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The processing of LiDAR point cloud data is of critical importance in the context

of forest resource surveys, as well as representing a pivotal element in the realm

of forest physiological and ecological studies.Nonetheless, conventional

denoising algorithms frequently exhibit deficiencies with regard to adaptability

and denoising efficacy, particularly when employed in relation to disparate

datasets.To address these issues, this study introduces DEN4, an unsupervised,

deep learning-based point cloud denoising algorithm designed to improve the

accuracy of single tree segmentation in LiDAR point clouds.DEN4 introduces a

multilevel noise separation module that effectively distinguishes between signal

and noise, thereby improving the signal-to-noise ratio (SNR) and reducing the

error.The experimental results demonstrate that DEN4 significantly outperforms

traditional denoisingmethods in several key metrics, includingmean square error

(MSE), SNR, Hausdorff distance, and structural similarity index (SSIM).In the 60

sample dataset, DEN4 achieved the best mean and standard deviation on all

metrics: Specifically, the MSE mean was found to be 0.0094, with a standard

deviation of 0.0008, the SNR mean was 149.1570, with a standard deviation of

0.5628, the Hausdorff mean was 0.8503, with a standard deviation of 0.0947, and

the SSIM mean was 0.8399, with a standard deviation of 0.0054. For instance, in

the S10 dataset, DEN4 attained a 70.2% diminution in MSE and a 37.8%

augmentation in SNR in comparison with PTD.The findings demonstrate the

efficacy of DEN4 in multiple forest datasets, its ability to maintain geometric

integrity, and its enhanced stability without the necessity for pre-labelled data.

The algorithm's superior performance and robustness in diverse forest

environments underscores its potential application in single tree segmentation

and forest resource management.
KEYWORDS

individual tree extraction, LiDAR point clouds, point cloud denoising, deep learning,
ecological study
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fpls.2024.1490660/full
https://www.frontiersin.org/articles/10.3389/fpls.2024.1490660/full
https://www.frontiersin.org/articles/10.3389/fpls.2024.1490660/full
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2024.1490660&domain=pdf&date_stamp=2025-01-09
mailto:Zhaoxiaodi@caf.ac.cn
https://doi.org/10.3389/fpls.2024.1490660
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2024.1490660
https://www.frontiersin.org/journals/plant-science


Lu et al. 10.3389/fpls.2024.1490660
1 Introduction

Forests constitute a crucial component of the Earth’s ecosystem,

playing an indispensable role in maintaining ecological balance and

supporting a myriad of life forms (Menut et al., 2023; Sun et al.,

2023). They provide an extensive array of ecosystem services, which

include but are not limited to, biodiversity conservation, carbon

storage, and the preservation of cultural values (Sabatini et al., 2018;

Handegard et al., 2024). Firstly, it is estimated that forest ecosystems

contain more than half of the world’s biodiversity and include

species of significant conservation value (Myers et al., 2000; Lewis

et al., 2015). Secondly, while conserving energy and reducing

carbon dioxide emissions, exploring the carbon sequestration

potential of forest ecosystems is key to achieving carbon

neutrality (Piao et al., 2022), as forest ecosystems absorb nearly

one-third of the anthropogenic carbon dioxide emissions each year

(Harris et al., 2021). Additionally, beyond providing food,

maintaining soil, and ensuring climate stability (Millennium

ecosystem assessment, 2005), forest ecosystems can have a

positive impact on human physical and mental health through

individual engagement (Daniel et al., 2012), thereby offering

psychological and cultural benefits to both individuals and society

(Ko and Son, 2018). In the future development of humanity, forest

ecosystems play an extremely important role, making the study of

forest physiology and ecology, as well as the management of forests,

indispensable (Jandl et al., 2007; Cox et al., 2023).

Light Detection and Ranging(LIDAR) plays a significant role in

forest physiology and ecology research, providing valuable data for

forest surveys and management (Yong Pang et al., 2005). Airborne

LIDAR can accurately extract canopy vertical structures, allowing

the acquisition of forest parameters at both the stand and individual

tree scales (Li et al., 2016) Unmanned Aerial Vehicle(UAV)-

mounted LIDAR can control scanning errors to within

centimeters or even millimeters, offering significant advantages in

digital ecosystem construction, aboveground biomass estimation,

and long-term monitoring of stand environments (Guo et al., 2014;

Liu et al., 2017). It has become a consensus among global forestry

scholars that using UAV-mounted LIDAR to obtain forest

ecological data is essential for strengthening forest ecosystem

management. Currently, image segmentation based on the

Canopy Height Model (CHM) and point cloud segmentation

based on normalized point cloud spatial clustering are two typical

methods for acquiring forest ecological data using UAV-mounted

LIDAR (Xu et al; Cao et al., 2013; Li et al., 2016). Point cloud

segmentation based on UAV-mounted LIDAR data is crucial for

addressing various issues such as measuring canopy height,

identifying individual trees, estimating leaf area index and canopy

closure, and calculating biomass (Maltamo et al., 2004; Riaño et al.,

2004; Zhao et al., 2009; Liu and Pang, 2014).

However, due to the limitations of the scanning equipment’s

precision and the influence of the acquisition environment, point

cloud data inevitably contains many noise points and outliers (Lu

and zou, 2019). The presence of these noise points reduces the

accuracy of the data, severely impacting the subsequent data

processing and usage. To reduce noise in point cloud data and

obtain cleaner point clouds, many scholars have conducted in-
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depth research and exploration. Currently, the most widely used

and mature technology for denoising is filtering-based techniques.

Choudhury et al. proposed a trilateral filtering method, building on

the bilateral filtering approach, for denoising 3D mesh models

(Choudhury and Tumblin, 2003). Schall et al. confined the

filtering window to the approximate normal vector region for

normal vector filtering (Schall et al., 2008). On the basis of the

SUN algorithm, Xinhe Liang et al. filtered both the normal vectors

of the discrete point model and the positions of the points to

develop an improved discrete point model filtering method (Liang

et al., 2010). Dongdong Lu et al. explored the application of

statistical filtering algorithms and radius filtering algorithms in

practical denoising tasks and conducted a comparative analysis of

the advantages and disadvantages of these two typical filters in

terms of denoising performance (Lu and zou, 2019). In the field of

LIDAR-based individual tree extraction, filtering methods are also

widely used. For example, Yushan Guo et al. employed

morphological filtering methods in their study on individual tree

crown extraction to ensure that contour information is well

preserved (Guo et al., 2016). Xiaokang Wu compared multi-level

surface filtering algorithms, slope filtering algorithms, and CSF

filtering algorithms, with results showing that in the field of

LIDAR-based individual tree extraction, CSF filtering offers

higher accuracy than slope filtering and multi-level surface

filtering methods (Wu et al., 2023). Additionally, Kaisen Ma, Wei

Li, and others processed LIDAR point cloud data using an improved

progressive triangulated network filtering method (Ma, 2023; Li and

Wang, 2024). However, traditional algorithms have certain

limitations in adaptability and denoising effectiveness, particularly

when handling different types of data where the performance can

vary significantly.

With the development of various technologies, point cloud

denoising based on deep learning and machine learning has

gradually attracted the attention of many scholars. Duan

Chaojing et al. proposed a neural network-based 3D point cloud

denoising framework that can accurately estimate and remove noise

in point clouds (Duan et al., 2019). Jie Zhang et al. introduced an

unsupervised deep point cloud denoising algorithm guided by

density priors, which improves the performance of unsupervised

deep point cloud denoising algorithms (Jie et al., 2024). Luo Shitong

and others proposed a neural network architecture designed to

estimate relevant scores using only noisy point clouds as input and

developed a denoising algorithm based on the estimated scores (Luo

and Hu, 2021). Pedro Hermosilla Casajus, Tobias Ritschel, and

Timo Ropinski proposed an unsupervised point cloud denoising

method that extends unsupervised image denoising techniques to

the 3D point cloud domain, introducing spatial priors to guide

point clouds toward the real manifold (Casajus et al., 2019).

Currently, point cloud denoising technology is still at a stage

where deep learning methods and traditional methods are

developing in parallel. However, compared to traditional

algorithms, deep learning methods, by utilizing advanced

architectures such as Convolutional Neural Networks (CNN) and

Graph Convolutional Networks (GCN), can automatically learn

and extract complex features from point clouds, significantly

reducing the workload of manual feature design. Through
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training on large datasets, deep learning models can effectively

adapt to different types of noise and variations in point cloud data.

For example, the model can learn specific noise patterns from the

training data, enabling it to perform denoising more effectively.

Additionally, deep learning methods excel in handling complex

scenarios and diverse point cloud data, particularly in challenging

situations involving non-uniform distributions, high-dimensional

data, and multi-view point cloud fusion (Menut et al., 2023). These

methods not only enhance denoising effectiveness but also preserve

more details and structural information in the point cloud (Mao

et al., 2022). However, in the field of LIDAR-based individual tree

extraction, traditional algorithms still dominate, and deep learning

methods have not yet fully replaced traditional methods when

addressing more detailed and complex data requirements. This

indicates that there is still room for further optimization and

development of deep learning methods in individual tree

extraction tasks.

This paper aims to develop an unsupervised deep learning

algorithm for LIDAR-based individual tree extraction, building on

existing deep learning algorithms. The specific objectives include:

collecting and preprocessing LIDAR point cloud data for individual

tree extraction; selecting suitable algorithms for unsupervised

learning, and improving and optimizing their design; training and

optimizing the model to enhance denoising effectiveness;

conducting detailed quantitative and qualitative analyses of the

denoising results; and optimizing the denoising process to lay a

foundation for future data processing and applications, ensuring

that the data can be more effectively utilized in subsequent analyses

and research.
2 Materials and methodology

2.1 Dataset and data preprocessing

The data used in this study were collected from 17 forest plots

located in Qingyuan City, Guangdong Province. The actual

sampling plots cover an area of 80*80 meters, and this data was

collected through UAV flight scans following manual ground

surveys. The data was collected in March 2024 using a BB4 UAV

equipped with an AS-1300HL Lidar system. The laser scanner

model used was the Riegl VUX-1LR, with a wavelength of 1550

nm, a pulse length of 3.5 ns, and a laser beam divergence angle of 0.5

mrad. The pulse repetition frequency was 50 kHz, with a maximum

scanning angle of 30°, and a scanning frequency of 49 Hz. The UAV

followed a grid flight pattern, with a point cloud overlap rate of 50%

and an average flight speed of 10 m/s. The average point cloud

density for the plots was 110 pts/m². A schematic of the plot is

shown in Figure 1.

The dataset comprises 17 forest plots in Qingyuan City,

Guangdong Province, selected for their ecological complexity and

biodiversity. Guangdong ’s forests, spanning tropical and

subtropical climates, present diverse vegetation and challenging

noise conditions, providing a robust test for the algorithm.

Compared to some public datasets and datasets provided by other

research studies, the dataset used in this paper has undergone an
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actual manual ground survey and includes a large amount of field

imagery. These field images can be directly correlated with the point

cloud data, allowing for adjustments and comparisons based on the

images during later processing, thereby improving the accuracy and

precision of the data handling.

Before data cleaning, the collected data underwent preliminary

processing and classification in this study. The point cloud data was

matched with actual imagery to ensure consistency between the

point cloud data and the real geographic location. During the

processing, specific functions were used to handle the point cloud

data, generating arrays containing the point cloud data and storing

them in the required format for use in subsequent steps. After

segmenting the plot data, 60 samples were selected as

experimental subjects.

To improve the stability of model training, accelerate model

convergence, reduce bias, and facilitate the comparison of various

algorithms in later stages, the point cloud data was also normalized.

This step ensured the comparability of the data across different

algorithms and models, enhancing the reliability and applicability

of the research results.
2.2 Foundations of the algorithm

This study is designed based on the principles of the

Noise4Denoise(DEN4) (Wang et al., 2024) algorithm. The

algorithm is redesigned and its steps are organized accordingly to

meet the requirements of Lidar-based individual tree extraction and

point cloud denoising. The decision to choose the Noise4Denoise

algorithm in this study is primarily based on its proven effectiveness

and well-documented experimental results. Additionally, the

algorithm’s classification as an unsupervised learning method

offers significant advantages. Unsupervised algorithms do not

require labeled training data, allowing them to learn directly from

unlabeled datasets. This capability makes them particularly well-

suited for large-scale, complex datasets, especially in situations

where labeling is costly or impractical. Furthermore, unsupervised

algorithms are highly versatile, performing effectively across various

environments, regardless of whether the data is high-dimensional,

unstructured, or lacks clear classifications or labels. This broad

applicability underlines their potential in a wide range of data

analysis tasks.

The training process of the algorithm is based on the following

fundamental relationships. Consider a clean point cloud P with nnn

points, where the three-dimensional coordinates of the points are

given as

P = pi │ i = 1, 2,…, n
� �

(1)

where   pi ∈ R3   represents the coordinates of a point in three-

dimensional space. Then, a point cloud with noise can be defined as

_P = _pi │ i = 1, 2,…, n
� �

= P + N (2)

where N represents the noise. A new noise M is redefined, with

the same resampling range as N, but M and N are independent and

not identical. Adding N to _P yields another point cloud _P 0
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_P0 = _p
0
i│i = 1, 2,…, n

n o
= _P +M = P +M + N (3)

Here, _P 0   contains double the noise, encompassing noise from both

N and M. The algorithm assumes that the clean point cloud can be

estimated based on the input noise. _P0 is set as the prior value,

representing the observable point cloud with double noise. The

estimation of the overall surface of the noisy point cloud is expressed

by the expectation E( _P│ _P0).According to Equation 2, we have

E( _P│ _P0) = E(P + N│ _P0) = E(P│ _P0) + E(N│ _P0) (4)

Since M and N are independently and identically distributed,

and both are sampled from the same distribution range, their

expected values are the same. That is E(M│ _P0) = E(N│ _P0).
Therefore, it can be deduced that:

2E( _P│ _P0) =  E(P│ _P0) + E( _P0│ _P0) (5)
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And then, it can be deduced as

E(P│ _P0) =   2E( _P│ _P0) − E( _P0│ _P0)

E(P│ _P0) − E( _P0│ _P0) =  E( _P│ _P0) − E( _P
0
│ _P0) (6)

Here, using E(P│ _P0) = �P、 E( _P│ _P0) = _P、 E( _P
0
│ _P0) = _P0, �P

、 _P、 _P0   represent the predicted values of P、 _P and _P
0

respectively, substituting these into Equation 6, we can obtain:

�P − _P = _P − _P0 (7)

According to the rules of conditional expectation and the discrete

nature of the point cloud, it can be derived that _P0 =  E( _P
0
│ _P0).

Assuming that the values in   �P、 _P、 _P0 correspond one-to-one, a

noise displacement vector can be predicted for each point in _P0′, and
these vectors can be used to construct an approximate clean point

cloud �P  . This relationship can be expressed as
FIGURE 1

Schematic of the plot.
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�P = �pi│i = 1, 2,…, n
� �

= _p
0
i + d

0
i│i = 1, 2,…, n

n o
(8)

where d
0
i represents the predicted displacement vector for the

point   _p
0
i; based on these vectors, the corresponding positions of the

clean point cloud can be directly estimated.

Adding another set of displacement vectors to _P
0
yields the

predicted value _P, which can be expressed as

_P = _pi│i = 1, 2,…, n
n o

= _p
0
i + d

0
i│i = 1, 2,…, n

n o
(9)

Based on the one-to-one correspondence assumption, by

substituting the values into Equation 7, it can ultimately be

proven that the direct prediction d
0
i is equivalent to twice �di:

�p − _p = _p − _p
0
i

( _p
0
i + d

0
i) − ( _p

0
i + �di) = ( _p

0
i + �di)− _p

0
i

d
0
i − �di = �di

d
0
i = 2�di (10)
2.3 Model architecture

Noise4Denoise proposes an unsupervised point cloud denoising

method, with the core idea of using a deep neural network to learn

the mapping from noisy point clouds to clean point clouds. The

specific implementation involves learning a displacement vector

field that enables each noisy point cloud point to move to its

predicted clean position. This process is achieved by training the

network to minimize the difference between the denoised point

cloud and certain criteria. The model is primarily composed of the

following modules: Input Layer: The input consists of noisy point

cloud data, typically in the form of double noise (i.e., adding two

different noise patterns to the original point cloud). Feature

Extraction Module: A deep learning-based network is used to

extract both local and global features of the point cloud.

Displacement Vector Prediction Module: Based on the extracted

features, the model learns to predict a displacement vector for each

point, enabling the mapping from noisy points to clean points.

Output Layer: The output is the denoised point cloud, obtained by

applying displacement corrections to the noisy points.

The design of the feature extraction module draws on network

architectures such as PointNet and DGCNN, learning both local and

global features to capture the geometric structure of the point cloud.

To ensure the retention of point cloud details during denoising, the

feature extraction module includes local neighborhood feature

extraction. This is achieved by determining the neighborhood of

each point using the k-Nearest Neighbors (k-NN) method, followed

by extracting local geometric features through graph convolution.

Global feature aggregation is achieved through global pooling, which

integrates local features into a global descriptor.
Frontiers in Plant Science 05
The displacement vector prediction module receives the

features output by the feature extraction module and generates a

displacement vector for each point. To preserve the structure and

details of the point cloud, the model is designed to use an MLP

network to perform nonlinear transformations on the extracted

features to generate the displacement vectors. A residual connection

is added between the generated displacement vectors and the

original point coordinates to ensure the stability and expressive

power of the model.

To preserve the structure and details of the point cloud during

the denoising process, the model incorporates a specifically

designed symmetric loss function, ensuring that the overall

geometric shape of the point cloud is not disrupted; Through

local feature extraction and the relationship between neighboring

points, the model can identify and preserve local structures;

Regularization techniques such as Dropout or weight decay are

employed to prevent the model from overfitting, thereby better

preserving the details of the original point cloud. Our specific model

architecture is shown in Figure 2.
2.4 Loss function

Using   _di = _pi − _p
0
i, the prediction of the actual value of �di in

Equation 10 guides the estimation of the displacement d0 i. A mean

squared error (MSE) loss function is designed, which can be defined as

Lmse = ‖ d0
i − 2 _di ‖22 (12)

To ensure that the point cloud spacing after denoising remains

appropriate and to avoid potential clustering issues, the algorithm

incorporates a repulsion loss based on references (Rakotosaona

et al., 2019; Zhang et al., 2020). This repulsion loss is designed to

assist in the distribution of the clean point cloud. First, a pseudo-

clean point cloud ~P   is defined as

~P = _p
0
i + 2 _di│i = 1, 2,…, n

n o
(13)

where ~P   does not actually exhibit a clean appearance. The

following process is used to define the pseudo-clean point cloud:

~Pi = ~pj│ ~pj − _pi
�� ��

2, ~pj∈~P
� �

(14)

Here, since _pi is assumed to be a point cloud less affected by

noise, ~pj∈~P is used to query ~Pi. Then, the point set ~Pi is normalized.

Using these, the loss function can be defined as

Lrep = max
~pj∈~Pi

( _p
0
i + d

0
i) − ~pj

���
��� 2

2
(15)

Then the loss function L can be defined as

L = Lmse + g Lrep (16)

where g   is a factor controlling the influence of the repulsion

loss, set to 0.0005.
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3 Results

3.1 Experimental conditions

3.1.1 Hardware environment
The hardware configuration used in this study is as follows: a

computer equipped with an Intel(R) Core(TM) i5-10500 processor,

with a base frequency of 3.1GHz, featuring 6 cores and 12 threads; a

NVIDIA GeForce RTX 2070 SUPER graphics card with 8GB of

VRAM; the computing platform is also equipped with 32GB of

RAM and 4TB of storage space to support data processing and

experimental computations.

3.1.2 Software environment
This paper describes the computational experiments conducted

under the Windows 11 Pro operating system, utilizing CUDA 12.5

as the parallel computing framework. To facilitate model training

management, PyCharm was used as the development environment,

and CloudCompare was employed for the visualization of point

cloud data.
3.2 Hyperparameter configuration

In this experiment, the settings for various parameters were

determined through exploratory experiments. For the learning rate,

a cosine annealing algorithm was used to make an initial estimate,

with a range from 0.1 to 0.0001, and 0.001 was ultimately selected as

the optimal learning rate. Additionally, the weight parameter in the

loss function was set to 0.0005, following the original algorithm. For

the noise addition level, after testing different noise intensities

ranging from 0.01 to 0.1, 0.1 was chosen as the optimal value.

The structure of the encoder and decoder was optimized using a

layer-by-layer approach, resulting in a 3-256-512-1024-2048

architecture, which struck a good balance between experimental
Frontiers in Plant Science 06
results and computation time. A total of 200 training epochs were

conducted, with each training batch containing 128 samples.
3.3 Common evaluation metrics for point
cloud denoising

The commonly used evaluation methods for Lidar point cloud

denoising include Mean Squared Error (MSE), Signal-to-Noise

Ratio (SNR) (Mao et al., 2022), Hausdorff Distance (Javaheri

et al., 2020), and Structural Similarity Index (SSIM) (Liu et al.,

2022). This study selects MSE, SNR, Hausdorff Distance, and SSIM

as evaluation criteria because they comprehensively assess the

effectiveness of point cloud denoising from different dimensions.

MSE evaluates the accuracy of the algorithm, SNR measures the

clarity of the signal, Hausdorff Distance assesses geometric

precision, and SSIM focuses on structural fidelity. By integrating

these four metrics, it is possible to evaluate the performance of

denoising algorithms holistically and accurately, thereby providing

a better understanding of the algorithm’s effectiveness and

limitations in practical applications.

(1) MSE refers to the expected value of the squared difference

between the estimated parameter and the true parameter value. It is

used to describe the extent of the difference in the point cloud before

and after denoising. MSE quantifies the prediction error of the

algorithm or the accuracy of the model by calculating the average of

the sum of the squared errors between the predicted values and the

actual values. The formula can be expressed as

mse = 1
mo

m

i=1
(yi − ŷ i)

2
(17)

where yi   represents the true value, and ŷ i represents the

predicted value. The smaller the MSE, the closer the model’s

prediction is to the true value. Therefore, in the evaluation of point

cloud denoising, a lower MSE indicates better denoising performance.
FIGURE 2

Model architecture.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1490660
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Lu et al. 10.3389/fpls.2024.1490660
(2) SNR is used to measure the ratio of the power of a signal to

the power of the noise, typically expressed in decibels (dB). In point

cloud processing, SNR describes the relative strength of the signal to

the noise in the point cloud, reflecting the clarity of the signal and

the degree of noise interference. The ratio of the signal power to the

noise power is commonly multiplied by 10 in its logarithmic form,

and the specific formula is as follows:

SNR = 10lg Ps
Pn

(18)

where Ps represents the power of the signal, and  Pn represents

the power of the noise. The logarithmic operation in the formula

amplifies the difference between the signal and noise power,

allowing SNR to intuitively express the quality of the signal

in decibels.

(3) Hausdorff Distance is a metric used to describe the degree of

similarity between two sets of points, measuring the maximum

distance between two point clouds. It is often used to assess the

geometric differences between point clouds before and after

denoising. Specifically, the Hausdorff distance is defined as the

maximum distance from a point in one set to the nearest point in

another set. If we consider two point sets AAA and BBB, the one-

way Hausdorff distance between these two sets can be expressed as

h(P, _P) = max
pi∈P

min
_pi∈P

pi − _pik k (19)

where pi − _pi represents the Euclidean distance between pi and
_pi, and h(P, _P) is also known as the forward Hausdorff distance (Tie,

2024). The Hausdorff distance emphasizes the farthest minimum

distance between two point sets, making it sensitive to capturing the

maximum differences between point clouds. This makes it a

powerful tool for evaluating point cloud denoising effectiveness,

especially in applications where maintaining geometric accuracy

is crucial.

(4) SSIM is an important metric for measuring the similarity

between two images, particularly useful for capturing changes in

structural information. It is also widely used to assess the structural

similarity between two point clouds. In 3D point cloud processing,

SSIM can be calculated by projecting the 3D point cloud onto a 2D

plane, or by using a voxelization method to segment the point cloud

for calculation. In this study, we adopt a neighborhood-based

approach to directly compute SSIM in 3D space. The basic

formula for SSIM is as follows:

SSIM(x, y) =
(2mxmy+C1)(2s xy+C2)

(m2
x+m2

y+C1)(s 2
x+s 2

y+C2)
(20)

where mx and my are the mean values of images x and y
respectively; s 2

x and s 2
y are the variances of x and y respectively;

and sxy is the covariance between images x and y. Where C1 =

(K1L)
2 and C2 = (K2L)

2 are two constants added to avoid division

by a small denominator, with L representing the dynamic range of

the pixel values. In the application of 3D point clouds, SSIM can be

used to measure the structural similarity of point clouds before and

after denoising by analyzing both the local structure and global

distribution of the point cloud. This method allows for a more

effective evaluation of the point cloud processing algorithm’s ability

to preserve geometric structure and details.
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3.4 Results analysis

3.4.1 Quantitative analysis
This paper analyzes the experimental results of 60 treated

sample plots and additionally presents the point cloud data

processing results of two specific plots, named S5 and S10. To

evaluate the accuracy, generality, and effectiveness of the algorithm

used in Lidar point cloud processing for individual tree extraction,

this paper compares several common denoising methods, including

Morphological filtering, Progressive Triangulated Network

Denoising(PTD), Statistical Outlier Removal(SOR), and Radius

Outlier Removal(ROR). These methods encompass a range of

processing dimensions, allowing for a more comprehensive

comparison that highlights the adaptability of the deep learning

algorithm in handling diverse data characteristics. By comparing

these traditional methods, it becomes possible to evaluate the

robustness and adaptability of the deep learning algorithm across

various denoising scenarios. This comparative analysis not only

showcases the innovation and efficacy of the deep learning

algorithm in point cloud denoising but also clarifies its

advantages over traditional methods in practical applications.

Moreover, this analysis provides valuable insights into the

algorithm’s performance, offering essential guidance for its further

optimization and real-world implementation.

Plots S5 and S10 were chosen for analysis due to their

complexity, which makes them highly representative. Firstly,

these plots encompass both densely forested areas and relatively

sparse regions, capturing a diverse range of forest conditions.

Secondly, their rugged terrain further highlights their suitability

as representative samples for this study.

To quantify the denoising performance of these methods, this

paper calculates the Mean Squared Error (MSE), Signal-to-Noise

Ratio (SNR), Hausdorff Distance, and Structural Similarity Index

(SSIM), and compares the results across several algorithms. MSE

and SNR provide distinct yet complementary measures of denoising

quality. Combining these two metrics allows for a more

comprehensive evaluation of algorithm performance. SSIM and

Hausdorff Distance, on the other hand, assess the denoising process

from different perspectives—structural fidelity and geometric

accuracy, respectively. By comparing SSIM and Hausdorff

Distance together, we can evaluate the performance of denoising

algorithms in terms of both structural similarity (measured by

SSIM) and geometric precision (measured by Hausdorff

Distance). This dual analysis offers a more thorough assessment

of algorithm effectiveness, ensuring that the algorithm not only

preserves the visual and structural similarity of the point clouds but

also retains their precise geometric structure.

This study calculates the standard deviation and mean absolute

deviation for various algorithms across four key metrics, with the

results summarized in Table 1. Additionally, the outcomes for plots

S5 and S10 are discussed in detail, as shown in Tables 2, 3,

respectively. In Table 1, the first metric analyzed is MSE. The

algorithm DEN4 achieves the lowest mean MSE (0.0094) and the

smallest standard deviation (0.0008), indicating the least error and

highest stability. In contrast, other methods, such as Morphological

and SOR, have mean MSE values ranging from 0.0297 to 0.0300,
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which are significantly higher than DEN4.The second metric is

SNR. DEN4 exhibits the highest mean SNR (149.1570), reflecting

the best signal quality post-denoising. Its smallest standard

deviation (0.5628) further highlights its consistent performance in

this regard. For the Hausdorff distance, DEN4 achieves the lowest

mean value (0.8503), demonstrating superior preservation of the

point cloud’s geometric structure. Its standard deviation is also the

smallest (0.0947), underscoring its stability in maintaining

geometric characteristics. Finally, in terms of SSIM, DEN4

delivers the highest mean value (0.8399) and the smallest

standard deviation (0.0054), showcasing its outstanding structural

similarity performance with minimal variability.

Specifically, in the S10 point cloud, the algorithm’s MSE value

decreased by 70.2% compared to PTD and by 37.8% compared to

ROR, reaching 0.0105. This indicates that the algorithm effectively

maintains the accuracy of the point cloud data while reducing noise.

The algorithm’s SNR value is 1-5 dB higher than other algorithms,

reaching a maximum of 149.4042, indicating a significant advantage

in enhancing signal quality. Additionally, the algorithm’s Hausdorff

distance is significantly lower than other methods, at 0.8466,

demonstrating its high precision in preserving the geometric

structure of the point cloud. The algorithm’s SSIM value is

slightly lower than that of Morphological Filtering and SOR, but

the differences are minimal. Moreover, the algorithm exhibits a high

degree of consistency in processing point cloud data across different

plots (S5 and S10) and demonstrates good robustness. The MSE

variation is 0.0001, SNR variation is 0.0523, Hausdorff variation is

0.0350, and SSIM variation is 0.130, with overall error within the

range of 0% to 5%. Compared to other algorithms, it shows

excellent stability.

This paper employs visualization methods to further present the

experimental data. Figure 3 illustrates the mean and standard

deviation of four key metrics—MSE, SNR, Hausdorff distance,

and SSIM—for different algorithms. Figure 4 shows the Euclidean
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distance distribution of five algorithms: DEN4, Morphological,

PTD, SOR, and ROR.

In Figure 3, DEN4’s distribution is highly concentrated, mainly

within a small distance range (0 to 1), with the highest density peak.

This indicates that DEN4 produces more compact denoising results,

with smaller inter-point distances, reflecting superior denoising

performance and stability. In contrast, the distributions of

Morphological, PTD, SOR, and ROR are more dispersed,

particularly with higher densities in the large-distance range (2 to

5). This suggests weaker denoising performance, potentially leading

to point cloud diffusion or fragmentation.

Figure 4 reveals that DEN4 achieves the lowest MSE and the

smallest standard deviation, demonstrating its significant advantage

in minimizing errors compared to other algorithms. Other

methods, such as Morphological and PTD, exhibit higher MSE

values and greater error variability. DEN4 also achieves a

significantly higher SNR than the other algorithms, indicating the

best signal quality after denoising. While the SNR values of other

algorithms are relatively close, they are consistently lower

than DEN4.

Regarding Hausdorff distance, DEN4 achieves the lowest value,

highlighting its excellent ability to preserve the geometric structure

of the point cloud. Other algorithms, particularly Morphological

and PTD, show much higher Hausdorff distances, indicating poorer

geometric preservation. Moreover, DEN4 achieves the highest SSIM

value with minimal variation, confirming its superior ability to

maintain the structural similarity of the point cloud.

3.4.2 Visual evaluation
In Figure 5, this paper examines the denoising effect on the S10

point cloud by sampling and displaying 10,000 randomly selected

points from the processed data. The results are very clear. In the

original point cloud, the areas marked by black boxes exhibit

uneven thickness and contain a significant amount of noise.
TABLE 1 Overall noise reduction sample standard deviation and absolute mean deviation.

Methodology MSE_mean MSE_std SNR_mean SNR_std Hausdorff_mean Hausdorff_std SSIM_mean SSIM_std

DEN4 0.0094 0.0008 149.1570 0.5628 0.8503 0.0947 0.8399 0.0054

Morphological 0.0299 0.0058 146.1743 1.1729 5.3568 1.2884 0.7649 0.0297

PTD 0.0297 0.0056 146.1301 1.1254 5.5593 1.4601 0.7752 0.0306

ROR 0.0301 0.0054 146.1726 1.0242 5.2390 1.4777 0.7727 0.0291

SOR 0.0300 0.0055 145.8800 1.0088 5.3034 1.3772 0.7724 0.0307
TABLE 2 MSE, SNR, Hausdorff and SSIM after S5 treatment Indicator
calculation results.

Methodology MSE SNR Hausdorff SSIM

Morphological 0.0173 147.2195 7.5856 0.834

PTD 0.0296 144.9017 7.7872 0.726

SOR 0.021 146.3831 7.5609 0.8348

ROR 0.0198 147.5695 7.5782 0.834

DEN4 0.0106 149.3518 0.8116 0.7749
TABLE 3 MSE, SNR, Hausdorff and SSIM after S5 treatment Indicator
calculation results.

Methodology MSE SNR Hausdorff SSIM

Morphological 0.017 147.3146 7.5856 0.834

PTD 0.0353 144.1307 7.7872 0.726

SOR 0.0222 146.1539 7.5609 0.8348

ROR 0.0169 147.3146 7.5782 0.834

DEN4 0.0105 149.4042 0.8116 0.7749
fro
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However, in the point cloud processed by the algorithm, the

thickness is generally consistent, and the distances between the

points have reached a more ideal state. The denoising process

significantly improved the overall smoothness of the point cloud,

reducing the aggregation of large noisy point clusters and

minimizing floating noise points, resulting in a more uniform and

clearer point cloud dataset.

In Figures 6, 7, we present the results of processing the S5 and

S10 point cloud data using different algorithms, alongside the

frontal view of the original point cloud. Compared to other

methods, our algorithm more accurately captures the contours of
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individual trees, while maximizing the preservation of critical

features such as canopy width, tree height, and diameter at breast

height. Specifically, in the upper regions, our algorithm exhibits

denser color, indicating that the outer contour areas of the point

cloud are more densely populated with fewer noise artifacts, and the

point cloud outside the canopy is more concentrated. This

highlights the superior performance of our algorithm in canopy

recognition, with more complete feature retention. Additionally, the

algorithm excels in trunk recognition, clearly delineating the overall

outline of the tree trunk. In contrast, other algorithms show

deficiencies in analyzing the overall tree structure and contours,
FIGURE 3

Comparison of S10 before and after denoising.
FIGURE 4

Euclidean distance distribution across algorithms.
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leading to the loss and deformation of some details. These

traditional methods struggle to adequately preserve the natural

contours of trees, particularly in maintaining canopy and trunk

features. In comparison, our algorithm better retains the overall

structure of the tree, avoiding significant deformation and

information loss, resulting in more accurate and realistic

processing outcomes.
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In Figures 8, 9, we present the results of processing the S5 and

S10 point cloud data using different algorithms, along with the

overhead view of the original point cloud, to compare the overall

shape and canopy structure after denoising. The method employed

in this study demonstrates exceptional performance in preserving

the overall canopy features, effectively removing most of the noise,

and rendering the primary shape of the point cloud clearer and
FIGURE 6

Front view comparison of S5 point cloud.
FIGURE 5

Comparison of S10 before and after denoising.
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more complete. Compared to other algorithms, this method not

only better retains the canopy characteristics but also significantly

reduces the impact of noise on the point cloud’s shape, thereby

enhancing the visual quality of the denoised results.
4 Discussion

4.1 Results discussed

In this study, we propose an innovative unsupervised deep

learning-based point cloud denoising algorithm, DEN4, designed to

enhance the denoising performance of single-tree segmentation in

LiDAR point clouds. By improving the denoising process, this

method aims to facilitate more accurate single-tree segmentation

and related research.

DEN4 introduces a multi-level noise separation module into its

network architecture, effectively distinguishing between signal and

noise. This mechanism ensures the efficient removal of significant

noise while preserving the fine structures of the point cloud,

significantly reducing errors and improving the signal-to-noise

ratio (SNR). The dual noise-handling design makes DEN4

particularly suitable for denoising LiDAR point clouds in complex

scenarios, ensuring consistent performance across diverse datasets.

Our results demonstrate that DEN4 achieves an MSE mean of

0.0094, substantially lower than Morphological (0.0299) and PTD

(0.0297), with a standard deviation of just 0.0008, indicating

reduced error and exceptional stability. On the S10 dataset, DEN4

reduced MSE by 70.2% compared to Progressive Triangulated

Filtering and by 37.8% compared to Radius Outlier Removal.

Additionally, DEN4 achieves an average SNR of 149.1570,

significantly outperforming Morphological (146.1743) and PTD
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(146.1301). Notably, in the S5 dataset, DEN4’s SNR increases to

149.4042, highlighting its superior signal retention capabilities.

Inspired by PointNet and DGCNN architectures, DEN4 refines

the local feature extraction module, capturing intricate details of the

point cloud with precision. This design ensures the preservation of

local geometric details, such as tree height and diameter at breast

height, during the denoising process, effectively mitigating common

issues in traditional methods, such as detail loss and over-

smoothing. As a result, DEN4 maintains the core structural

consistency of point clouds across different scales, significantly

improving geometric shape retention. Experimental results

corroborate this capability: DEN4 achieves an average Hausdorff

distance of 0.8503, significantly lower than Morphological (5.3568),

PTD (5.5593), and SOR (5.3034). On the S5 dataset, the Hausdorff

distance further decreases to 0.8116, demonstrating DEN4’s

outstanding ability to preserve complex geometric structures.

By integrating global and local feature learning, DEN4 ensures

that the denoising process not only focuses on fine details but also

maintains the overall structural consistency of the point cloud. This

global feature learning capability effectively prevents the shape

distortions commonly observed in traditional filtering methods,

ensuring that the denoised point cloud closely aligns with the

original data. The unsupervised learning mechanism further

enhances the algorithm’s adaptability to various datasets, resulting

in consistent performance across diverse environments. This

adaptability is reflected in the SSIM metric, where DEN4 achieves

an SSIM of 0.8399, outperforming other algorithms in most

experiments, with minimal variation (standard deviation of only

0.0054). This demonstrates DEN4’s stable performance in

preserving the overall structure of the denoised point cloud.

As an unsupervised algorithm, DEN4 requires no pre-labeled

data and can adaptively capture the characteristics of different
FIGURE 7

Front view comparison of S10 point cloud.
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datasets. This feature enables DEN4 to maintain consistency and

robustness across diverse forest point cloud datasets. Particularly in

complex data environments, the unsupervised learning mechanism

ensures high consistency between the denoised point cloud and the

original data, enhancing the algorithm’s generalizability in various

scenarios. This robustness is evidenced by DEN4’s MSE standard

deviation of just 0.0008, significantly lower than other algorithms,

indicating minimal error fluctuation during the denoising process.

Similarly, DEN4’s SNR standard deviation of 0.5628 is far lower

than Morphological (1.1729) and PTD (1.1254), highlighting its

stable signal quality.

This study introduces a comprehensive suite of innovative

designs—including dual noise processing, local feature extraction,

global feature learning, and unsupervised learning—that collectively

elevate the quality and stability of point cloud denoising to a new

standard. The effectiveness of these advancements is evident in their

superior performance across key metrics: dual noise processing

achieves optimized MSE and SNR, local feature extraction

significantly reduces Hausdorff distance while preserving
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geometric structures, global feature learning enhances SSIM

stability, and the unsupervised learning mechanism ensures

consistent denoising performance across diverse datasets.

The seamless integration of these design elements enables

DEN4 to produce exceptionally clean and accurate point clouds

while preserving intricate details, offering powerful support for

single-tree segmentation and forest resource management

applications. These multifaceted improvements not only validate

the algorithm’s robustness but also highlight its potential for

transformative applications in complex ecological environments.
4.2 Conclusion

Lidar point cloud data is an invaluable resource in the field of

forest survey and management, providing essential parameters and

metrics that are vital for the effective monitoring and management

of forest resources. Despite its importance, traditional point cloud

processing algorithms frequently encounter limitations pertaining
FIGURE 8

Overhead view comparison of S5 point cloud.
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to accuracy, robustness, and the maintenance of contour integrity.

These constraints impede the ability to fully exploit the data in

complex, real-world settings. In response to these challenges, this

study undertook an extensive investigation using a dataset

comprising 17 forest plots located in Qingyuan City, Guangdong

Province. Following a comprehensive data preprocessing phase, an

unsupervised deep learning algorithm, specifically designed for

point cloud denoising, was introduced and further refined. The

structure of the algorithm was meticulously redesigned to more

closely align with the specific requirements of individual tree

extraction tasks. By systematically introducing varying levels of

noise into the dataset and employing multi-layer deep learning

techniques, this study was able to effectively generate cleaner and

more accurate point cloud data. The results highlight the potential

of the proposed algorithm to enhance the precision and reliability of

point cloud data, thereby contributing to more effective forest

resource monitoring and management.
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The experimental results demonstrate that the improved

algorithm not only adapts effectively to various individual tree

extraction Lidar point cloud datasets but also significantly enhances

the denoising process, resulting in clearer tree outlines. The algorithm

excels in preserving crucial features such as tree height and diameter

at breast height, ensuring that these key characteristics remain intact.

Compared to traditional algorithms, this method shows remarkable

superiority in both quantitative analysis and visual results,

highlighting its robustness and precision in maintaining the

structural integrity of the point cloud data. The clear improvement

in noise reduction and feature preservation underscores the

algorithm’s potential for widespread application in the domain of

individual tree extraction using Lidar point cloud denoising. Its ability

to deliver consistent and reliable results across different datasets

further validates its applicability in practical scenarios, making it a

promising tool for enhancing the accuracy and effectiveness of forest

resource monitoring and management.
FIGURE 9

Overhead view comparison of S10 point cloud.
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Although this study demonstrates the superiority of the

algorithm in denoising Lidar point clouds for individual tree

extraction, there is still room for improvement. Since the dataset

used primarily consists of plots with a single tree species, the

algorithm’s effectiveness in processing other single-species and

multi-species scenarios has yet to be validated. It is recommended

to further explore the algorithm’s potential applications in complex

mixed forests or large-scale forest surveys. Special attention should be

given to investigating the impact of different seasons and

environmental factors (such as light, humidity, and vegetation

density) on the algorithm’s performance to further enhance its

generality and robustness. Therefore, future research should aim to

diversify the dataset to test the algorithm’s applicability across

different tree species and complex forest environments.

Additionally, future studies should focus on developing a

comprehensive deep learning algorithm for individual tree

extraction and integrating it with other optimized algorithm models.

This approach will be instrumental in better addressing the

challenges encountered in practical applications, particularly when

handling large-scale forest datasets. The complexity of real-world

environments, including the diversity of forest types and the varying

conditions under which data is collected, requires algorithms that

are not only robust and adaptive but also capable of delivering

precise results across different contexts. By integrating the strengths

of multiple algorithms, future research can aim to develop point

cloud processing methods that are both more efficient and more

accurate. Such methods will be crucial in meeting the increasingly

sophisticated demands of forest resource surveying and

management, where the need for high-resolution, reliable data is

ever-growing. The development of these advanced methodologies

will not only enhance the accuracy of individual tree extraction and

related tasks but will also contribute to the broader field of

environmental monitoring and conservation by providing tools

that are capable of coping with the complexities of natural

ecosystems on a large scale.
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