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Warming altered the effect of
cold stratification on the
germination of Spartina
alterniflora across climatic zones
in its invasive range
Fujia Wu, Xincong Chen*, Yangping Guo, Wenwen Liu
and Yihui Zhang

Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the
Environment and Ecology, Xiamen University, Xiamen, Fujian, China
Introduction: Cold stratification has a pronounced influence on seed

germination, climate change is altering cold stratification regimes across

climatic zones. Therefore, it is urgent to explore how seed germination from

different geographic provenances responds to these changes. The invasive plant

Spartina alterniflora spans three climatic zones along the Chinese coast, such

distribution provides a natural temperature gradient to explore how warming

alters the effects of cold stratification on germination.

Methods: Spartina alterniflora seeds were collected from nine locations across

three climatic zones in China from September to November in 2021. Seeds were

planted in three common gardens with three latitude gradients of 21 °N, 28 °N,

and 38 °N, after 0-month and 4-month cold stratification at 4 °C in November

2021 and March 2022, respectively. Each common garden simulated the natural

temperature conditions and shield the plants from rain.

Results: Results showed that cold stratification led to explosive germination and

rapidly reaching a plateau, shortened the germination time and improved the

final germination rate. These effects were magnified from the high-latitude

garden to the low-latitude one (i.e., warming). And the interactive effect of

cold stratification and warming varied among provenances. For the subtropical

and temperate provenances, the improvement in germination rate induced by

cold stratification gradually increased from high-latitude garden to low-latitude

one, while for tropical provenances, this difference progressively decreased.

Discussion: Thus, our results indicated that subtropical and temperate

provenances may migrate northward for adequate low temperatures to ensure

high germination rate, because cold stratification can alleviate the negative

impacts of warming on germination. For the tropical provenances, warming
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also suppressed the advantage that cold stratification provides in enhancing the

germination rate, which may hinder their further spread southward. Our study

contributes to understanding the responses of vegetation germination and

recruitment across different climatic zones under global warming, providing

insights for the distribution of cosmopolitan species and the management of

exotic species.
KEYWORDS

cold stratification, invasion, latitude, seed germination, Spartina alterniflora, warming,
common garden
Introduction

Climate warming affects the life history of plants, of which the

germination period is considered to be the most sensitive to

stochastic environments, with lasting effects on individual

adaptation, population persistence, and species distribution (Post

et al., 2008; Springthorpe and Penfield, 2015; Collins et al., 2021;

Keller and Shea, 2021). Seed germination marks the beginning of a

plant’s life history and its characteristics, such as germination time

and rate, reflect the seed’s adaptability to environments (Donohue

et al., 2010; Huang et al., 2016). Plants adjust their germination

characteristics to optimize survival and reproduction (Donohue

et al., 2005; Gremer et al., 2020b). Cold stratification is a crucial

physio-ecological processes for seed germination in most temperate

regions (Baskin and Baskin, 1988), enabling seed to germinate

under appropriate conditions (Steadman and Pritchard, 2004;

Cavieres and Sierra-Almeida, 2018). Cold stratification is defined

as the way to store mature seeds on water-moistened substrates in

darkness at low temperature (typically around 4°C) (Garcıá-

Fernández et al., 2015; Hayasaka et al., 2020). With the increase

of temperature, there is an adaptive shift in the response of seeds to

cold stratification (Bernareggi et al., 2016). For instance, some

plants may gradually adapt to warmer climates by adjusting the

germination time (Walck et al., 2011; Boheemen et al., 2019), while

others may migrate through niches in search of more suitable

habitats (Lustenhouwer et al., 2018). Temperature is the primary

factor regulating seed germination, and climate change may alter or

disrupt germination characteristics in different regions under new

climate (Walck et al., 2011; Zhou and He, 2020). However, it is still

unknown how the effects of cold stratification on seed germination

characteristics in broad geographic areas would change under

climate warming.

The heterogeneity of environmental conditions in different

geographical regions along latitude leads to different germination

characteristics and different responses to cold stratification

(Chamorro et al., 2018; Cheng et al., 2022). In temperate regions,

longer and cooler winters result in deeper seed dormancy (Gremer

et al., 2020a; Kuroda and Sawada, 2022), and seeds often delay

germination to avoid frost damage (Center et al., 2016). In this case,
02
cold stratification becomes a necessary physiological process to

drive seed germination, and the germination time directly reflects

the adaptability to current environmental conditions (Donohue

et al., 2005). Whereas, plants in tropical regions with warmer and

shorter winter may not meet an obvious stratification process

(Spindelböck et al., 2013). Climate warming could change the

regimes of cold stratification along environmental gradients (Orru

et al., 2012; Kuroda and Sawada, 2022). However, seeds from

different geographic regions are facing with different extent of

warming, many studies indicate that high-latitude regions are

more sensitive to climate changes than other regions (Kirwan

et al., 2009; Cohen et al., 2014; Leblans et al., 2017).

Understanding the potential alternation in germination in various

geographic regions is crucial for predicting adaptability and

distribution of cosmopolitan species under warming.

Exotic invasive plants, which often span wide latitudinal

gradients, and benefit from climate warming (van Kleunen et al.,

2010; Wu et al., 2017; Keller and Shea, 2021). However, responses of

invasive plants’ germination to cold stratification across latitudes

are limited. Spartina alterniflora is a widely distributed global

invasive plant, native to the Atlantic and Gulf Coasts of the

United States (Castillo et al., 2014; Zhang et al., 2023). Its rapid

spread in the new habitats is related to the adaptability of the seed

during the germination stage (Biber and Caldwell, 2008; Liu and

Zhang, 2021). In its native range, germination traits show local

adaptation along latitudinal gradient with genetic variation basis,

primarily related to temperature (Mooring et al., 1971; Seneca,

1974). In its invaded area, growth chambers studies also suggested

that temperature variations along latitude drove changes in seed

germination characteristics and influenced the geographical

distribution of S. alterniflora (Liu and Zhang, 2021; Cheng et al.,

2022). However, natural habitats are complex, which poses a

challenge to fully simulate these environments in growth

chambers. Under climate warming, temperature changes in

different geographical regions may have significant effects on

germination characteristics via changing the cold stratification

regimes. Researches on the response of S. alterniflora germination

to varying temperature conditions is crucial for better

understanding its invasive dynamic under climate warming.
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Observation and experimental warming methods are main

approaches to empirically examine the effects of warming on seed

germination. Nevertheless, the results of observational studies are

often difficult to generalize across different times and spaces, while

experimental studies, typically conducted on smaller spatial or

temporal scales, frequently use stepwise temperature increases

that may not fully represent natural conditions. Common garden

experiments, which compare seed germination across sites with

contrasting temperatures, such as latitudinal gradient, provide

crucial insights into how temperature influences germination

traits (Moloney et al., 2009; Frenne et al., 2013).

In this study, seeds from nine locations of S. alterniflora were

collected across a latitudinal range in China. These seeds were

planted in three common gardens spanning three latitudinal

gradients (low-, mid- and high-latitude) after cold stratification

(4°C) for 0-month and 4-month. The high-, mid-, and low-latitude

common gardens are respectively located in Shandong, Zhejiang,

and Guangdong province, and the high-/low-latitude common

gardens are close to the north/south boundaries of the

distribution of S. alterniflora in China. These three common

gardens span three climatic zones and nearly 20 latitudes, with

different temperature conditions (Supplementary Table S3).

Macroclimatic variation along latitudinal gradient provides an

excellent natural laboratory to investigate the role of temperature

and the effects of climate warming on seed germination (Frenne

et al., 2013). We aimed to answer: (1) What is the specific effect of

cold stratification on germination rate and timing of S. alterniflora

across different climates? (2) How does climate warming alter these

effects in various climatic zones? (3) Do the effects of cold

stratification and warming on germination vary among
Frontiers in Plant Science 03
provenances from different climatic zones? The answers would be

beneficial for understanding the recruitment and predicting the

spread of S. alterniflora provenances inhabiting different climatic

zones in the scenario of climate warming.
Materials and methods

Study species

Spartina alterniflora Losiel., native to North America and the Gulf

Coast of the Mexico, is a global invasive plant in coastal wetlands

(Daehler and Strong, 1994; Zhang et al., 2023). In 1979, three ecotypes

of S. alterniflora were introduced to Fujian, China, from three different

geographical regions in the United States: North Carolina (34.72°N),

Georgia (31.47°N), and Florida (27.70°N) (Xu and Zhuo, 1985).

Spartina alterniflora can reproduce both by seeds and vegetative

fragmentation, and sexual reproduction is conducive to long-distance

transmission (Daehler and Strong, 1994). Over the past 40 years since

its introduction, S. alterniflora has already rapidly spread across a 20-

degree latitudinal range through both artificial planting and natural

dispersal, spanning tropical, subtropical and temperate regions (An

et al., 2007; Zhang et al., 2023; Zhao et al., 2023).
Seed collection and pre-treatment

Seeds of S. alterniflora were collected from nine locations with

latitude intervals of 1~2° within the invasive range of China (ranging

from 20°N to 38°N). (Figure 1A; Supplementary Table S2).
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FIGURE 1

(A) Spartina alterniflora seed collection locations in China (circle), three common garden sites (star), mean annual temperature (color) and range of
days of mean daily temperature below 4 °C (circle size) variation across latitude. (B) Cold stratification for 0-month and 4-month. (C) Mean daily
temperatures during the germination period in three common gardens.
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Wecollected seeds from September to November in 2021, which

represented the end of the growing season at all locations. Spartina

alterniflora matures earlier at lower latitudes (Liu et al., 2016; Chen

et al., 2021), therefore, seeds collection was conducted from

south to north.

At each location, we worked at two sites, located 2-3 km apart.

Five quadrats (0.5 × 0.5 m) were established per site, which were at

least 30 m to ensure that they were from different clones, each

quadrat considered a seed family. From each quadrat, at least 15

inflorescences were randomly collected, ensuring no herbivory or

shattering. We distinguished between filled (embryo-containing)

and unfilled (embryo-lacking) seeds by touch (Schmidt-Adam et al.,

2002; Hayasaka et al., 2020).

In the past 10 years, seeds of S. alterniflora have experienced

between 0 (Danzhou) and 114 (Dongying) days with mean annual

temperature below 4°C, which indicates cold stratification time

(Figure 1A; Supplementary Table S2). Before the germination

experiments, the seeds were covered with 10 PSU seawater under

darkness conditions. They were placed in a refrigerator at 4°C for 0-

month and 4-month to explore the effect of cold stratification

treatment on seed germination (Figure 1B).
Multiple common garden
germination experiments

To investigate the adaptation of germination characteristics of

S. alterniflora from different latitudinal provenances to natural

environments in different climate zones, we established common

garden at three latitudes: low (21°N, Guangdong province), mid

(28°N, Zhejiang province), and high (38°N, Shandong province),

respectively located in tropical, subtropical, and temperate regions

(Figure 1A). Because temperature is the primary factor regulating

seed germination, and also the most critical factor to S. alterniflora

development (Chen et al., 2021). To focus on the interactive effects

between cold stratification and temperature, we minimized

differences in other environmental conditions, such as

precipitation. Each common garden simulated the natural

temperature conditions and shield the plants from rain by

covering the top of the common gardens with transparent plastic

film. Additionally, the rain protection can keep seawater salinity

stable in each pool. Nine provenances were also categorized into

tropical regions (Leizhou, Danzhou), subtropical regions (Rudong,

Fengxian, Yueqing, Luoyuan, Yunxiao) and temperate regions

(Dongying, Ganyu) (Figure 1A; Supplementary Table S2).

Climatic zones were divided according to the resource and

environment science data center, aligning with the division in

Qiao et al. (2019).

In each common garden, began with November 10th 2021, we

sowed the seeds that underwent 0-month stratification

(Supplementary Table S1). Twenty seeds of each seed family from

nine provenances were sown in a plastic bucket. Each plastic bucket

has been uniformly filled with a mixture of 50% Jiffy peat substrate

(Jiffy Products International BV, Moerdijk, Netherlands) and 50%

vermiculite before the sowing. Seeds of each seed family were
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randomly sown on a grid plate (2 × 2 cm) with 4 × 5 hole in the

center of each bucket, with one seed sown in each hole. After

sowing, approximately 0.2 cm of soil was added to cover the seeds’

surfaces. Each seed family was considered as a replication of a

provenance, and 10 seed families were separately arranged into 10

rectangular plastic pools (length: 110 cm, width: 90 cm, tall: 30 cm).

The pools were filled with artificial salinity level of 10 PSU, to

parallel with the soil surface level in the plastic buckets. Fresh water

was added every other day to maintain salinity at 10 PSU. Each

bucket had a 1-cm hole at the bottom for seawater exchange. In

each common garden, began with March 09th 2022, the seeds that

underwent 4-month stratification were sown using the same

method as the seeds that underwent 0-month stratification.

We monitored germination daily in the common gardens since

November 10th 2021. Because it is difficult to assess radicle

emergence from the seed coat in soil, germination in this study

was recorded when seeds emerged from the soil surface (Fenner and

Thompson, 2005). By May 2022, most seeds had germinated, and

no new germinations were observed for over a week by late May,

thus germination experiment ended on May 31th 2022. The

cumulative germination rate, mean germination time, T90% (the

number of days to 90% of the final germination rate) and final

germination rate were calculated for each quadrat to estimate

germination capacity.
Abiotic factors

To relate the germination characteristics of S. alterniflora to

abiotic conditions, we collected the environmental data from

provenance origins and germination process temperature. We

calculated climate data on mean annual temperature (Tmean),

mean annual maximum temperature (Tmax), mean annual

minimum temperature (Tmin) and annual number of growing

degree days (mean daily temperature ≥10°C; AGDD) of each

provenance from 2011 to 2021 from the UK weather data

service center (http://rp5.ru). We also calculated the range of

days of mean daily temperature below 4°C (Dbelow 4°C) of each

provenance from 2011 to 2021 (Supplementary Table S2).

Additionally, a temperature logger (Onset, HOBO) was set 1

meter above ground at the center in each common garden to

record temperature variations every 10 minutes. We calculated

the mean daily temperature (T’mean), mean daily maximum

temperature (T’max), mean daily minimum temperature (T’min),

the number of growing degree days (mean daily temperature ≥10°C;

GDD) and days of mean daily temperature below 4°C (D’below 4°C)

from November 2021 to May 2022 in each common garden (Figure

1C; Supplementary Table S3).
Data calculations and statistical analyses

The cumulative germination rate, mean germination time, final

germination rate and T90% (the number of days to 90% of the final

germination rate) values are calculated as follows:
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Cumulative germination rate   ( % ) =od
i=1

Ni
N

� 100 (1)

Mean germination time (d) =od
i=1TiNi=od

i=1Ni (2)

Final germination rate ( % ) =
n
N

� 100 (3)

T90%(d) = Di=90% –D (4)

In the formulas above, d signifies the total duration of the

experiment in days, Ni stands for the number of seeds that

germinated on a specific day i, N is the total number of seeds

tested in each seed family, Ti’ indicates the number of days that

germinated on a specific day i from the date of sowing, and n is

the total number of seeds germinated at the end of the

experiment, Di=90% is date on which the germination rate

reaches 90% of the final germination rate, D is the date of

sowing (Carpenter et al., 1994; Ranal and de Santana, 2006;

Soltani et al., 2015).

In the three common gardens, 5990 seeds were successfully

germinated. We plotted the cumulative germination rate over

time for each provenance under different cold stratification

treatments within each common garden. To identify the peak

germination timing under different cold stratification treatments

within each common garden, we employed the “density ridge” to

estimate the probability density distribution of germination

timing. The data utilized the germination timing of germinated
Frontiers in Plant Science 05
seeds (n = 581-1159), with areas of higher density indicating

peaks in germination timing. We utilized the Wilcoxon test to

assay the number of days to 90% of the final germination rate

(T90%) between two cold stratification treatments within each

common garden. In addition, we conducted linear regression

analyses to assess the relationship between mean germination

time and the latitude of seed provenance under different

stratification treatments for each common garden. To

determine whether significant differences exist in the final

germination rate (average across all seed from different

provenances) between two cold stratification treatments within

each common garden, we employed the Wilcoxon test. To

further explore the response of final germination rate to cold

stratification of seed provenance from different climate regions

within each common garden, we averaged the values of seed

provenances within the same climate region. We also utilized

linear regression analysis to examine the relationship between

the final germination rate and the latitude of seed provenance

under different stratification treatments for each common

garden. To validate the impacts of common garden site, cold

stratification time, and latitude of seed provenance, as well as

their interactions on germination traits, we utilized linear mixed

effects models with the “lme4” package (function “lmer”) (Bates

et al., 2015). This model considered mean germination time and

final germination rate as response variables, common garden

site, cold stratification time, and latitude of seed provenance as

fixed factors, while considering provenance as a random effect.

To quantitatively analyze the contributions of environmental
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climate variables from provenance origin and the germination

process in the common garden to the mean germination time

and final germination rate, we employed the “rdacca.hp” package

to hierarchical partitioning of seed’s origin environmental

climate variables and environmental climate variables during

the germination process in the common garden (Liu et al., 2023).

This allowed us to calculate the individual effects of each group

of explanatory variables on explanatory variation (adjusted R2)

in canonical analysis. All statistical analyses were conducted

using R version 4.2.2.
Results

Variation in cumulative germination rate

Cold stratification (4-month) significantly changed the

cumulative germination rates, the germination was explosive and

reached a plateau rapidly (Figure 2). Additionally, the effect of cold

stratification on cumulative germination rates differed across

gardens. With increased temperature, the curve trends of

cumulative germination rates became much steeper in the low-

latitude garden than the other ones (Figures 2B, D, F). From the

high-latitude garden to the low-latitude one, it took 36, 25, and 12

days, respectively, to reach 90% of the final germination rate

(Supplementary Figure S1). All provenances although showed

similar responses under cold stratification in different gardens,
Frontiers in Plant Science 06
the extent of variation in cumulative germination rates were

different. Temperate provenances had higher and faster

germination rates than the others. And from the high-latitude

garden to the low-latitude one, such differences were gradually

magnified (Figures 2B, D, F).
Variation in germination time

Cold stratification (4-month) significantly shorten the

germination time, with varying effects among the common

gardens (Figure 3; Table 1A, Cold stratification: Chisq = 11867.15,

P< 0.001; Garden * Cold stratification: Chisq = 111.86, P< 0.001).

Besides, we found no significant relationship between mean

germination time and origin latitudes for any either cold

stratification treatment in the high-latitude garden (Figure 3B). In

the mid-latitude garden, only provenances under cold stratification

for 0-month exhibited positive latitudinal cline in germination time

(Figure 3D). In the low-latitude garden, there were positive

latitudinal clines in germination time for both cold stratification

treatments (Figure 3F). Thus, we found that the interactive effect of

cold stratification and garden on the germination time was

significantly different among provenances (Table 1A, Garden *

Cold stratification * Latitude: Chisq = 101.53, P< 0.001). From

high- to low-latitude gardens, the difference in mean germination

time of temperate provenances between cold stratification

treatments was gradually magnified (Figures 3B, D, F).
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Variation in final germination rate

Overall, cold stratification (4-month) improved the final

germination rate and such effect was gradually magnified from
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high- to low-latitude gardens (Figures 4A, D, G; Table 1B, Cold

stratification: Chisq = 107.98, P< 0.001; Garden * Cold stratification:

Chisq = 73.06, P< 0.001). In the high-latitude garden, significant

difference in final germination rate between cold stratification
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FIGURE 4

Overall average of final germination rate for nine populations under different stratification time in three common gardens (A: high-latitude; D: mid-
latitude; G: low-latitude); average of final germination rate for seeds from different climatic zones (Tro: tropical regions; Sub: subtropical regions;
Tem: temperate regions) under different stratification time in three common gardens (B: high-latitude; E: mid-latitude; H: low-latitude);
Relationships between final germination rate with latitude of origin under different stratification time in three common gardens (C: high-latitude;
F: mid-latitude; I: low-latitude). Shaded area indicates 95% CI. Significant levels: ns, P > 0.05; *, P < 0.05; **, P < 0.01; ***, P < 0.001.
TABLE 1 Mixed model analysis of (A) mean germination time and (B) final germination rate of Spartina alterniflora, common garden site, cold
stratification time and latitude of seed provenance as fixed effect with (provenance) as random effect.

Factor
(A) Mean germination time (B) Final germination rate

Chisq Df P Chisq Df P

Common Garden (G) 649.44 2 <0.001 84.36 2 <0.001

Cold stratification (C) 11867.15 1 <0.001 107.98 1 <0.001

Latitude (L) 5.21 1 0.022 14.00 1 <0.001

G*C 111.86 2 <0.001 73.06 2 <0.001

G*L 96.93 2 <0.001 5.56 2 0.062

C*L 69.16 1 <0.001 1.90 1 0.168

C*G*L 101.53 2 <0.001 27.82 2 <0.001
The significant P values were shown in bold (P < 0.05).
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treatments were seen only in tropical provenances (Figure 4B). In

the mid-latitude garden, such significant difference was observed in

the tropical and subtropical provenances (Figure 4E). In the low-

latitude garden, such significant difference was more obvious in the

subtropical and temperate provenances (Figure 4H). Thus, we

found that the interactive effect of cold stratification and garden

on the final germination rate varied significantly among

provenances (Table 1B, Garden * Cold stratification * Latitude:

Chisq = 27.82, P< 0.001). Meanwhile, there were significantly

positive latitudinal clines in final germination rate for both cold

stratification treatments in each garden (Figures 4C, F, I).
Discussion

We found that cold stratification could significantly short seeds

germination time and increase germination rates of S. alterniflora,

and increased temperature magnified the effect of cold stratification

on germination. Besides, different geographic provenances of S.

alterniflora had variable responses to the interaction of cold

stratification and warming. Currently, under the climate warming,

higher latitude provenances are experiencing greater warming. And

their responses to both cold stratification and warming are more

pronounced than other ones in this study. Therefore, such

differences in germination responses among different provenances

of S. alterniflora may lead to changes in its distribution dynamics.
Effects of cold stratification on gemination

As the earliest life-history stage, seed germination determines

individual fitness and species distribution (Donohue et al., 2005;

Akiyama and Ågren, 2014). Temperature often plays a sensitive

signal for seed germination (Penfield, 2008; Chamorro et al., 2018),

with cold stratification (4°C) being essential for triggering

germination (Garcıá-Fernández et al., 2015; Hayasaka et al.,

2020). Our study found that 4-month cold stratification

significantly shortened germination time and improved final

germination rates (Figures 2–4), aligning with the results of a

previous temperature controlled-experiment on S. alterniflora

germination (Cheng et al., 2022). On the one hand, cold

stratification boosts germination by stimulating the synthesis of

hormones such as gibberellins and gibberellic acid (GA) (Deng

et al., 2016; Mitchell et al., 2020). On the other hand, low

temperature effectively promotes the activity of starch synthase,

allowing more starch to accumulate in the seeds, providing more

energy for future development. For example, Yang et al. (2019)

found that in rice seeds, the ratios of GA/ABA, GA/IAA and IAA/

ABA and H2O2 level were gradually enhanced with cold

temperature, which might contribute to the increase of a-amylase

activity to promote dormancy release in rice. The importance of

cold stratification has been confirmed in Gramineae species, such as

Triticum aestivum (Tuttle et al., 2015), Hordeum vulgare (Smith

et al., 1996) and Brachypodium distachyon (Zhang et al., 2022), as

well as in cosmopolitan species, like Arabidopsis thaliana
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(Nordborg and Bergelson, 1999), Aruncus dioicus (Giannì et al.,

2019), and Persicaria hydropiper (Araki andWashitani, 2000). After

undergoing a period of cold stratification, seeds become more

sensitive to environmental cues such as temperature and

humidity, enabling seeds to germinate under suitable conditions

(Gremer et al., 2020a; Fernández-Pascual et al., 2021). Over four

decades, S. alterniflora has extensively invaded China’s coasts. In its

major distribution areas (temperate and subtropical regions), S.

alterniflora is exposed to temperatures below 4°C in the winter

(Supplementary Table S2). Our research findings indicate that S.

alterniflora benefited from cold stratification. Consequently,

indicating that low temperature in the winter may facilitate the

rapid expansion of S. alterniflora along the Chinese coast.
Warming altered the effects of cold
stratification on germination

Temperature is a key factor in controlling seed germination

characteristics (Baskin and Baskin, 1988; Kuroda and Sawada, 2022).

Cold stratification at low temperature is necessary for seeds of some

species to break dormancy. Under climate warming, the seed

germination would be affected, e.g., delayed, because the shortened

winters may not adequately overcome dormancy (Walck et al., 2011).

We found that cold stratification treatment significantly led to a rapid

burst of germination and improved the final germination rates. Studies

focused on species that distribute along wide altitudinal gradient have

shown a positive relationship between the cold stratification and the

maximum seed germination (Cavieres and Sierra-Almeida, 2018;

Cheng et al., 2022). Cold stratification can effectively reduce the

temperature requirement for germination (Fernández-Pascual et al.,

2019), thus trigger germination easily. Besides, our results suggested

that the effect of cold stratification on germination of S. alterniflorawas

magnified with rising temperature (Figures 2–4; Table 1). Typically,

higher temperatures during the germination process may enhance the

physiological metabolism of plant individuals, thereby accelerating the

germination (Deng et al., 2016; Mitchell et al., 2020). For example,

research on the perennial herbaceous plant Ludwigia hexapetala, which

is widely invasive in North American aquatic ecosystems, found that

high temperatures caused seeds to germinate earlier (Gillard et al.,

2019). This finding provides important clues to understanding plant

germination in response to climate warming. As S. alterniflora

extended southward in the past decades, higher temperature during

the germination process may intensify the impact of cold stratification

on its germination, facilitating its spread in lower latitude regions.
Effects of cold stratification and warming
on the germination varied
among provenances

Plant germination characteristics vary across populations,

influenced by genetic and environmental factors (Penfield, 2008;

Walck et al., 2011; Spindelböck et al., 2013). Seeds native to high-

latitudes populations may be adapted to colder temperature
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compared to low-latitude ones. Our hierarchical analysis verified

that the seed’s origin climatic condition primarily controls the final

germination rate of S. alterniflora, showing local adaptation to low-

temperature in provenances from temperate regions (Figures 4C, F,

I; Supplementary Figure S2B). This local adaptation in early

germination stage has been found in various plants like

Tragopogon pratensis (Jorritsma-Wienk et al., 2007), Haloxylon

ammodendron (Huang et al., 2003) and Arabidopsis thaliana

(Vidigal et al., 2016). Early life history stages are more susceptible

to local adaptation due to strong natural selection (Lloret et al.,

2004; Donohue et al., 2005).

Besides, our results showed that the effects of cold stratification

and warming on the seed germination characteristics were more

pronounced in the provenances from higher latitudes. As the

decreased latitude of the common gardens, the extremely high

temperature in the low-latitude garden could be stressful for S.

alterniflora (Chen et al., 2023), the final germination rate of all

provenances (under 4°C for 0-month) was significantly reduced

(Figures 4B, E, H; Table 1B). This finding was consistent with a

previous study on the germination differences between nonnative

and native species (Hou et al., 2014) The duration of cold

temperatures in winter in the tropical region may be not cold

enough to break dormancy, therefore, the capacity of germination

of seeds could be drastically reduced (Garcıá-Fernández et al., 2015;

Cuena-Lombraña et al., 2020). Meanwhile, we found that seeds of

subtropical and temperate provenances (under 4°C for 4-month)

maintained consistently high germination rates across different

gardens. This suggests that cold stratification may alleviate the

negative effect of high temperature on germination. In the scenario

of climate warming, the higher latitude regions are projected to

experience greater warming than other regions (Cohen et al., 2014;

Leblans et al., 2017). Many studies have reported on the effects of

warming on seed germination in arctic and alpine areas (Bernareggi

et al., 2016; Cavieres and Sierra-Almeida, 2018; Chamorro et al.,

2018). Therefore, it is anticipated that the constraint of germination

at high latitudes due to rising temperature in the future may lead to

the northward migration of S. alterniflora populations, in an effort

to locate suitable low-temperature habitat for cold stratification. For

the tropical provenances, however, warming also suppressed the

advantage that cold stratification provides in enhancing the

germination rate, which may hinder their further spread

southward. Additionally, the differences in germination responses

among different provenances suggested the potential for

local adaptation.
Conclusions

Our study elucidated the considerable effect of cold

stratification treatment on the seed germination of S. alterniflora

along latitude. Meanwhile, we found that with the decreased

common garden latitude (increased temperature), the effect of

cold stratification on seed germination was magnified. These

findings offer insight into the responses of germination in the
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scenario of climate warming. Plants inhabited higher latitudes are

subjected to greater extent of warming contemporarily, and our

results suggested that higher latitude provenances had greater

responses to the interaction of cold stratification and warming.

Cold stratification alleviated high temperature’s negative effects on

germination, suggesting these provenances might migrate

northward in search for adequate low-temperature environments.

However, relying solely on common garden experiments has

limitations, especially in simulating natural conditions and

predicting the long-term impacts of climate change on invasive

species. Although common garden experiments can control

environmental variables effectively, they do not fully capture the

complexity of ecological and climate fluctuations in natural

habitats . Therefore, integrating observational studies,

experimental warming methods and common garden experiments

are the promising way to advance the understanding of species

responses to climate warming (Frenne et al., 2013). Overall, our

study contributes to understanding the recruitment and

distribution dynamics of widespread plant species and the

management of exotic species in the context of climate warming.
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