

study introduces the SimAM attention mechanism (Park et al.,

2020), so that the network can focus on detailed feature information

more quickly and integrate it into the backbone network of

YOLOv8. It helps the network dynamically adjust the degree of

attention to different features by calculating the saliency of each

feature point. In the process of detecting corn rust, SimAM can

guide the network to capture rust pixels more keenly, thereby

improving the accuracy of feature extraction. In addition, SimAM

also enhances the recognition ability of the backbone network to

disease features, enabling the network to focus more on the key

features related to the disease, such as the shape, color and texture of

the lesion. This fine capture and attention to disease features not

only improves the accuracy of target detection, but also enhances

the ability of the model to identify similar features in the image, and

ultimately improves the performance of the model in distinguishing

CCR and SCR.

The SimAM mechanism is designed to heighten the model’s

sensitivity to patterns of similarity within the input image. Distinct

from traditional attention modules like CBAM (Woo et al., 2018),

SE (Hu et al., 2019), and CA (Hou et al., 2021), the SimAM module
FIGURE 1

Example of rust image samples in the natural environment. (A) Early term rust pathogen infested leaf under sunny day; (B) Middle term rust pathogen
infested leaf under rainy day; (C) Late term rust pathogen infested leaf under cloudy day.
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uniquely captures both spatial location information and pixel-level

similarity features, effectively guiding the network to concentrate on

critical regions in the image. As depicted in Figure 5, its structure

employs an energy function to generate 3D weighted attention,

facilitating linear separability between the target neuron and other

neurons. The minimum energy function can be defined as follows:

et =
4(d2þl)

(t� m)2þ2d2þ2l
(1)

where t denotes the target neuron in the single-channel input

feature; m and d2 symbolize the average and variability of all

neurons; and l represents the weight constant.

The smaller et means that the target neuron t is more different

from the surrounding neurons, indicating a higher importance in

the image processing process. In addition, to refine the feature

process, a scaling operator was used the module instead of an
Frontiers in Plant Science 04
additive operation. The refinement stage could be expressed as the

following Equation 2:

~X = sigmoid
1
E

� �
⨀X (2)

where E denotes the grouping of all ets in the channel and spatial

dimensions; the overvalues in E are limited by the inclusion of a

Sigmoid function, which do not affect the relative importance of

each neuron because it is a monotonic function.

2.3.2 Optimizing the neck network
2.3.2.1 BiFPN feature fusion network

YOLOv8 utilizes multi-resolution feature images to detect

objects of different sizes. Deeper layers provide rich semantic

information and wide receptive fields, making them suitable for

detecting larger objects. However, due to the small size of corn
FIGURE 3

Schematic diagram of image enhancement of rust disease. (A) Flip. (B) Scale. (C) Rotate. (D) Shear. (E) Translate. (F) Flip and Shear.
FIGURE 2

Symptomatic manifestations of the two types of blades. (A–C) Represent the performance of CCR after 2, 4, and 6 days of treatment, respectively;
(D–F) Represent the performance of SCR after 2, 4, and 6 days of treatment, respectively.
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leaves and disease spores, along with YOLOv8’s significant down

sampling, extracting detailed information from deeper features is

challenging, leading to missed detections or inaccuracies for small

targets. To improve model efficiency, this study integrated the

weighted BiFPN (Tan et al., 2020), enhancing the fusion of

features from different resolutions. The modified BiFPN

architecture, shown in Figure 6A, retained feature fusion from
Frontiers in Plant Science 05
two to five layers. In addition, by extending the resolution of the

feature map to 160 × 160, BiFPN further enhances the detection

ability of the model for small targets. The larger feature map

provides more spatial details, which enables the model to locate

small targets more accurately and reduce the missed detection rate.

At the same time, cross-scale connection on the initial three layers

not only enhances the ability of small target detection, but also
FIGURE 5

The Similarity-Aware Attention Mechanism structure.
FIGURE 4

The Maize-Rust model– identifying common rust and southern rust in maize specifically.
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reduces the loss of early rust detection, because rust and other

diseases often appear as small spots or discoloration in the early

stage, and these features are more easily captured on higher-

resolution feature maps. As shown in Figure 6B.

During feature fusion, variations in input feature resolution led

to unequal contributions to outputs. When fusing size features, the

Resize method was typically employed to equalize feature sizes

before summation. Taking layer 6 of the feature map as an example,

its intermediate feature Ptd
6 and output feature Pout

6 are specifically

calculated as:

Ptd
6 = Conv

w1 � Pin
6 + w2 � Resize(Pin

7 )
w1 + w2 + e

� �
(3)

Pout
6 = Conv(

w
0
1 � Pin

6 + w
0
2 � Ptd

6 + w
0
3 � Resize(Pout

5 )

w 0
1 + w 0

2 + w 0
3

) (4)

where Pin
i lies the input feature at the ith level.

Given the varying importance of features of different sizes in the

output, enhancing feature fusion is crucial. This is achieved by

introducing a learnable weight parameter and normalization to

balance the weights. Integrating the BiFPN framework and the P2

layer for small target detection improves the model’s performance

on this dataset, albeit with increased computational complexity.

2.3.2.2 Introduce the DWConv module

In the neck network’s feature fusion process, various parameters

affect fusion speed. This study utilized the Depthwise Separable

Convolution (Kaiser et al., 2017) structure as an alternative to

traditional Conv modules. Compared with traditional convolution,

DWConv significantly reduces the computational complexity and

the number of parameters by separating channels and spatial

dimensions. Specifically, the traditional convolution needs to

consider both channel and spatial information, so its calculation

and parameter quantity are relatively high. DWConv achieves
Frontiers in Plant Science 06
effective decomposition and reduction of computational

complexity by separating these two dimensions. Since DWConv

applies filters to each channel independently in the deep

convolution stage, it can also use the sparsity of the input feature

map to further reduce the amount of computation.

Figure 7 illustrates how DWConv divided standard convolution

into two phases: Depthwise convolution applies a lightweight

single-channel filter to each input channel, followed by Pointwise

convolution or 1×1 convolution to combine input channels for new

features. Unlike conventional convolution, DWConv separates

channel and spatial dimensions, enhancing optimization by

handling these correlations independently. Moreover, depth-

separable convolution incorporates grouped convolution,

significantly reducing parameter count.

For a standard convolutional layer, assuming that m is the

number of channels for the input layer, n is the number of channels

for the output layer, df is the input feature map size, and dk is the

convolutional kernel size. Thus, the total computation for this

convolutional layer could be calculated as:

C = df � df �m� n� dk � dk (5)

During deep convolution, since each convolution kernel

processes each channel individually, there will be m convolution

kernels to process the image, with a parameter computation CD for

each kernel defined as:

CD = dk � dk � 1�m� df � df (6)

Then, the generated feature maps are subjected to a 1 × 1

conventional convolution process. The parameter computation CP

for point-by-point convolution is:

Cp = 1� 1�m� n� df � df (7)

The ratio to the computational effort of a standard

convolutional layer is:
FIGURE 6

BiFPN structure. (A) original BiFPN structure. (B) added P2 to BiFPN structure. Note: P1 to P7 represent the input feature maps corresponding to
different levels.
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C0 =
CDWConv

C
=
CD + CP

C
=
1
n
+

1
d2k

(8)

According to Equation 8, when the ratio C0 is less than 1, it

indicates that the introduction of DWConv leads to a reduction in the

number of overall model parameters. The reduction in model

parameters leads to a lighter and more efficient network architecture.
2.4 Training environment and
evaluation index

2.4.1 Hardware and software parameters
This study utilized a Tencent Cloud GPU computing-based

server (located in the Chengdu data center) for model training, with

specific parameters as follows: Ubuntu 20.04 operating system, two

NVIDIA Tesla T4 GPUs, an Intel Xeon Cascade Lake CPU with a

frequency of 2.5 GHz, and 160 GB of RAM. The software

environment included CUDA 11.0, Python 3.9, and Pytorch 2.0.

The network model was optimized using the SGD algorithm for

training the maize rust disease recognition model. SGD estimates

the gradient using a small number of samples per iteration, reducing

computational cost and speeding up training, making it ideal for

large datasets. The learning rate was set to 0.001, with 150 epochs

and input images of 640 × 640 pixels per batch to meet the

model’s requirements.

2.4.2 Evaluation indicators
To evaluate the model’s detection performance, precision (P),

recall (R), mean average precision (mAP), F1-score (F1), single-

image detection time (dR), computational complexity (FLOPs),

Parameters, and model weights (Size) are used as experimental

evaluation metrics in this paper. The specific calculation formula is

as follows:

P =
MTP

MTP +MFP
� 100% (9)

R =
MTP

MTP +MFN
� 100% (10)
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mAP = o
 AP

N
=
o 

Z 1

0
P(R)dR

N
(11)

F1 = 2� PM � RM

PM + RM
(12)

where MTP denotes the number of rusts correctly detected as

rusts,MFP denotes the number of rusts incorrectly detected as rusts,

andMFN denotes the number of rusts missed in the image. AP is the

mean function of P for all R-values between 0 and 1, and N is the

number of detection categories. In this study, the recognition targets

were only two categories, so N is 2.
3 Results

3.1 Comparison of benchmark
model performance

In order to detect the two types of rust diseases accurately and

efficiently, this study adopts the YOLOv8 model as the benchmark

and trains the five versions of the model sequentially, with the

specific results detailed in Table 1.

Table 1 data showed that the mAP of the YOLOv8s model

surpassed YOLOv8n by 5.62% but fell below YOLOv8m, YOLOv8l,

and YOLOv8x by 10.35%, 10.97%, and 11.07%, respectively.

Additionally, the YOLOv8s model’s weight size was smaller than

YOLOv8m, YOLOv8l, and YOLOv8x by 29.5MB, 65.1MB, and
TABLE 1 Comparison of the performance of the original YOLOv8 model.

Methods Size (MB) Precision (%) Recall (%) mAP

YOLOv8n 6.2 84.3 64.7 0.730

YOLOv8s 22.5 87.5 71.0 0.771

YOLOv8m 52.0 92.7 78.6 0.860

YOLOv8l 87.6 95.1 79.0 0.866

YOLOv8x 134.76 94.2 79.7 0.867
fron
FIGURE 7

The Lightweight DWConv Structure.
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112.26MB, respectively, yet only 16.3MB larger than YOLOv8n.

Therefore, to balance detection accuracy and network efficiency, the

YOLOv8s model was chosen as the benchmark for future research.
3.2 Performance comparison of
experiments introducing
attention mechanisms

This study utilizes the YOLOv8s model, incorporating five

attention mechanisms - CA, CBAM, CPCA, SE, and SimAM -

into the backbone network. The detection model is trained until

convergence, with no alterations to the remaining network or

parameters. The performance results are detailed in Table 2.

Table 2 illustrated that incorporating the SimAM attention

mechanism in the YOLOv8s network architecture outperformed

the other four attention mechanisms and the original model in all

aspects. Specifically, the SimAM model achieved a 1.5% increase in

detection accuracy compared to the original model, and a 1%

enhancement in the F1 index. Compared to the other four

attention mechanisms, the SimAM model showed detection

accuracy improvements ranging from 1.5% to 16.4% and mAP50

metric enhancements from 2.1% to 11.7%.
3.3 Ablation test of the model

To investigate the effects of the SimAM attention mechanism,

BiFPN small target detection, and DWConv module on rust

detection performance, three structures were introduced into the

official YOLOv8s network. The results of the ablation tests were

presented in Table 3, with evaluations focused on precision, average

precision, F1 score, floating-point operations, and number of

parameters to assess model efficiency.

Table 3 displayed the impact of different trials on the model. In

Trial 2, integrating the SimAM attention mechanism led to a 3.11%

increase in mAP50 with minimal parameter reduction. Trial 3

introduced DWConv, reducing parameters and floating-point

operations by 75% due to the combined DW and PW structure,

resulting in a 0.49 percentage point increase in F1 scores and a

5.31% average accuracy boost. Trial 4 incorporated BiFPN,
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enhancing average accuracy by 4.40% and increasing parameters

by 47.03%. The combined use of improved modules in Tests 5, 6,

and 7 resulted in changes in mAP of -0.65%, 2.19%, and 1.09%,

respectively. Ablation tests confirmed the positive impact of the

enhancements on YOLOv8s target detection, improving the model

accuracy in identifying rust diseases in maize while maintaining its

lightweight design.
3.4 Model feature visualization

To observe the Maize-Rust model’s recognition ability more

intuitively, Grad-CAM was utilized to generate the heat maps.

Upon comparing the heat map results of the seven detection

models in Figures 8, 9, it was clear that the Maize-Rust model

showed higher color intensity in the leaf rust spot region compared

to the other six models significantly. This suggested that the

network prioritizes areas with rust during detection, even

highlighting small rust spots. The incorporation of the SimAM

module, BiFPN module, and DWConv structure had improved the

model’s accuracy in detecting the target while reducing the impact

of incorrect samples on overall prediction. This enhancement

directed the model’s focus to the specific characteristics of rust

disease, thereby enhancing its ability to detect rust disease.
3.5 Comparison test of different
network models

To verify the performance of various models in detecting two

types of rust diseases in maize visually, many deep learning-based

detection algorithms were selected for the tests in this study. The

experimental results of Faster-RCNN, SSD, EfficientDet, RetinaNet,

YOLOv3, YOLOv5, YOLOv7, YOLOv8, YOLOv9, YOLOv10 and

YOLOv11 were presented in Table 4.

Table 4 showed that Maize-Rust improves precision by 16.35%,

recall by 16.07%, and mAP by 32.94%, with a notable reduction in

detection time per rust image compared to SSD. The Maize-Rust

model outperformed Faster-RCNN across all evaluation metrics.

Compared with EfficientDet and RetinaNet, the single image

detection time of Maize-Rust is reduced by 28.5 and 38.7 ms,

respectively, and the weight is relatively close. Notably, in recall

metrics, Maize-Rust model demonstrated significant enhancements

compared to YOLOv3, YOLOv5, YOLOv7, YOLOv8, YOLOv9,

YOLOv10 and YOLOv11, with improvements ranging from

15.09% to 54.1%. Similarly, in mAP metrics, improvements ranging

from 15.94% to 43.5% were observed compared to YOLOv3,

YOLOv5, YOLOv7, YOLOv8, YOLOv9, YOLOv10 and YOLOv11.

The proposed model achieved the highest F1 score among YOLO

networks and had weights comparable to YOLOv5, YOLOv9,

YOLOv10 and YOLOv11, but lighter than YOLOv3, YOLOv5, and

YOLOv7. Regarding detection time per rust image, the suggested

model cut down by 357.6ms, 529.8ms, 262ms, 107.6ms, 257.4ms,

229.2ms, 22.6ms, 41.6ms and 19.6ms in comparison to the Faster-

RCNN, SSD, YOLOv3, YOLOv5, YOLOv7, YOLOv8, YOLOv9,

YOLOv10 and YOLOv11 models. The results highlighted the
TABLE 2 Results of the effect of attention mechanisms on
model performance.

Methods Precision (%) F1 mAP FLPOs (G)

YOLOv8s 87.5 0.784 0.771 28.6

YOLOv8s + CA 83.8 0.754 0.759 50.1

YOLOv8s + CBAM 73.6 0.669 0.678 29.3

YOLOv8s + CPCA 88.5 0.779 0.774 29.1

YOLOv8s + SE 86.2 0.757 0.750 28.2

YOLOv8s + SimAM 90.0 0.794 0.795 28.6
Table 2 shows that the model YOLOv8s + SimAM represented by this value shows the best
results after multiple experiments.
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superior performance of the Maize-Rust model in terms of accuracy

and speed for corn rust visual recognition.

Due to the inconsistent background complexity of corn rust

plants in greenhouse and field environments and the varying

growth patterns of corn leaves, the baseline model and Maize-

Rust model were employed to identify common rust and southern

rust leaves in these environments, with specific detection results

illustrated in Figure 10.
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Figure 10 substantiated the efficacy of the proposed approach

alongside other detection methodologies in both real-world and

greenhouse settings. The results revealed that, despite the similar

background to leaf color in greenhouses, the proposed method

outperformed other model in the validation dataset. Furthermore,

the missed detection rate of the model under the three climatic

conditions in the field was still lower than that of other detection

methods. This demonstrated the robustness of the developed Maize-
FIGURE 8

Common rust image visualization features. (A) Original image. (B) YOLOv5. (C) YOLOv7. (D) YOLOv8. (E) YOLOv8+SimAM. (F) YOLOv8+DWConv.
(G) YOLOv8+BiFPN. (H) Maize-Rust.
FIGURE 9

Southern rust image visualization features. (A) Original image. (B) YOLOv5. (C) YOLOv7. (D) YOLOv8. (E) YOLOv8+SimAM. (F) YOLOv8+DWConv.
(G) YOLOv8+BiFPN. (H) Maize-Rust.
TABLE 3 Ablation tests using different modules.

No. SimAM DWConv BiFPN P (%) mAP50 F1 FLOPs (G) Params (M)

1 91.1 0.771 0.818 28.6 11.14

2 √ 90.0 0.795 0.794 28.6 11.13

3 √ 90.6 0.812 0.822 7.3 2.62

4 √ 91.2 0.805 0.816 48.7 21.02

5 √ √ 90.5 0.810 0.814 16.9 10.86

6 √ √ 91.3 0.814 0.822 8.6 29.75

7 √ √ 91.2 0.813 0.790 25.0 7.37

8 √ √ √ 94.6 0.916 0.823 20.6 4.11
Bold fonts represent the best group of multiple evaluation indicators in 8 groups of experiments.
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Rust model in reliably detecting common and southern rust in both

field conditions and the dataset. Therefore, through the

comprehensive comparison of all indicators, Maize-Rust is more

suitable for the detection of maize rust in different environments.

In the identification of early rust, the model demonstrated a

relatively low performance. Upon verifying and analyzing the early

disease map, it became apparent that the model could easily misjudge
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early rust as healthy leaves or fail to detect it. This issue may stem

from several factors. Firstly, the characteristics of early rust are not

distinct, making it susceptible to confusion with the background of

healthy leaves. Secondly, the features of early rust are prone to

interference from the surrounding environment, particularly in

complex field settings. Lastly, variations in illumination conditions

significantly impact image quality, thereby affecting the accuracy of

feature extraction. To address this challenge, future research will

focus on implementing model integration techniques and optimizing

feature extraction to enhance the model’s capability in identifying

early rust features. Additionally, the exploration of data augmentation

strategies to simulate lesions under diverse lighting conditions aims to

enhance the model’s performance in low-light situations.
3.6 Model deployment and
practical application

Although Maize-Rust can accurately and quickly detect two

types of corn rust, it has limitations in field environment detection.

In order to verify the practical application performance of Maize-

Rust, control the use of pesticides and realize early rust monitoring

and early warning in the field, this study developed a corn rust

recognition system based on the “cloud server and terminal

intelligence” architecture. The combination of Ali cloud and

WeChat applet can quickly solve the problem of server

deployment, optimize server balance and expansion, and provide

the necessary service deployment. The architecture of corn rust

recognition system includes WeChat applet module and cloud

server module. When users use small programs, they need to take
TABLE 4 Comparing the results of different algorithm models for rust
image recognition.

Model dR (ms) P (%) R (%) F1 mAP
Size
(MB)

Faster-RCNN 410.4 81.3 62.8 0.709 0.689 108.0

SSD 582.6 84.1 65.1 0.734 0.813 42.4

EfficientDet 81.3 87.1 67.6 0.761 0.749 21.4

RetinaNet 91.5 87.7 68.4 0.768 0.757 50.6

YOLOv3 314.8 88.6 70.2 0.783 0.785 123.5

YOLOv5 160.4 83.0 64.2 0.724 0.713 14.4

YOLOv7 310.2 62.1 61.7 0.619 0.678 71.3

YOLOv8 282.0 91.1 74.2 0.818 0.771 22.5

YOLOv9 75.4 78.9 55.4 0.645 0.638 19.4

YOLOv10 94.4 85.2 65.6 0.741 0.732 20.5

YOLOv11 72.4 90.0 71.9 0.799 0.801 19.2

Maize-Rust 52.8 94.6 85.4 0.823 0.916 19.7
The bold style in Table 4 shows that the model proposed in this paper is the best compared
with multiple detection models.
FIGURE 10

Detection results in different scenarios and climates. (A) Images of two species of rust leaves in indoor and field environments. (B, C) the results for
YOLOv8 and Maize-Rust model identifying rust.
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or select rust pictures through the WeChat small program, and then

upload them to the cloud server module. The running background

service can process the uploaded data and then return the data

analysis results to the user (Figure 11).

The actual test of Maize-Rust proposed onmobile devices is shown

in Figure 12. Users can choose to take photos or upload photo album

disease images. Then the Maize-Rust weight file is executed and the

corresponding label is returned to the user as a result. In addition, the

program also outputs rust phenotypic symptoms and control methods

to help users identify maize diseases in the field.
4 Discussion

In this study, the SimAM, BiFPN, and DWConv modules were

incorporated into YOLOv8s algorithm to enhance their
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performance, successfully enabling the detection of common and

southern maize rusts.

In Section 3.1, the YOLOv8 algorithm’s five model classes,

increasing in weight size and depth, showed improved precision

and recall during training for both YOLOv8l and YOLOv8x

versions. This improvement was attributed to the network’s

increased depth, expanding parameter capacity to capture more

features and patterns, enhancing rust image detection. However, the

deeper network also raised computational demands, prolonging

inference and detection times and requiring more hardware

resources. Balancing detection accuracy and computational load is

crucial in practical applications.

The YOLOv8s model served as the baseline for improved

models, allowing a comparative analysis of detection performance

on the same dataset. Slower detection speeds of popular algorithms

like Faster-RCNN (Ren et al., 2017), SSD (Liu et al., 2016), YOLOv3
FIGURE 11

Framework of maize rust identification system.
FIGURE 12

The actual test of Maize-Rust model on mobile devices.
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(Redmon and Farhadi, 2018), YOLOv7 (Wang et al., 2023) and

YOLOv9 (Wang et al., 2024) highlighted their limitations in real-

time field detection tasks. In contrast, the YOLOv8 model

demonstrated superior performance in corn rust detection,

consistent with prior studies (Zhao et al., 2022). YOLO superior

performance was attributed to its simultaneous classification and

regression capabilities, outperforming two-stage algorithms in

speed. Furthermore, YOLOv8’s enhanced feature extraction

techniques, including anchorless and SimOTA, along with its

efficient skeleton extraction network and neck structure,

improved feature layer utilization in rust image analysis.

The SimAM module enhanced the convolution layer ability to

extract object features and improve model detection reliability.

Previous studies had explored the application in object detection

tasks (Zhao et al., 2021; Wang et al., 2022; Geng et al., 2024; Meng

et al., 2024). These studies utilized attention mechanisms including

CA, CBAM and SimAM to enhance convolutional layers focus on

target features and extract more feature pixels. The reasons why

SimAM module excelled other mechanisms may be as follows: (1)

By adapting to various feature layers and weighting feature

information, the model could better capture rust disease details

and suppress noise. (2) 3D attention weights were calculated using

pixel correlations in the feature map to enhance feature recognition

with local structural information. Moreover, the module’s analytic

solution for weight computation introduced no new parameters,

maintaining model complexity.

The BiFPN module improved rust detection in small pixel areas

for several reasons: (1) Feature fusion across layers allowed the

YOLOv8s model to effectively use semantic information, enhancing

its ability to capture detailed rust pixel information. (2) BiFPN

incorporated bidirectional information transfer, promoting full

communication between target features and enhancing

responsiveness to small targets. (3) The module’s adaptive feature

adjustment enabled dynamic self-adjustment, improving detection

accuracy for small objects. (4) Including the P2 layer in the BiFPN

structure facilitated extraction of deeper feature maps, providing

richer spatial information and strengthening the network’s ability to

detect small targets. These findings are consistent with prior

research (Chen et al., 2024; Xie et al., 2023).

The DWConv module controlled model computational

parameters effectively, which was similar to the results of previous

studies (Liu et al., 2023). This advantage could be attributed to: (1)

Depth-separable convolution, compared to traditional convolution,

separates spatial and channel correlations, resulting in reduced

parameters and enhanced computational efficiency. (2) By

exploiting feature independence between channels, the DWConv

enables more detailed spatial feature extraction through channel-

specific processing, facilitating the accurate differentiation between

rust types. The integration of the BiFPN structure in the backbone

necessitates a balance with lightweight components to minimize

computational footprint.

Consequently, the Maize-Rust model optimally combined

performance, computational cost, and speed, outperforming

mainstream alternatives. The proposed model significantly

improved performance in small object detection and lightweight
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deployment compared to previous models, which often struggled

with these tasks due to their limited capability in handling small

objects and optimizing for low-resource environments. By addressing

these limitations, our work introduces novel techniques that enhance

detection accuracy and reduce computational overhead. However, it’s

important to note that, while our model excels in recognizing maize

leaf diseases, its dataset scope is limited to two types, leaving room for

broader coverage. To mitigate overfitting, we augmented image data,

yet the improvement was constrained by the lower image clarity of

the augmented samples.
5 Conclusion

Addressing the critical need for accurate corn rust disease

identification, this study introduces the innovative Maize-Rust

model, an improved YOLOv8 for efficient leaf classification. The

model surpasses previous limits in small target detection and

lightweight deployment, leveraging advanced technologies

including multi-scale BiFPN fusion, lightweight DWConv, and

non-parametric attention. On benchmark datasets, it attains a

remarkable 94.6% classification accuracy. These advancements

hold significant potential for edge computing and real-time

applications. Experimental validation confirms the model’s

feasibility for rapid, accurate corn disease detection. Furthermore,

this study integrates the Maize-Rust model with cloud servers to

create a mini-program for non-destructive, efficient, real-time

disease monitoring. Future work will concentrate on enhancing

disease identification in complex field conditions and optimizing

models for improved performance and applicability.
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