
Frontiers in Plant Science

OPEN ACCESS

EDITED BY

Wenyu Zhang,
Jiangsu Academy of Agricultural Sciences
Wuxi Branch, China

REVIEWED BY

Zhenwang Li,
Yangzhou University, China
Qing Gu,
Zhejiang Academy of Agricultural Sciences,
China

*CORRESPONDENCE

Haitao Xiang

htxiang@issas.ac.cn

RECEIVED 07 September 2024

ACCEPTED 20 November 2024
PUBLISHED 10 December 2024

CITATION

Wang Y, Shi P, Qian Y, Chen G, Xie J, Guan X,
Shi W and Xiang H (2024) Enhancing Nitrogen
Nutrition Index estimation in rice using
multi-leaf SPAD values and machine
learning approaches.
Front. Plant Sci. 15:1492528.
doi: 10.3389/fpls.2024.1492528

COPYRIGHT

© 2024 Wang, Shi, Qian, Chen, Xie, Guan, Shi
and Xiang. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 10 December 2024

DOI 10.3389/fpls.2024.1492528
Enhancing Nitrogen Nutrition
Index estimation in rice using
multi-leaf SPAD values and
machine learning approaches
Yuan Wang1, Peihua Shi2, Yinfei Qian3, Gui Chen4, Jiang Xie3,
Xianjiao Guan3, Weiming Shi1 and Haitao Xiang1*

1State Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem
Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences,
Nanjing, China, 2Department of Agronomy and Horticulture, Jiangsu Vocational College of
Agriculture and Forestry, Jurong, China, 3Soil and Fertilizer & Resources and Environmental Institute,
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Accurate nitrogen diagnosis is essential for optimizing rice yield and

sustainability. This study investigates the potential of using multi-leaf SPAD

measurements combined with machine learning models to improve nitrogen

nutrition diagnostics in rice. Conducted across five locations with 15 rice

cultivars, SPAD values from the first to fifth fully expanded leaves were

collected at key growth stages. The study demonstrates that integrating multi-

leaf SPAD data with advanced machine learning models, particularly Random

Forest and Extreme Gradient Boosting, significantly improves the accuracy of

Leaf Nitrogen Concentration (LNC) and Nitrogen Nutrition Index (NNI)

estimation. The second fully expanded Leaf From the Top (2LFT) emerged as

the most critical variable for predicting LNC, while the 3LFT was pivotal for NNI

estimation. The inclusion of statistical metrics, such as maximum and median

SPAD values, further enhanced model performance, underscoring the

importance of considering both original SPAD measurements and derived

indices. This approach provides a more precise method for nitrogen

assessment, facilitating improved nitrogen use efficiency and contributing to

sustainable agricultural practices through targeted and effective nitrogen

management strategies in rice cultivation.
KEYWORDS

rice nitrogen diagnosis, multi-leaf SPAD values, machine learning, leaf nitrogen
concentration, nitrogen nutrition index, statistical metrics
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1 Introduction

Nitrogen is one of the most essential nutrients in crop growth,

particularly in rice cultivation, where it plays a key role in

photosynthesis, biomass accumulation, and overall yield (Zhang

et al., 2021). As a staple food for over half of the world’s population,

rice production is vital for global food security (Bandumula, 2018).

Effective nitrogen management is crucial not only for maximizing

rice yields but also for reducing environmental impacts associated

with nitrogen over-application (Anas et al., 2020), such as water

pollution and greenhouse gas emissions (Yu et al., 2019). Therefore,

accurately understanding and monitoring the nitrogen status of rice

plants is essential for optimizing nitrogen use efficiency and

promoting sustainable agricultural practices (Colaço and Bramley,

2018; Berger et al., 2020).

Leaf Nitrogen Concentration (LNC) and Nitrogen Nutrition Index

(NNI) are key indicators of a plant’s nitrogen status (Makowski et al.,

2020; Li et al., 2022a). LNC represents the nitrogen content in the most

important photosynthetic and assimilation organs, while NNI provides

a relative measure of the nitrogen supply in relation to the plant’s

needs. Accurate and timely estimation of these indices is crucial for

effective nitrogen management, enabling farmers to apply the right

amount of nitrogen at the right time to optimize crop performance

(Yao et al., 2023).

The SPAD meter is a widely used tool for diagnosing crop

nitrogen nutrition (Li et al., 2022b; Lu et al., 2022; Karaca et al.,

2023; Wang et al., 2023; Wu et al., 2024). It measures chlorophyll

content in leaves by comparing light absorption at specific

wavelengths, which correlates with nitrogen levels. SPAD meters

have achieved considerable success in diagnosing nitrogen nutrition

in rice (Yuan et al., 2016b, 2016a; Ravier et al., 2017; Yang et al.,

2018; Wu et al., 2024). However, these studies have often reported

that diagnostic accuracy can be influenced by factors such as growth

stage, cultivar, and environmental conditions (Ravier et al., 2017; Li

et al., 2022b; Fu et al., 2023; Wang et al., 2023; Yao et al., 2023),

leading to variability in results. Additionally, chlorophyll is only one

form of nitrogen within the leaf, and a saturation effect on

chlorophyll content can occur in specific leaves (Jiang et al.,

2021). As a result, when chlorophyll content is high, the SPAD

value is prone to being affected by this saturation effect (Gabriel

et al., 2017; Souza et al., 2019).

To address these challenges, researchers have explored various

methods. One approach involves using Relative SPAD (RSPAD)

values to estimate nitrogen nutrition status, thereby minimizing the

effects of cultivar and growth stage differences (Yue et al., 2020; Lu

et al., 2022). Studies have shown that nitrogen-split application

based on RSPAD can save nitrogen fertilizer and greatly improve

nitrogen use efficiency (Wu et al., 2024). However, this method

requires a well-fertilized reference area as a control, complicating
Abbreviations: LNC, Leaf Nitrogen Concentration; Ncritical, Critical Nitrogen

concentration; NNI, Nitrogen Nutrition Index; CNDC, Critical Nitrogen

Dilution Curve; LFT, fully expanded Leaves From the Top; LR, Linear

Regression; PLS, Partial Least Squares; SVR, Support Vector Regression; RF,

Random Forest; XGB, Extreme Gradient Boosting; ATPA, Average Testing

Prediction Accuracy; SHAP, SHapley Additive exPlanations.
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practical applications and conflicting with the goal of simplifying

nitrogen diagnostics (Ravier et al., 2017; Yue et al., 2020; Lu et al.,

2022). Another approach uses SPAD indices, such as differences

and ratios between SPAD values of different leaf positions, to

enhance diagnostic accuracy (Zhang et al., 2019; Karaca et al.,

2023). While this method shows promise, it lacks validation on

large-scale datasets, limiting its applicability.

Machine learning methods offer significant advantages in

overcoming these limitations by effectively handling complex

nonlinear relationships in agricultural data (Chlingaryan et al.,

2018). By integrating multi-leaf SPAD measurements with

machine learning algorithms, it is possible to enhance the

accuracy of nitrogen nutrition diagnosis in rice. This integration

allows for better interpretation of SPAD data affected by factors like

growth stage and cultivar, thus improving nitrogen management

strategies (Yang et al., 2023; Mandal et al., 2024).

Rice leaves differ significantly in their physiological

characteristics depending on their position on the plant (Sun

et al., 2018). These differences can affect the accuracy of nitrogen

nutrition diagnosis, as leaves at various positions respond

differently to nitrogen availability (Yuan et al., 2016b; Zhao et al.,

2018). For instance, younger leaves at the top of the plant are in

dynamic growth phases with higher nitrogen content, while older

leaves are more stable or in senescence, affecting their SPAD

readings (Zhang et al., 2019; Li et al., 2022b; Wang et al., 2023).

By leveraging information from multiple leaf positions and

exploring the relationships between SPAD values at these

positions and the plant’s nitrogen status, the accuracy of nitrogen

nutrition diagnosis in rice can be improved (Yuan et al., 2016a).

In this study, we conducted multi-location, multi-cultivar field

trials in rice, collecting data across various growth stages to build a

comprehensive dataset. We applied several machine learning

methods and performed feature importance analyses to evaluate

the role of multi-leaf SPAD information in enhancing nitrogen

nutrition diagnosis. This research not only contributes to improving

the accuracy of nitrogen diagnostics in rice but also offers insights

into the future prospects of integrating machine learning with

agronomic practices.
2 Materials and methods

2.1 Study area and experimental design

This study was conducted across five locations within the

Jiangsu, Zhejiang, and Jiangxi provinces, situated in the middle

and lower reaches of the Yangtze River in China: Suzhou, Wuxi,

Zhenjiang, Jiaxing, and Yichun prefecture-level cities (Figure 1).

Seventeen field experiments were conducted, involving fifteen rice

cultivars—five indica and ten japonica cultivars. The field

experiments were arranged in a randomized block design, with

each experiment comprising two to seven nitrogen fertilizer

treatments, including at least a control with no nitrogen and a

conventional nitrogen application to induce varied nitrogen

statuses in the rice plants. Each treatment was replicated across

three to four plots, with plot sizes ranging from 30 to 100 m².
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Detailed information on each experiment and experimental site,

including soil types, is provided in Tables 1 and 2. All field

management practices, except nitrogen levels, conformed to local

conventional cultivation methods.
2.2 Data collection and plant
sample testing

Samples were collected at regular intervals of 10-15 days

throughout the rice growing season, covering the main growth

stages: Tillering (TI), Stem Elongation (SE), Panicle Initiation (PI),

Heading (HD), and Grain Filling (GF) (the GF stage sampling was

only for the varieties NG46_1, WYG35, and TY398). Due to varietal

differences and planting locations, different rice cultivars may be at

different growth stages on the same sampling date. To account for

this, we scheduled destructive sampling at fixed intervals and,

during data analysis, grouped the samples according to the actual

growth stages of each cultivar.

At each stage, three to six uniformly growing plants were

destructively sampled from the experimental plots. The plants

were divided into leaves, sheaths, and panicles, which were oven-
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dried at 105°C for 30 minutes, followed by further drying at 75°C to

a constant weight. The dried samples from each organ were

weighed, ground, and the nitrogen concentration was determined

using the Kjeldahl method. The overall plant nitrogen

concentration was calculated as the ratio of total nitrogen content

to the total dry mass.

The NNI was calculated as the ratio of plant nitrogen

concentration to the critical nitrogen concentration (Ncritical). An

NNI close to 1 indicates optimal nitrogen supply, while an NNI

greater than 1 suggests excess nitrogen (where additional nitrogen

does not increase biomass). An NNI less than 1 indicates nitrogen

deficiency, with the severity of deficiency inversely related to the

NNI value. The method for determining the Ncritical in this study

was based on the approach of Justes et al. (1994). For each

experiment and sampling date, variance analysis of dry matter

(DM) was conducted across treatments, followed by LSD testing

to identify the treatment with the highest biomass but the lowest

plant nitrogen concentration, designated as the Ncritical. To reduce

the likelihood of Type II errors in the LSD test, the significance level

was set at 0.10. For experiments with only two nitrogen levels or

where the Ncritical could not be determined using this method, a

Critical Nitrogen Dilution Curve (CNDC) was plotted using other
FIGURE 1

Geographic locations of the five experimental sites in Jiangsu, Zhejiang, and Jiangxi provinces, China, along with representative image of
field experiments.
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confirmed Ncritical, and the NNI was calculated from this curve. The

CNDC established in this study was Ncritical = 3:44DM−0:44.

Simultaneously with the destructive sampling, 15 to 20 rice

plants were selected from each experimental plot to measure the

SPAD values of the first to fifth fully expanded Leaves From the Top

(1-5 LFT). Each leaf was measured at three positions (middle, upper

third, and lower third) on one side of the main vein, and the SPAD

values were averaged. SPAD measurements were performed using a

SPAD-502 PLUS (Konica Minolta) chlorophyll meter.
2.3 Estimation of rice LNC and NNI

This study employed several modeling techniques to predict LNC

and the NNI in rice, including univariate Linear Regression (LR),
Frontiers in Plant Science 04
Partial Least Squares (PLS) regression, Support Vector Regression

(SVR), Random Forest (RF), and Extreme Gradient Boosting (XGB).

PLS regression addresses multicollinearity by projecting

predictors and responses onto latent variables that maximize their

covariance. The key hyperparameter in PLS is the number of latent

components, which strikes a balance between dimensionality

reduction and predictive accuracy. SVR aims to find the optimal

hyperplane for data fitting, with critical hyperparameters including

the regularization parameter C, the kernel function [e.g., linear,

polynomial, or Radial Basis Function (RBF)], the kernel coefficient g
for RBF, and the epsilon (e) margin. RF builds a forest of decision

trees, with hyperparameters such as the number of trees, maximum

tree depth, minimum samples required for node splitting, and the

maximum number of features considered at each split, controlling

model complexity and diversity. XGB constructs sequential trees to
TABLE 2 Climatic and soil conditions for each experimental site.

Experimental Site
Average annual
temperature (°C)

Annual precipitation (mm) sunshine hours (h) Soil Type

Suzhou 16.9 1615 1711 Gleyi-Stagnic Anthrosols

Wuxi 17.1 1553 1898 Hapli-Stagnic Anthrosols

Jiaxing 15.9 1168 2017 Hapli-Stagnic Anthrosols

Zhenjiang 15.1 1019 2116 Hapli-Stagnic Anthrosols

Yichun 17.5 1560 1780 Argi-Udic Ferrosols
Soil types are classified according to the Chinese Soil Taxonomy (CST).
TABLE 1 Summary of field experiment information.

No. Cultivars Subspecies Rice Type
Number of Nitrogen

Treatments
Experimental Site

1 NG46_1 japonica Conventional 6 Suzhou

2 NG46_2 japonica Conventional 6 Suzhou

3 NG46_3 japonica Conventional 6 Wuxi

4 WYG35 japonica Conventional 6 Wuxi

5 NG5055 japonica Conventional 7 Wuxi

6 J67 japonica Conventional 3 Jiaxing

7 XS14 japonica Conventional 6 Jiaxing

8 JH218 japonica Conventional 5 Jiaxing

9 YG13 japonica Conventional 5 Zhenjiang

10 CY5 japonica hybrid 4 Yichun

11 CY6 japonica hybrid 5 Suzhou

12 JYZK6 japonica hybrid 2 Jiaxing

13 HHZ indica Conventional 4 Yichun

14 MXXZ indica Conventional 4 Yichun

15 TY398 indica hybrid 4 Yichun

16 TYXZ indica hybrid 4 Yichun

17 TYHZ indica hybrid 4 Yichun
Each treatment has 3-4 replicates.
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correct errors, with essential hyperparameters including learning

rate, number of boosting iterations, tree depth, subsample ratios for

training instances and features, and L1/L2 regularization to mitigate

overfitting. These models were chosen for their ability to capture

complex, nonlinear relationships between SPADmeasurements and

nitrogen status indicators. Machine learning methods like RF and

XGB are particularly effective in handling high-dimensional data

and interactions among variables, which are common in

agronomic datasets.

Hyperparameter tuning was conducted using Bayesian

optimization through the ‘Optuna’ framework (Akiba et al.,

2019), combined with five-fold cross-validation in Python 3.12.0.

The hyperparameters tested are detailed in Table 3.

In the LR model, the SPAD value from a single leaf position was

used as the input to estimate rice LNC and NNI. For the other

models, which accommodate multiple input variables, the variables

were grouped based on original SPAD measurements, SPAD

indices between different leaf positions, and SPAD statistical

metrics. Detailed information on the input variables for each

group is provided in Table 4.
Frontiers in Plant Science 05
2.4 Model evaluation and feature
importance analysis

The performance of each model was evaluated using the

coefficient of determination (R²), Root Mean Square Error

(RMSE), and Average Testing Prediction Accuracy (ATPA).

These indicators were calculated for both the training and

validation datasets, which were split in an 8:2 ratio, to assess the

models’ ability to generalize to unseen data. The ATPA was

calculated using the following formula:

ATPA = 1 −
1
no

n

i=1

TAi − TPij j
TAi

 !
� 100

where TAi represents the observed value, TPi represents the

predicted value, and n is the number of observations.

Feature importance was analyzed using SHapley Additive

exPlanations (SHAP) to determine the contribution of each input

variable to the model’s predictions (Lundberg and Lee, 2017). SHAP

values provided insights into the influence of each feature on

prediction outcomes, enabling a detailed understanding of the

models’ decision-making processes. This analysis offered both

global interpretation—by averaging SHAP values across the entire

dataset to assess overall feature importance—and local

interpretation, by examining individual data points to understand

specific feature contributions. In this study, SHAP analysis was

conducted for the RF and XGB models using the four input variable

combinations (Table 4).
3 Results

3.1 Distribution of SPAD values across
different leaf positions in rice

A statistical analysis of SPAD values across different leaf

positions in all rice cultivars revealed significant differences in

the distribution of SPAD values from the 1LFT to 5LFT (Figure 2).

The SPAD values from the 1LFT to 5LFT followed a trend of

initially increasing, and then gradually decreasing. The 1LFT

recorded the lowest average SPAD value of 38.9, whereas the

highest average SPAD value of 42.2 was observed in the 2LFT.

After the peak, the average SPAD values diminished progressively,

with an accompanying increase in the range of SPAD value

distributions, indicating greater variability in older leaves.

Variance analysis revealed no significant differences in average

SPAD values between 2LFT and 3LFT or between 4LFT and 5LFT,

while significant differences were detected between the other leaf

positions (p < 0.05). As the leaves aged from 1LFT to 5LFT, the

difference between the median and mean SPAD values increased,

with values of -0.09, 0.36, 0.55, 0.84, and 1.26, respectively. This

suggests a growing skew in SPAD values with leaf age, where older

leaves tend to have lower SPAD values, causing the mean to decline

relative to the median. The statistical analysis of SPAD values at

different leaf positions indicates that specific leaf positions exhibit
TABLE 3 Hyperparameters and tested range for each modeling method.

Modeling
Method

Hyperparameter Tested Range

PLS Number of components [1, 5], Integer

SVR

Regularization parameter (C) [10-3, 103], Log-uniform (float)

Kernel coefficient (g) [10-3, 10], Log-uniform (float)

Epsilon (e) [10-4, 1], Log-uniform (float)

RF

Number of trees [50, 500], Integer

Tree depth [1, 20], Integer

Minimum samples to split [2, 11], Integer

Minimum samples per leaf [1, 11], Integer

Maximum features for split sqrt, log2, None

XGB

Learning rate
[10-3, 10-1], Log-
uniform (float)

Boosting iterations [50, 500], Integer

Tree depth [3, 10], Integer

Subsample ratio (instances) [0.5, 1.0], Uniform (float)

Subsample ratio (features) [0.5, 1.0], Uniform (float)

L1 regularization term (a) [0.1, 1.0], Uniform (float)

L2 regularization term (l) [0.1, 1.0], Uniform (float)
Values within square brackets indicate the hyperparameter search range. “Integer” denotes
that the hyperparameter values are integers sampled within the specified range. “Uniform
(float)” indicates that the hyperparameter values are floating-point numbers sampled
uniformly from the specified range, while “Log-uniform (float)” indicates that the values
are sampled from a logarithmic distribution within the specified range.
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distinct responses to changes in nitrogen concentration and growth

stages. This finding suggests that selecting appropriate leaf positions

for SPAD measurements is crucial for accurate nitrogen monitoring

in rice.
3.2 Simple Linear Regression for LNC and
NNI estimation

A simple Linear Regression (LR) analysis was conducted using

SPAD values from individual leaf positions (1LFT to 5LFT) and their

average to estimate rice LNC and NNI. The overall mean LNC across

all samples was 2.96%, with lower and upper quartiles of 2.42% and

3.43%. The mean NNI was 0.94, with quartiles of 0.74 and 1.12.
Frontiers in Plant Science 06
Across 17 independent experiments, SPAD values effectively

estimated LNC and NNI for most cultivars, with R² values ranging

from 0.14 to 0.92 (Tables 5, 6). Cultivars NG5055, J67, and MXXZ

exhibited the highest estimation performance, while WYG35, XS14,

and TY398 showed lower R² values for LNC estimation. Similarly,

for NNI estimation, WYG35, XS14, and JYZK6 had lower R² values.

No significant difference in estimation performance was found

between japonica and indica subspecies.

The estimation accuracy varied with leaf position. The average R²

values increased from 1LFT, peaked at 3LFT, and then decreased, with

3LFT providing the most accurate estimates for both LNC and NNI

(average R² of 0.70). In contrast, 1LFT had the lowest estimation accuracy.

When LR was applied to the pooled dataset including all cultivars

and growth stages, R² values decreased to a maximum of 0.49 for

LNC and 0.42 for NNI, indicating that variability among cultivars

and growth stages significantly impacted regression accuracy

(Figure 3). For LNC estimation, 2LFT provided the highest

accuracy, while for NNI estimation, 3LFT was most accurate. Using

the average SPAD values from 1-5LFT offered estimation accuracy

close to that of the best individual leaf positions.

Scatter plots of LNC versus SPAD values (Figure 3) revealed

that early growth stages had higher nitrogen concentrations, which

declined as rice developed. However, SPAD values remained similar

across growth stages, causing data grouping by growth stage and

reducing LR model accuracy. For NNI versus SPAD plots, NNI

values clustered between 0.5 and 1.5, mitigating the grouping effect,

but LR accuracy did not improve compared to LNC estimation.

Regarding rice subspecies, indica clustered in the lower SPAD

value range, while japonica was concentrated in the higher SPAD

value range. This difference likely reflects variations in nitrogen

uptake and utilization between the two subspecies.
3.3 PLS and machine learning for LNC and
NNI estimation

Using the pooled dataset, four groups of feature variables—

comprising leaf SPAD values, SPAD indices, and SPAD statistical
TABLE 4 Input variable combinations for the rice nitrogen estimation model.

Variable
Combination

Description Included Variables

comb_1
SPAD values of the five fully expanded leaves from the top of
rice plant

1LFT, 2LFT, 3LFT, 4LFT, 5LFT

comb_2
Normalized difference index, ratios, and difference of SPAD values
between specific leaf positions

ND2_1, ND3_1, ND3_2, ND4_1, ND4_2, ND4_3, R2_1, R3_1, R3_2,
R4_1, R4_2, R4_3, D2_1, D3_1, D3_2, D4_1, D4_2, D4_3

comb_3
Combination of comb_2 variables with additional statistical metrics
(std, min, max, median) of SPAD values

ND2_1, ND3_1, ND3_2, ND4_1, ND4_2, ND4_3, R2_1, R3_1, R3_2,
R4_1, R4_2, R4_3, D2_1, D3_1, D3_2, D4_1, D4_2, D4_3, 1LFT_std,
1LFT_min, 1LFT_max, 1LFT_median, 2LFT_std, 2LFT_min,
2LFT_max, 2LFT_median, 3LFT_std, 3LFT_min,
3LFT_max, 3LFT_median

comb_4
Combination of all the above variables including original SPAD
measurements, SPAD indices, and statistical metrics

All the above variables
1-5LFT refers to the 1st, 2nd, 3rd, 4th and 5th fully expanded leaf form the top of the rice plant, where SPAD measurements are taken. The variables NDi_j, Ri_j, and Di_j represent the
Normalized Difference Index, Ratio Index, and Difference between SPAD values at iLFT and jLFT, respectively, calculated as (SPADiLFT−SPADjLFT)/(SPADiLFT+SPADjLFT), SPADiLFT/SPADjLFT,
and SPADiLFT−SPADjLFT. The variables std, min, max, and median represent the standard deviation, minimum, maximum, and median of the SPAD values from the corresponding leaves.
FIGURE 2

Distribution of SPAD values across different leaf positions and their
means in all rice cultivars. Each box plot displays the range of SPAD
values, with whiskers extending to 1.5 times the interquartile range,
a horizontal line representing the median, and a point within the box
indicating the mean. Accompanying density distribution curves and
scatter plots provide additional insights into the data spread and
distribution shape. Significant differences in SPAD values are present
among all leaf positions, except those marked as “NS”.
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metrics—were used as inputs for PLS regression, SVR, RF, and XGB

models to estimate rice LNC and NNI. Compared to the results of

LR using SPAD values from single leaf positions, models

incorporating multiple feature variables significantly improved

estimation accuracy, with R² values increasing from 0.3-0.4 to

0.5-0.7 (Table 7; Figure 4). Among the four modeling methods,

SVR, RF, and XGB showed similar performance, with the RF model

achieving the highest accuracy in estimating LNC. Notably, when

comb_3 and comb_4 were used as input variables, the R² values

reached 0.73 and 0.74, respectively, and the ATPA also achieved the

highest values among all models, at 88.84 and 88.89, respectively.

For NNI estimation, the RF and XGB models performed

consistently, with average ATPA values of 83.44 and 83.61,

respectively. While the SVR model showed slightly lower R²

values compared to RF and XGB, its ATPA was comparable to

the other two models. The PLS model, although effective, performed

slightly worse than the machine learning models.

Overall, the models provided better estimation accuracy for LNC

than for NNI, with average ATPA values of 86.60 and 83.07,

respectively. Among the four input variable combinations, using

the second combination (comb_2)—which includes normalized

difference indices, ratios, and differences of SPAD values—resulted
Frontiers in Plant Science 07
in significantly lower estimation accuracy for both LNC and NNI

compared to the other three combinations, particularly for NNI

estimation. In contrast, combinations that included original SPAD

values from specific leaf positions (comb_1, comb_4) and SPAD

statistical metrics (comb_3, comb_4) provided higher estimation

accuracy for both LNC and NNI. The accuracy of the models

followed the trend comb_4 > comb_1 > comb_3, indicating that

the inclusion of multi-leaf position SPAD measurements and more

comprehensive variable combinations improved prediction accuracy.

Using the RF model as an example, a 1:1 plot of predicted versus

observed values on the validation dataset was generated (Figure 4).

The distribution of data points demonstrates that the combination

of multi-leaf SPAD features with machine learning methods

effectively eliminated the grouping effect observed in LR models

when using data from different growth stages, significantly

improving the model’s accuracy in estimating LNC and NNI.

However, across all input variables and target variables, the

models tended to underestimate in the high-value regions,

particularly when using comb_2 as input. This underestimation

may be attributed to the saturation effect of SPAD values in

estimating nitrogen concentration and the nitrogen dilution effect

observed as the plant grows.
TABLE 5 Linear regression analysis between SPAD values and LNC (%) at different leaf positions.

Cultivars
1LFT 2LFT 3LFT 4LFT 5LFT Average SPAD

R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE

NG46_1 0.48(1) 0.27 0.67 0.22 0.76 0.19 0.77 0.19 0.79 0.18 0.79 0.18

NG46_2 0.63 0.24 0.73 0.19 0.73 0.20 0.64 0.21 0.71 0.20 0.74 0.19

NG46_3 0.61 0.21 0.73 0.19 0.74 0.18 0.65(1) 0.20 0.74 0.18 0.76 0.17

WYG35 0.19(2a) 0.28 0.25(1a) 0.27 0.39(1a) 0.23 0.50 0.21 0.45(a) 0.22 0.45(a) 0.22

NG5055 0.66 0.24 0.82 0.19 0.84 0.18 0.73 0.23 0.80 0.20 0.85 0.18

J67 0.67 0.20 0.82 0.14 0.79 0.16 0.80 0.16 0.71 0.18 0.82 0.14

XS14 0.38(1) 0.22 0.57(1) 0.18 0.58 0.18 0.42(1) 0.22 0.30(1) 0.24 0.51(1) 0.19

JH218 0.68 0.23 0.77 0.21 0.60 0.29 0.45(1) 0.34 0.55 0.30 0.68 0.26

YG13 0.56(a) 0.16 0.64(a) 0.14 0.65 0.15 0.43(1) 0.19 0.56 0.17 0.62 0.15

CY5 0.60(1) 0.18 0.62(1) 0.17 0.55(1) 0.19 0.51(1a) 0.20 0.63(1) 0.19 0.61(1) 0.18

CY6 0.64 0.22 0.86 0.14 0.82 0.16 0.59(1) 0.24 0.77 0.18 0.81 0.17

JYZK6 0.82 0.22 0.88 0.17 0.92 0.14 0.86 0.19 0.90 0.16 0.90 0.16

HHZ 0.69 0.26 0.53 0.31 0.61 0.28 0.57 0.30 0.49(1) 0.33 0.60 0.29

MXXZ 0.85 0.18 0.82 0.22 0.86 0.19 0.58(1) 0.30 0.72 0.27 0.82 0.20

TY398 0.44(2) 0.32 0.48(1a) 0.31 0.47(1a) 0.31 0.46(2) 0.31 0.21(2a) 0.39 0.48(1a) 0.30

TYXZ 0.43(1) 0.34 0.67 0.25 0.78 0.21 0.70 0.23 0.79 0.20 0.75 0.22

TYHZ 0.63 0.24 0.70 0.22 0.77 0.19 0.71 0.21 0.63 0.24 0.76 0.19

Mean 0.59 0.24 0.68 0.21 0.70 0.20 0.61 0.23 0.63 0.23 0.70 0.20
fron
The R² and RMSE values for each cultivar represent the averages of regression analyses conducted separately across different growth stages. Numbers in parentheses indicate the number of
growth stages where the regression coefficients for that cultivar are not statistically significant. The letter ‘a’ indicates that the regression coefficients for one growth stage are significant at the 0.1
level. All other unmarked regression models have coefficients that are significant at the 0.05 level.
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3.4 Feature importance of the random
forest model

SHAP analysis was performed on the input features of the RF

model to assess their impact on predicting LNC and NNI in rice.

When only SPADmeasurements from the 1-5LFT were used as input

variables (Figure 5A), the 2LFT emerged as the most influential

feature for LNC estimation, with an average SHAP value of

approximately 0.35, significantly higher than those of the other leaf

positions. The second most important feature was the 5LFT, with an

average SHAP value slightly above 0.1. Interestingly, 3LFT, which

performed well in linear regression, was ranked only fourth in

importance. Generally, higher SPAD values contributed positively

to LNC predictions, while lower SPAD values had a negative impact,

except for 3LFT, which exhibited the opposite pattern.

When SPAD indices were used as input variables (Figure 5B),

the difference SPAD indices (D2_1, D3_2, D4_2, D4_1) were the

most influential for LNC prediction, followed by ratio and

normalized difference indices. Adding statistical metrics as input

variables (comb_3) significantly enhanced the model’s predictive

power, increasing the R² from 0.44 to 0.73. In this combination, the

top five most important features were statistical metrics (Figure 5C),

with the median, maximum, and minimum values of 2LFT ranking
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highest. When using all features (Figure 5D), the median, original

measurement, and maximum values of 2LFT remained the most

influential, with average SHAP values far exceeding those of other

features. Across all four feature combinations, the SPAD values of

2LFT and their derived indices consistently emerged as the most

important variables, underscoring the critical role of 2LFT in

estimating rice LNC.

In the SHAP analyses of the comb_2, comb_3, and comb_4

combinations, variables such as D3_2, R3_2, and ND3_2

consistently demonstrated that smaller values contributed more

positively to LNC, indicating that a larger SPAD difference between

2LFT and 3LFT had a more significant positive impact. However,

these variables had relatively lower influence on LNC predictions,

ranking 6th, 9th, and 10th in importance in comb_3, and 4th, 6th,

and 7th in comb_4. Although D3_2 ranked 2nd in comb_2, this

combination had lower overall explanatory power for LNC.

For NNI estimation, SHAP analysis revealed that when using

only SPAD values as inputs (comb_1), 3LFT, 4LFT, and 1LFT were

the most influential features, with 3LFT having the highest average

SHAP value (Figure 6). The SHAP value distributions indicated that

higher SPAD values at these leaf positions positively contributed to

NNI predictions, suggesting better nitrogen status in the plant.

When using SPAD indices as input variables (comb_2), R4_2,
TABLE 6 Linear regression analysis between SPAD values and NNI at different leaf positions.

Cultivars
1LFT 2LFT 3LFT 4LFT 5LFT Average SPAD

R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE

NG46_1 0.45(1) 0.18 0.66 0.14 0.77 0.12 0.74 0.13 0.77 0.12 0.77 0.12

NG46_2 0.68 0.11 0.79 0.08 0.79 0.09 0.74 0.09 0.80 0.09 0.83 0.08

NG46_3 0.57 0.11 0.61(a) 0.10 0.65(a) 0.09 0.61(1) 0.10 0.67 0.09 0.68 0.09

WYG35 0.29(1) 0.13 0.29(a) 0.13 0.35(a) 0.13 0.38(a) 0.12 0.43 0.12 0.43 0.12

NG5055 0.68 0.11 0.80 0.09 0.81 0.08 0.74 0.09 0.78 0.09 0.84 0.08

J67 0.76 0.09 0.90 0.06 0.88 0.06 0.85 0.07 0.79 0.08 0.91 0.06

XS14 0.31(1) 0.13 0.56(a) 0.10 0.58 0.10 0.37(1) 0.12 0.27(1) 0.14 0.47(1) 0.11

JH218 0.46 0.12 0.64 0.10 0.81 0.07 0.68 0.09 0.81 0.07 0.81 0.07

YG13 0.47 0.06 0.69 0.05 0.67 0.05 0.53(1) 0.05 0.67 0.05 0.68 0.05

CY5 0.54(1) 0.06 0.57(1) 0.06 0.61(1) 0.06 0.60(1) 0.06 0.71(a) 0.06 0.64(1) 0.05

CY6 0.48 0.14 0.78 0.10 0.80 0.09 0.63 0.12 0.77 0.10 0.79 0.09

JYZK6 0.56(1a) 0.19 0.54(1) 0.18 0.52(1) 0.19 0.52(1a) 0.19 0.56(1) 0.18 0.54(1) 0.19

HHZ 0.62 0.13 0.60 0.13 0.60 0.13 0.62 0.13 0.50(a) 0.15 0.62 0.13

MXXZ 0.77 0.10 0.80 0.09 0.87 0.07 0.61(a) 0.13 0.63 0.13 0.79 0.10

TY398 0.59(b) 0.10 0.67(a) 0.09 0.66 0.09 0.68 0.09 0.39(1) 0.14 0.68 0.09

TYXZ 0.60 0.13 0.78 0.10 0.91 0.06 0.83 0.09 0.90 0.07 0.90 0.07

TYHZ 0.59 0.10 0.59(a) 0.10 0.64(a) 0.09 0.65 0.09 0.37(1) 0.13 0.61 0.10

Mean 0.55 0.12 0.66 0.10 0.70 0.09 0.63 0.10 0.64 0.11 0.70 0.09
fron
The R² and RMSE values for each cultivar represent the averages of regression analyses conducted separately across different growth stages. Numbers in parentheses indicate the number of
growth stages where the regression coefficients for that cultivar are not statistically significant. The letters ‘a’ or ‘b’ indicate that the regression coefficients for one or two growth stages,
respectively, are significant at the 0.1 level. All other unmarked regression models have coefficients that are significant at the 0.05 level.
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ND4_2, and D4_1 emerged as the most critical features, with larger

values leading to higher NNI predictions. This pattern suggests that

older leaves with higher SPAD values reflect a plant in a well-

supplied nitrogen state.

When statistical metrics (such as median, minimum,

maximum, and standard deviation) were added to the input
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variables (comb_3), the most important features were the

minimum, median, and maximum SPAD values of 3LFT.

Higher values of these metrics corresponded to higher NNI

predictions, emphasizing that the distribution characteristics of

SPAD measurements within a plot are key indicators of plant

nitrogen status. When using all variables (comb_4), the model’s
FIGURE 3

Linear regression analysis between SPAD readings from different leaf positions and LNC and NNI across different growth stages and cultivars (n=933).
(A–J) represent scatter plots for SPAD readings from the 1st to 5th leaf from the top (LFT) and their corresponding LNC (A, C, E, G, I) or NNI (B, D, F, H,
J) values. (K, L) show the scatter plots for the average SPAD readings across the 1st to 5th LFT and their corresponding LNC (K) or NNI (L) values.
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reliance on 3LFT SPAD values (3LFT, 3LFT_min, and

3LFT_median) remained strong, followed by 4LFT, consistent

with LR results.

Additional validation results for LNC and NNI using the XGB

model, along with SHAP analyses of feature importance, are

provided in the Supplementary Materials (Supplementary Figures

S1-S3). These results offer further insights into the model’s

performance and the key variables influencing nitrogen

estimation in rice.
4 Discussion

4.1 The relationship between rice leaf
characteristics and plant nitrogen nutrition

The physiological state of rice leaves varies significantly

depending on their position on the plant and their developmental

stage (Yuan et al., 2016a; Sun et al., 2018). These variations critically

influence leaf SPAD values and their relationship with LNC and the

NNI. Younger leaves, particularly those at the top of the plant, are

the primary growth centers and therefore receive prioritized

resource allocation. These leaves typically undergo rapid growth,

with quick expansion of leaf area and substantial increases in

nitrogen and chlorophyll content. However, this dynamic growth

phase results in greater measurement variability for the SPAD
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values of the uppermost leaves (Yuan et al . , 2016b).

Consequently, the correlation between SPAD values of the 1LFT

and the plant’s overall nitrogen status tends to be lower compared

to other leaf positions (Tables 5, 6), consistent with findings from

previous studies (Hu et al., 2014; Wang et al., 2014).

In contrast, the 2LFT and 3LFT are typically in a more stable

phase of growth and physiological activity. These leaves are crucial

for photosynthesis and nutrient assimilation, as they maintain

relatively high levels of chlorophyll and nitrogen concentration.

Research on different leaf layers within the rice canopy has shown

that the nitrogen concentration in the second layer from the top

(corresponding to 2LFT and 3LFT) is more stable compared to the

lower and uppermost layers (He et al., 2022). This stability closely

reflects the canopy-level nitrogen status, making it a crucial

indicator for assessing the plant’s nitrogen status.

Meanwhile, the 4LFT and 5LFT typically enter or are already in

the senescence phase, characterized by a decline in chlorophyll

content, nitrogen concentration, and leaf area compared to 2LFT

and 3LFT. This process aligns with the physiological redistribution

of nutrients, wherein nutrients, including nitrogen, are translocated

from older leaves to younger, actively growing parts of the plant.

Under nitrogen-deficient conditions, this nutrient translocation

occurs earlier and more prominently, leading to a marked

decrease in SPAD values and skewed distribution patterns.

Although SPAD values for 4LFT and 5LFT are more variable

than those for 2LFT and 3LFT, the chlorosis and nutrient
TABLE 7 Validation results of different modeling methods based on the pooled dataset.

Modeling Method Input Variable
LNC Estimation NNI Estimation

R2 RMSE(%) ATPA R2 RMSE ATPA

PLS

comb_1 0.59 0.53 85.55 0.55 0.18 82.62

comb_2 0.53 0.56 83.85 0.32 0.22 77.68

comb_3 0.62 0.51 86.22 0.52 0.19 82.37

comb_4 0.62 0.51 86.17 0.58 0.18 83.83

SVR

comb_1 0.71 0.44 88.58 0.68 0.15 86.18

comb_2 0.51 0.57 82.66 0.33 0.22 78.29

comb_3 0.69 0.46 88.16 0.58 0.18 84.09

comb_4 0.69 0.46 88.24 0.66 0.16 85.90

RF

comb_1 0.68 0.46 87.60 0.69 0.15 86.23

comb_2 0.44 0.61 82.13 0.34 0.22 78.03

comb_3 0.73 0.42 88.84 0.62 0.17 84.21

comb_4 0.74 0.42 88.89 0.67 0.16 85.30

XGB

comb_1 0.68 0.47 87.34 0.68 0.15 85.93

comb_2 0.58 0.53 84.73 0.36 0.22 78.61

comb_3 0.69 0.45 88.34 0.63 0.17 84.12

comb_4 0.69 0.46 88.31 0.69 0.15 85.77
Model training and validation, using an 8:2 split, were conducted on a pooled dataset comprising data from all varieties and growth stages. The results shown in the table are from the model’s
performance on the validation dataset.
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translocation observed in these leaves provide valuable insights into

the plant’s overall nutritional status, making them useful indicators

for diagnosing nitrogen nutrition in rice (Li et al., 2022b).
4.2 The role of multi-leaf variables and
machine learning models in estimating
plant nitrogen

Growth stages, rice cultivars, and environmental factors can

significantly influence the accuracy of nitrogen nutrition diagnosis

in crops (Huang et al., 2019; He et al., 2022; Lu et al., 2022). Delloye

et al. (2018) reported that the relationship between canopy
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chlorophyll content retrieved from Sentinel-2 and actual nitrogen

absorption in wheat was influenced by canopy structure complexity

and saturation effects at different growth stages. One of the

challenges in using SPAD measurements for nitrogen estimation

is the saturation effect at high chlorophyll and nitrogen levels, where

SPAD values plateau and become less sensitive to increases in

nitrogen concentration (Gabriel et al., 2017; Souza et al., 2019). This

saturation effect can reduce the sensitivity and accuracy of nitrogen

diagnosis, particularly under high nitrogen availability.

In this study, the explanatory power of the linear regression

between SPAD values and LNC and NNI significantly decreased

after data consolidation, indicating substantial variability in these

relationships across different growth stages and rice cultivars. This
FIGURE 4

Validation results for predicted vs. measured LNC (A, C, E, G) and NNI (B, D, F, H) using random forest with input variable combinations comb_1,
comb_2, comb_3, and comb_4, respectively. Each plot shows 1:1 scatter relationships.
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variability suggests that SPAD values from a single leaf position are

insufficient for accurately predicting LNC or NNI. However, the

SPAD values from 1-5LFT exhibit certain patterns of variation

across different growth stages and nitrogen levels. By leveraging

information from multiple leaf positions, especially those less prone

to saturation, and incorporating features that reflect variability (e.g.,

minimum and median SPAD values), the models mitigate the

impact of saturation on prediction accuracy.

Several studies have also demonstrated the contribution of

multi-leaf position data to enhancing the accuracy of crop

nitrogen nutrition diagnosis models (Lin et al., 2010; Zhao et al.,

2018; Zhang et al., 2019). The use of Dualex (a leaf-clip meter that

measures chlorophyll and flavonoid content) measurements from

multiple leaf positions, combined with key environmental and

management variables in multiple linear regression models, was

critical in enhancing the precision of maize NNI estimation (Dong

et al., 2021). By employing the Normalized SPAD Index (NSI),

especially NSI4, Yuan et al. (2016a) achieved a notable
Frontiers in Plant Science 12
improvement in the accuracy of nitrogen accumulation

estimation, effectively reducing the influence of non-nitrogen-

related factors.

Traditional statistical methods often rely on single or a limited

number of variables, which can overlook the complex, nonlinear

relationships that exist within biological data. In contrast, machine

learning techniques offer significant advantages in managing

multivariate inputs, allowing for the identification of intricate

patterns and interactions (Chlingaryan et al., 2018). In our study,

machine learning models like Random Forest (RF) and Extreme

Gradient Boosting (XGB) demonstrated robustness in handling the

nonlinear relationships caused by saturation effects. These models

capture complex patterns by considering interactions among

multiple features, including SPAD values from different leaf

positions and statistical metrics. By leveraging data from leaves

less affected by saturation and incorporating features that reflect

variability, the models enhance the estimation of nitrogen status

even when individual SPADmeasurements reach their upper limits.
FIGURE 5

SHAP analysis of feature importance in predicting rice LNC with the random forest model across four input variable combinations. (A–D) correspond
to the results for input variable combinations comb_1, comb_2, comb_3, and comb_4, respectively. The left side of each subplot shows SHAP value
distributions, where each dot represents a data point from the validation dataset. The x-axis indicates the feature's impact on the model's prediction,
and the dot color reflects the feature value, ranging from blue (low) to pink (high). Positive SHAP values indicate that the feature increases the
prediction, while negative values indicate a decrease. The right side presents a bar chart (sharing the Y-axis with the left-side chart), with features
ranked in descending order of their average absolute SHAP values, highlighting the most influential variables for the model's accuracy.
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Among the four variable combinations tested, comb_4

consistently demonstrated superior performance in both LNC and

NNI predictions. The superior performance of comb_4 can be

attributed to its ability to leverage both raw SPAD values and

derived indices. The inclusion of statistical metrics enhances the

model’s robustness by accounting for variability and extremities in

the data, which are critical for accurately assessing nitrogen status.

Previous studies have highlighted the importance of using

comprehensive feature sets in machine learning models,

particularly in agricultural applications where complex biological

processes often underlie the observed data (Lobell et al., 2015; Shi

et al., 2021; Yang et al., 2023; Mandal et al., 2024). The success of

comb_4 in this study aligns with these findings, underscoring the

importance of detailed feature engineering in developing accurate

predictive models for nitrogen estimation.

Previous research on diagnosing nitrogen nutrition in rice using

leaf SPAD values has predominantly focused on normalized, ratio,

or difference indices of SPAD, often achieving satisfactory
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estimation results (Lin et al., 2010; Zhao et al., 2018; Dong et al.,

2021). These methods have been effective when applied to models

built for single cultivars and specific growth stages, where SPAD

values typically exhibit consistent patterns in relation to nitrogen

supply. However, this study’s findings suggest that when using

variable combination comb_2, which includes normalized

difference indices, ratios, and differences between major leaf

positions, the prediction accuracy was notably the lowest among

the four tested combinations. This unexpected result may be

attributed to the broader scope of this study, which encompassed

multiple cultivars and growth stages, introducing additional

complexity and variability that was not accounted for in previous

studies. Under multi-cultivar and multi-growth-stage conditions,

the generally narrow range of SPAD indices may fail to adequately

capture the distinct nitrogen characteristics associated with different

phenological and environmental factors. The variability introduced

by these factors likely disrupts the otherwise consistent relationship

between SPAD indices and nitrogen levels (Yuan et al., 2016a). As a
FIGURE 6

SHAP analysis of feature importance in predicting rice NNI with the random forest model across four input variable combinations. (A–D) correspond
to the results for input variable combinations comb_1, comb_2, comb_3, and comb_4, respectively. The left side of each subplot shows SHAP value
distributions, where each dot represents a data point from the validation dataset. The x-axis indicates the feature's impact on the model's prediction,
and the dot color reflects the feature value, ranging from blue (low) to pink (high). Positive SHAP values indicate that the feature increases the
prediction, while negative values indicate a decrease. The right side presents a bar chart (which shares the Y-axis with the left-side chart), with
features ranked from top to bottom in descending order of their average absolute SHAP values, highlighting the most influential variables for the
model's accuracy.
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result, the model using comb_2, which relies heavily on SPAD

indices, may struggle to generalize across diverse datasets, leading to

reduced prediction accuracy.

In contrast, variable combination comb_3 demonstrated

significantly improved prediction accuracy. Unlike comb_2,

comb_3 incorporated a broader range of features, including

minimum, maximum, and median SPAD values. These features

not only expand the range of input variables but also introduce

statistical information that captures the variability and distribution

of SPAD measurements in certain leaf positions. By doing so,

comb_3 provides a more comprehensive representation of

nitrogen status, allowing the model to more effectively distinguish

between different growth stages and cultivars. This approach

enhances the model’s robustness and generalization capability,

resulting in better performance across a wide range of conditions.
4.3 Feature importance analysis in random
forest models

The feature importance analysis in this study highlights the

pivotal roles of the 2LFT and the 3LFT in estimating LNC and NNI,

respectively. The findings indicate that higher SPAD values in 2LFT

and 3LFT contribute significantly to increases in LNC and NNI,

underscoring these leaf positions as key indicators of the plant’s

nitrogen status.

This conclusion is supported by data from 17 independent

experiments involving 15 rice cultivars, which consistently showed

that 2LFT and 3LFT had the highest average SPAD values, with

2LFT slightly higher than 3LFT. The prominence of 2LFT can be

attributed to its critical role in nitrogen allocation during the

vegetative growth stage. As one of the younger, actively growing

leaves, 2LFT receives a larger proportion of the plant’s nitrogen

resources, which are essential for photosynthesis and biomass

accumulation (Li et al., 2017; Wang et al., 2023). The relatively

higher nitrogen concentration and larger leaf area of 2LFT increase

its overall nitrogen content, making it a more accurate

representative of the plant’s total leaf nitrogen status.

In contrast, 3LFT, which transitions from maturity to

senescence, is identified as the most critical leaf position for

estimating NNI. Previous research has shown that leaf

development and senescence are closely linked to nitrogen

availability, with low soil nitrogen supply accelerating leaf

chlorosis and senescence (Heyneke et al., 2019; Li et al., 2022b).

As 3LFT moves from maturity to senescence, its SPAD value

becomes a crucial marker of the plant’s nitrogen status, especially

in the early stages of vegetative growth when the number of leaves is

limited. This makes 3LFT a valuable indicator for assessing plant

NNI, particularly under conditions of nitrogen deficiency, where

early onset of senescence in this leaf position can signal broader

nutritional challenges within the plant (Sun et al., 2018).

While multi-leaf SPAD measurements enhance estimation

accuracy, we recognize that collecting data from multiple leaves

may not be feasible for all farmers, particularly those with limited

resources or on smaller farms. To balance complexity and
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practicality, focusing on the most critical leaf positions identified

by our feature importance analysis offers a viable solution. By

concentrating on SPAD measurements from 2LFT for LNC

prediction and 3LFT for NNI estimation, data collection can be

simplified without substantially compromising accuracy.

Implementing this targeted approach can make the method more

accessible and practical for widespread adoption, facilitating

efficient nitrogen management in rice cultivation. Future studies

should explore the development of user-friendly tools or protocols

that assist farmers in easily collecting SPAD data from these specific

leaf positions.
5 Conclusion

This study demonstrates the effectiveness of using multi-leaf SPAD

values and advanced machine learning models—particularly RF and

XGB—to accurately estimate LNC and the NNI in rice. The 2LFT

consistently emerged as the most critical variable for LNC prediction,

while the 3LFT was pivotal for NNI estimation. Incorporating statistical

metrics, such as maximum and median SPAD values, significantly

enhanced model performance, underscoring the importance of

considering both original SPAD measurements and derived indices.

While multi-leaf SPAD measurements improve estimation

accuracy, focusing on the key leaves identified by our analysis can

simplify data collection, making the method more practical for

farmers. Targeted monitoring of SPAD values in these specific leaf

positions can improve the precision of nitrogen assessments,

thereby enhancing crop management practices and optimizing

nitrogen use efficiency for sustainable agriculture. Future research

should focus on refining these models under varying environmental

conditions, exploring their applicability to other crops, and

addressing challenges related to model generalizability and

integration with other data sources.
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