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Shunhao Qing1* and Yi Shi1
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Wheat, being a crucial global food crop, holds immense significance for food

safety and agricultural economic stability, as the quality and condition of its grains

are critical factors. Traditional methods of wheat grain detection are inefficient,

and the advancements in deep learning offer a novel solution for fast and

accurate grain recognition. This study proposes an improved deep learning

model based on YOLOv8n, referred to as YOLO-SDL, aiming to achieve

efficient wheat grain detection. A high-quality wheat grain dataset was first

constructed, including images of perfect, germinated, diseased, and damaged

grains. Multiple data augmentation techniques were employed to enhance the

dataset’s complexity and diversity. The YOLO-SDL model incorporates the

ShuffleNetV2 architecture in its backbone and combines depthwise separable

convolutions (DWConv) with the large separable kernel attention (LSKA)

mechanism in its neck structure, significantly improving detection speed and

accuracy while ensuring the model remains lightweight. The results indicate that

YOLO-SDL achieves superior performance in wheat grain detection, balancing

lightweight design and performance optimization. The model achieved a P of

0.942, R of 0.903, mAP50 of 0.965, and mAP50-95 of 0.859, with low

computational complexity, making it suitable for resource-constrained

environments. These findings demonstrate the efficiency of the ShuffleNetV2,

DWConv, and LSKA structures. The proposed YOLO-SDL model provides a new

technical solution for agricultural automation and serves as a reliable reference

for detecting other crops.
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1 Introduction
Wheat is one of the most widely cultivated food crops globally,

and its grain yield and quality directly impact food security, making

it a cornerstone of agricultural economies (Guo et al., 2023; Peng

et al., 2022). During growth, harvesting, and storage, wheat grains

can be affected by environmental factors or improper handling,

leading to germination, damage, or disease, which compromise

their quality (Ma et al., 2021). Thus, precise identification and

detection of wheat grains, particularly distinguishing between

different types of grains, is crucial for ensuring food safety and

promoting sustainable agriculture (Que et al., 2023; Zhou et al.,

2020). Moreover, grain detection plays a vital role in wheat

breeding, enhancing breeding efficiency and aiding in the

development of high-quality varieties (Misra et al., 2022).

Manual methods of detecting wheat grains suffer from

inefficiency and subjectivity, failing to meet the demands of

modern agriculture (Gao et al., 2022; Li et al., 2024c; Zhao et al.,

2022). While traditional machine vision technology, which relies on

computer-based image recognition and analysis, improves

detection efficiency and accuracy, its generalization capability is

limited. It tends to perform well on specific tasks but struggles to

adapt to new ones, requiring expert intervention for feature

extraction (Ji et al., 2022).

Recently, deep learning has made significant strides in object

detection, particularly with deep neural networks excelling in image

recognition and classification tasks (Feng et al., 2023; Han et al.,

2023). Deep learning models for object detection are broadly

categorized into two-stage and one-stage models. Two-stage

models, such as the R-CNN series and Mask R-CNN, first

generate candidate regions and then classify and localize these

regions for accurate object detection (Fang et al., 2023; Li et al.,

2024a). Li et al. (2022a) used a Faster R-CNNmodel to detect wheat

spike in RGB images, achieving rapid and accurate detection with

an average accuracy of 86.7%. Similarly, Ye et al. (2023) applied the

Mask R-CNN model to visible-light images captured by uncrewed

aerial vehicle to achieve rapid and accurate detection of individual

cabbage plants. The study results demonstrated the superior

performance of the Mask R-CNN model, with a detection

accuracy of 99.5% and an overall average F1 score of 97.63%. Wu

et al. (2020) combined transfer learning with the Faster R-CNN

model for the detection and counting of wheat grains under

complex environmental conditions. The results showed that the

mean average precision (mAP) of the Faster R-CNN model was

0.91, and the model exhibited strong robustness. Although two-

stage models exhibit high accuracy, they tend to be slower (Li et al.,

2022b). In contrast, one-stage models like YOLO and SSD are

widely favored for their speed and practicality, directly extracting

image features to predict object categories and locations (Bacea and

Oniga, 2023; Wan et al., 2024).

The YOLO series, a quintessential one-stage model, stands out

for its exceptional performance and efficiency in object detection

tasks (Wu et al., 2023; Zhang et al., 2024). However, while YOLO

models are fast, there is still room to improve their detection

accuracy. To optimize the YOLO algorithm, researchers have
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worked to enhance its accuracy and computational efficiency

while reducing complexity and parameter count, aiming for a

lightweight yet efficient model. For example, Ma et al. (2024)

proposed an improved YOLOv8 model for wheat seed detection,

incorporating shared convolutional layers and vision transformer

with deformable attention mechanism, which resulted in a

lightweight and efficient model with a mAP of 99.3%, a 16.8%

improvement over YOLOv8. Similarly, Yao et al. (2024) improved

the YOLOv7 model by integrating an efficient channel attention

mechanism and a bi-directional feature pyramid network for

detecting the germination rate of wild rice seeds, achieving

detection accuracies of 94% and 98.2% in hydroponic and petri

dish environments, respectively. Qing et al. (2024) proposed an

enhanced YOLO-FastestV2 model for the detection of wheat spike

counts. The model incorporated three attention mechanisms and a

SimConv structure to enhance the model’s feature extraction

capabilities and detection accuracy. The study demonstrated that

the improved model achieved a precision (P) of 83.91%, recall (R) of

78.35%, average precision of 81.52%, and F1 score of 81.03%,

indicating the overall best performance.

To enhance the accuracy and efficiency of wheat grain

detection, this study proposes an improved YOLOv8n model,

YOLO-SDL. The model adopts the ShuffleNetV2 architecture in

its backbone, known for its computational efficiency, which not

only boosts image processing speed but also significantly enhances

detection accuracy. Additionally, depthwise separable convolutions

(DWConv) replace the original convolutional modules in the neck

of YOLOv8n, further reducing computational load, making the

model more suitable for resource-constrained conditions. The large

separable kernel attention (LSKA) mechanism is also integrated

into the neck structure to improve the model’s ability to capture key

object features, thereby enhancing detection precision. The

contributions of this study are as follows: (1) constructing a high-

quality dataset of wheat grains with various conditions, (2)

conducting ablation experiments to validate the effectiveness of

each improvement in the YOLO-SDL model, and (3) comparing the

performance of YOLO-SDL with YOLOv5n, YOLOv6n, YOLOv8n,

and YOLOv10n.
2 Materials and methods

2.1 Wheat grain dataset

This study constructed a comprehensive and diverse wheat

grain dataset, including images of perfect, germinated, diseased,

and damaged grains, captured using high-resolution imaging

equipment to ensure quality. After capturing the images, detailed

bounding box annotations were made using the LabelImg software

to ensure accurate identification of different grain conditions during

model training. The dataset contains 9400 perfect grains, 7260

germinated grains, 835 diseased grains, and 1890 damaged grains,

accounting for 48.49%, 37.45%, 4.31%, and 9.75% of the total,

respectively. To further enhance the complexity and diversity of the

dataset, various data augmentation techniques were employed, such

as random scaling, rotation, flipping, noise addition, and
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adjustment of lighting intensity. These methods expanded the

dataset’s size and richness, improving the model’s stability and

generalization ability in recognizing wheat grains under different

environments and conditions. The final dataset comprises 1170

images, divided into training, testing, and validation sets in an 8:1:1

ratio. Examples of wheat grain images are shown in Figure 1.
2.2 Improvement strategies

2.2.1 YOLO-SDL model
The YOLOv8n algorithm builds upon the advantages of the

YOLO series in terms of both accuracy and speed, with further

optimizations to enhance performance. The YOLOv8n model

introduces the C2f structure, which integrates feature maps from

various depths, enabling the network to leverage both shallow and

deep features simultaneously. This significantly enhances the

model’s ability to recognize and capture object features (Jiang

et al., 2024; Lu et al., 2024). The cross stage partial connections in

the C2f structure optimize information flow through the network.

By partially connecting different stages, the model not only

improves feature representation but also strengthens its ability to

detect objects in complex scenes. The neck of the YOLOv8n model

employs the path aggregation network - feature pyramid network

structure, which builds multi-scale feature fusion paths, allowing

the model to handle objects of various scales more flexibly and

efficiently. The detection head uses a decoupled structure that

separates the classification and localization tasks, enabling

independent optimization of both and improving detection

accuracy and efficiency (Chen et al., 2024).
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To further enhance detection accuracy while reducing

computational complexity and parameter count, making the

model more lightweight and efficient, this study proposes

improvements to the YOLOv8n model. The structure of the

improved model is shown in Figure 2. First, the ShuffleNetV2

architecture is introduced into the backbone of YOLOv8n,

ensuring high precision while enabling fast object detection with

lower computational cost. This is particularly crucial for tasks such

as wheat grain detection, which often need to be conducted in

environments like fields or warehouses where computational

resources are limited. Additionally, we integrate DWConv and

LSKA mechanisms into the neck of YOLOv8n. The DWConv

structure significantly reduces the computational load, making the

model more suitable for deployment on resource-constrained

devices. The LSKA mechanism provides a more flexible feature

extraction process, effectively enhancing the model’s detection

accuracy. This aids the model in better capturing detailed

characteristics of wheat grain under various environments to

achieve accurate detection. By integrating improvements such as

ShuffleNetV2 and DWConv, the model proposed in this study

achieves structural lightweight and efficiency, and is functionally

particularly suited for wheat grain detection tasks. It is capable of

maintaining high detection accuracy while adapting to resource-

constrained environments and meeting the demand for processing

large volumes of image data.

2.2.2 DWConv
DWConv reduces the number of parameters in the model by

decomposing a standard convolution into two processes: depthwise

convolution and pointwise convolution, significantly lowering
FIGURE 1

Sample images from the wheat grain dataset.
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computational complexity (Balasundaram et al., 2023). During the

depthwise convolution stage, each channel undergoes independent

convolution operations, generating feature maps corresponding to

the number of channels. This process enables the model to precisely

recognize and capture the local features of each channel without a

significant increase in the number of parameters. Pointwise

convolution, which uses a 1×1 convolution kernel, integrates the

feature maps produced by the depthwise convolution across

channels, generating the final output feature map. The DWConv

structure preserves the model’s ability to accurately capture spatial

features while dramatically reducing its computational complexity
Frontiers in Plant Science 04
and parameter count, resulting in a more lightweight model (Li

et al., 2024b; Shi et al., 2024). DWConv replaces the original

convolution structure in the YOLOv8n model, reducing model

complexity and achieving further lightweight optimization.

Figure 3 illustrates the DWConv structure.

2.2.3 ShuffleNetV2
ShuffleNetV2 is an efficient and lightweight convolutional

neural network architecture that balances model complexity with

accuracy (Thakuria and Erkinbaev, 2024). It employs group

convolution to divide the input channels into groups, where
FIGURE 3

Structure of DWConv.
FIGURE 2

Structure of the YOLO-SDL model.
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independent convolution operations are performed within each

group. This technique significantly reduces the number of

parameters in the convolutional layers, thereby lowering the

computational cost of the model. ShuffleNetV2 also incorporates

an innovative channel shuffle mechanism, which enables effective

feature fusion after the grouping process, enhancing the model’s

ability to integrate features and improving detection accuracy.

Moreover, the integration of DWConv further reduces the

computational complexity of the model. Due to its lightweight

and efficient nature, ShuffleNetV2 offers an effective solution for

resource-constrained environments. ShuffleNetV2 exhibits a

reduced computational parameter count relative to EfficientNet-

B0, which is the smallest model within the EfficientNet series (Ding

et al., 2023). It also demonstrates superior performance in both

speed and accuracy compared to MobileNetV2, providing faster

inference capabilities. These attributes render ShuffleNetV2 a highly

suitable choice for applications within resource-limited

environments (Ma et al., 2018). The channel shuffle mechanism

and the design of the DWConv structure in ShuffleNetV2 provide

better robustness when dealing with small objects, which is crucial

for wheat grain identification and detection tasks. In this study, the

ShuffleNetV2 architecture was applied to the backbone of the

YOLO-SDL model, enabling it to adapt to environments with
Frontiers in Plant Science 05
limited resources while maintaining fast and accurate object

detection capabilities. Figure 4 shows the structure of ShuffleNetV2.

2.2.4 LSKA
LSKA is an innovative attention mechanism that decomposes a

2D convolutional kernel in the deep convolutional layers into two

1D convolutional kernels, performing horizontal and vertical

convolution operations separately. This reduces the number of

parameters and computational load while enhancing the model’s

ability to capture image features (Lau et al., 2024). LSKA generates

an attention map through a 1×1 convolution layer based on the 1D

convolutions, which is used to adjust and enhance key information

in the feature maps. The attention map is then multiplied pointwise

with the original feature map to achieve adaptive optimization of

the features (Zhong et al., 2024). Compared to traditional large

kernel attention mechanisms, LSKA overcomes the computational

and memory efficiency challenges associated with large

convolutional kernels. It significantly reduces computational

complexity, making it more efficient and flexible in object

detection tasks, while providing more precise detection results. In

this study, the LSKA mechanism was introduced into the neck

network of the YOLOv8n model to further optimize its

performance. Figure 5 shows the structure of LSKA mechanisms.
FIGURE 4

Structure of ShuffleNetV2.
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2.3 Evaluation metrics

To assess the performance of different models in detecting

wheat grains, this study employs P, R, mean average precision

(mAP50), extended mean average precision (mAP50-95), and giga

floating-point operations per second (GFLOPs) as evaluation

metrics. P measures the proportion of correctly predicted positive

samples out of all samples predicted as positive, as shown in

Equation 1. R evaluates the proportion of actual positive samples

that were correctly predicted by the model, as shown in Equation 2.

mAP50 represents the mean average precision when the

intersection over union (IoU) threshold is set at 50%, serving as a

general indicator of the model’s overall performance, as shown in

Equation 3. mAP50-95 is an extended version of mAP50 that

considers a range of IoU thresholds (from 50% to 95% in

increments of 5%), providing a more detailed performance

evaluation across various levels of IoU, as shown in Equation 4.

GFLOPs quantifies the capability of performing ten billion floating-

point operations per second and serves as a pivotal metric for

assessing the efficiency of deep learning models. It indicates the

computational velocity of the models during both training and

inference; a higher GFLOPs value signifies a model’s enhanced data

processing capacity. As illustrated in Equation 5. The Frames per

second (FPS) is an important indicator of the speed of model

recognition and detection, which reflects the number of images

processed by the model per second, the larger the FPS, the faster the

processing speed of the model.

P =
TP

TP + FP
(1)

R =
TP

TP + FN
(2)

mAP50 =
1
mo

m

i=1
APi (3)

mAP50−95 =
1
mo

m

i=1

1
10o

10

j=1
APi,j (4)

GFLOPs =
2*(K � K � Cin � Cout �H �W + Cout)

109
(5)

FPS =
1

Processing   time   per   frame
(6)

In this context, TP refers to the number of true positives, TN

refers to the number of true negatives, FP refers to the number of
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false positives, and FN refers to the number of false negatives. m

represents the number of classes in the dataset, APi represents the

average precision for class i when the IoU threshold is 0.5, and APi,j
represents the average precision for class i at IoU thresholds of 0:5 +

0:05� (j − 1). K � K denotes the size of the convolutional kernel,

Cin represents the number of input channels in the convolutional

layer, Cout represents the number of output channels in the

convolutional layer, and H �W indicates the height and width of

the feature map output by the convolutional layer.
3 Results

3.1 Experimental environment

The experiments were conducted on the Ubuntu 20.04

operating system, with Python 3.10 as the programming language,

CUDA version 11.8, and PyTorch 2.0.1 as the deep learning

framework. Jupyter was used as the IDE for developing the

experiments. The CPU was an Intel(R) Xeon(R) Gold 5318Y @

2.10GHz, and the GPU used was an NVIDIA A16 with 15GB of

memory. During the network training process, this study sets the

learning rate to 0.01 and the batch size to 200, with the loss function

chosen as IoU. We employ a stochastic gradient descent optimizer

with a momentum of 0.937, along with weight decay of 0.0005 to

regularize the model and prevent overfitting. To more smoothly

initiate the training process, we set up 3 warmup epochs, during

which the initial momentum is set to 0.8 and the initial bias learning

rate is set to 0.1. Such settings help to gradually enhance the model’s

stability and convergence rate at the initial stage of training.
3.2 Ablation experiments

This study utilized the YOLOv8n model as a baseline and made

several improvements by incorporating ShuffleNetV2, DWConv,

and LSKA structures to enhance the accuracy of wheat grain

detection. Ablation experiments were conducted to analyze the

performance impact of each modification, with the results

summarized in Table 1. In the ablation experiments, the results of

different improved models on wheat grain feature recognition are

shown in Figure 6.

The baseline YOLOv8n model achieved a detection

performance of P = 0.898, R = 0.903, mAP50 = 0.937, and

mAP50-95 = 0.816. The model had 3006623 parameters and a

GFLOP count of 8.1. After introducing the ShuffleNetV2

architecture, the YOLO-S model improved its P to 0.909 and R to
FIGURE 5

Structure of LSKA mechanisms.
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0.917, with mAP50 and mAP50-95 reaching 0.954 and 0.834,

respectively. The number of parameters and GFLOPs were

reduced to 1835343 and 5.2, indicating that ShuffleNetV2 not

only enhanced detection performance but also achieved

significant model lightweighting. By incorporating the DWConv

structure, the YOLO-D model achieved P = 0.904 and R = 0.904,

with mAP50 and mAP50-95 improving to 0.944 and 0.823,

respectively. The parameter count was 2824031, and GFLOPs

were 7.9. While DWConv contributed to improved precision and

target recognition ability, it offered slightly less performance

improvement compared to ShuffleNetV2, suggesting potential for

further optimization. With the introduction of the LSKA

mechanism, the YOLO-L model saw increased complexity, with

parameters growing to 3100255 and GFLOPs to 8.3. However,

detection performance improved, with P = 0.904, R = 0.926, and

mAP50 and mAP50-95 reaching 0.952 and 0.832, respectively,

demonstrating the significant impact of LSKA on enhancing

detection accuracy.
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The YOLO-SDmodel, combining the strengths of ShuffleNetV2

and DWConv, achieved P = 0.911, R = 0.917, mAP50 = 0.960, and

mAP50-95 = 0.848, with the parameter count reduced to 1652751

and GFLOPs to 4.9. These results indicate that the model achieved a

high level of performance while further reducing its complexity.

Finally, the YOLO-SDL model, which integrates ShuffleNetV2,

DWConv, and LSKA, achieved the best overall performance with

P = 0.942, mAP50 = 0.965, and mAP50-95 = 0.859. Although recall

dropped slightly to 0.903, the parameter count was 1755215, and

GFLOPs were 5.1. These results demonstrate the model’s ability to

balance lightweight design with high accuracy and efficiency.

According to the results demonstrated in Figure 6, it can be seen

that the YOLO-SDL model focuses on the image region closer to the

wheat grain, which has better recognition prediction effect.

This study significantly improved the accuracy of wheat grain

detection by incorporating ShuffleNetV2, DWConv, and LSKA into

the YOLOv8n model, achieving a balance between model

lightweighting and computational efficiency. The results show
TABLE 1 Accuracy results of ablation experiments.

Model ShuffleNetV2 DWConv LSKA P R mAP50 mAP50-95

YOLOv8n – – – 0.898 0.903 0.937 0.816

YOLO-S √ – – 0.909 0.917 0.954 0.834

YOLO-D – √ – 0.904 0.904 0.944 0.823

YOLO-L – – √ 0.904 0.926 0.952 0.832

YOLO-SD √ √ – 0.911 0.917 0.960 0.848

YOLO-SDL √ √ √ 0.942 0.903 0.965 0.859
√ indicates that the module was used in this set of experiments; - indicates that the module was not used in this set of experiments.
FIGURE 6

Heat map of ablation experiment results.
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that the ShuffleNetV2 architecture enhanced detection accuracy

while significantly reducing model parameters and computational

load. The DWConv structure provided modest accuracy

improvements and reduced computational costs, though it still

has room for further optimization. While the LSKA structure

increased model complexity, it substantially improved detection

accuracy. Among the various improved models, YOLO-SDL strikes

the best balance between accuracy, parameter count, and

computational efficiency, making it the optimal model for wheat

grain detection.
3.3 Comparison of different models

This study compares the YOLO-SDL model with three other

models from the YOLO series—YOLOv5n, YOLOv6n, and

YOLOv10n—evaluating their accuracy and performance in wheat
Frontiers in Plant Science 08
grain detection. The detection accuracy of the different models is

summarized in Table 2, with the accuracy comparison trends shown

in Figure 7, and the detection results comparison presented

in Figure 8.

As shown in Table 2, the YOLOv5n model achieved relatively

high P and R, with P = 0.900 and R = 0.887. Its mAP50 reached

0.940, while mAP50-95 was 0.817. The model also demonstrated a

processing speed of 156.250 FPS, indicating a balance between high

accuracy and fast processing. The YOLOv6n model had slightly

higher P than YOLOv5n at 0.902, with R = 0.888, mAP50 = 0.938,

and mAP50-95 improving to 0.827. It showed a real-time

processing advantage with a FPS of 106.383. The YOLOv8n

model had slightly lower P (P = 0.898), but R increased to 0.903,

with mAP50 = 0.937 and mAP50-95 = 0.816. Its processing speed

was 140.845 FPS, faster than YOLOv6n. The YOLOv10n model had

the lowest P (P = 0.895) and R (R = 0.887), although its mAP50 and

mAP50-95 were 0.940 and 0.834, respectively. It had the highest
TABLE 2 Accuracy of detection results for different models.

Model P R mAP50 mAP50-95 Parameters GFLOPs Speed (FPS)

YOLOv5n 0.900 0.887 0.940 0.817 2503919 7.1 156.250

YOLOv6n 0.902 0.888 0.938 0.827 4234239 11.8 106.383

YOLOv8n 0.898 0.903 0.937 0.816 3006623 8.1 140.845

YOLOv10n 0.895 0.887 0.940 0.834 2696366 8.2 175.439

YOLO-SDL 0.942 0.903 0.965 0.859 1755215 5.1 161.290
FIGURE 7

Comparison of detection accuracy variations across different models.
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processing speed among all models at 175.439 FPS. In contrast, the

YOLO-SDL model demonstrated a significant accuracy advantage

in the wheat detection task, with P reaching 0.942, R at 0.903, and

mAP50 and mAP50-95 of 0.965 and 0.859, respectively, making it

the most accurate model among all tested. The YOLO-SDL also had

a processing speed of 161.290 FPS, second only to YOLOv10n,

indicating a fast image processing capability. From the perspective

of computational complexity and efficiency, YOLO-SDL was the

most lightweight model, with the smallest parameter count

(1755215) and GFLOPs (5.1). In comparison, YOLOv6n had the

highest computational cost, with 4234239 parameters and 11.8

GFLOPs. The YOLOv5n model was less complex, with 2503919

parameters and 7.1 GFLOPs, while the YOLOv8n and YOLOv10n

models had intermediate levels of complexity.

The Figure 6 shows the changes in accuracy for each model as

the number of iterations increased. All models demonstrated an

upward trend in accuracy over time, with the YOLO-SDL model

maintaining the highest accuracy curve, consistently outperforming

the other models. Additionally, as shown in Figure 7, the detection

results indicate that the YOLO-SDL model was able to more

accurately identify various types of wheat grains compared to the

other models. In summary, the analysis demonstrates that

appropriate adjustments and optimizations to the network

structure can significantly enhance model performance. By

integrating the strengths of ShuffleNetV2, DWConv, and LSKA,

the YOLO-SDL model achieves the goal of reducing model

complexity while maintaining high accuracy. This combination of

lightweight design and high precision not only improves the

model’s adaptability and practicality but also provides new

insights for the fields of agricultural automation and

smart agriculture.
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4 Discussion

This study introduces improvements to the YOLOv8n model by

incorporating ShuffleNetV2, DWConv, and LSKA structures, with

the goal of optimizing detection accuracy, reducing the model’s

parameter count, and lowering computational complexity. These

enhancements aim to improve the model’s performance in wheat

grain detection tasks while achieving a balance between model

lightweighting and computational efficiency. Through ablation

experiments and comparative analysis with different models, this

research demonstrates that the YOLO-SDL model is the optimal

solution for wheat grain detection, offering high-precision results

while maintaining a lightweight design.

The YOLO-SDL model leverages the ShuffleNetV2 architecture

as its backbone, significantly improving detection accuracy while

greatly reducing both the model’s parameter count and

computational load. ShuffleNetV2, an efficient lightweight

network architecture, uses grouped convolution, channel shuffle

mechanisms, and DWConv to capture rich feature information

while minimizing computational complexity. These lightweight

features are especially valuable in resource-constrained

environments. Shang et al. (2023) demonstrated in their study on

apple flower detection that ShuffleNetv2 possesses significant

advantages in terms of lightweight design, accuracy, and

adaptability, making it an ideal choice for object detection in

resource-constrained environments . Addit ional ly , the

introduction of DWConv and LSKA structures in the neck of the

YOLO-SDL model further enhances its performance. While

the DWConv structure does not provide as significant a precision

boost as ShuffleNetV2, it plays a crucial role in reducing

computational costs. By lowering the number of parameters and
FIGURE 8

Comparison of detection results of different models.
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computational load in convolution operations, DWConv improves

both efficiency and accuracy. Guo et al. (2024) showed that

replacing the convolutional modules in the YOLOv8s network

with DWConv modules can reduce the complexity of the

network, proving to be an effective lightweight strategy. Although

LSKA increases model complexity, it also delivers significant

accuracy improvements. By decomposing large kernels into

smaller, more manageable parts, LSKA can effectively model

global information, which is crucial for distinguishing between

wheat grains and other components such as husks and stalks. The

LSKAmechanism enhances the model’s ability to recognize features

in wheat grains by adaptively optimizing local spatial attention

within the feature maps. Gao et al. (2024) pointed out in their

research aimed at improving the efficiency and accuracy of young

citrus fruit detection that the LSKA mechanism enhances the

model’s ability to fuse features across different scales, thereby

improving detection accuracy. The inclusion of DWConv and

LSKA in YOLO-SDL boosts detection accuracy, thereby

improving overall model performance.

In the model comparison analysis, YOLO-SDL demonstrated

clear performance advantages in wheat grain detection tasks. The

model achieved the highest values for P, R, mAP50, and mAP50-95

compared to other YOLO series models. From a computational

complexity and efficiency standpoint, YOLO-SDL is the most

lightweight model, outperforming the others in terms of

parameter count and GFLOPs. These findings suggest that

appropriate network adjustments and optimizations can

significantly enhance overall detection performance while

maintaining a lightweight design.

In conclusion, the YOLO-SDL model introduced in this study

has demonstrated superior performance in wheat grain detection

tasks. By combining the strengths of ShuffleNetV2, DWConv, and

LSKA, the model achieves significant improvements in accuracy

while balancing lightweight design and performance optimization.

These results offer new approaches and methods for agricultural

automation and smart farming. Future research could explore

further reductions in model complexity, optimize the network

structure, and enhance the model’s adaptability in resource-

limited environments, advancing the development and

application of agricultural automation technologies.
5 Conclusion

This study developed an improved YOLOv8n model, termed

YOLO-SDL, for detecting various types of wheat grains. Through

in-depth analysis and enhancement of the YOLOv8n model, a

lightweight, efficient, and highly accurate wheat grain detection

model was constructed. By introducing ShuffleNetV2, DWConv,

and LSKA structures, the YOLO-SDL model significantly improves

the capture of features across different wheat grain types while

maintaining high precision, lightweight design, and computational

efficiency. The results show that the YOLO-SDL model excels in
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detection accuracy, achieving a P of 0.942, R of 0.903, mAP50 of

0.965, and mAP50-95 of 0.859, outperforming YOLOv8n and other

YOLO series models in both lightweight design and computational

efficiency. The YOLO-SDL model’s advantages in parameter count

and computational complexity make it highly suitable for

deployment in resource-constrained environments, which is

particularly relevant for real-world agricultural automation and

intelligent systems. The outstanding performance of the YOLO-

SDL model is attributed to the introduction of ShuffleNetV2,

DWConv, and LSKA structures. The ShuffleNetV2 architecture,

through its use of grouped convolution and channel shuffle

mechanisms, maintains high accuracy while reducing

computational costs. The DWConv structure, by decomposing

standard convolutions into depthwise and pointwise convolutions,

further reduces parameter count and computational complexity.

Finally, the LSKA mechanism, by decomposing 2D convolutional

kernels into 1D kernels, achieves adaptive feature optimization,

enhancing the model’s ability to capture image features and

improving detection accuracy.

The YOLO-SDL model demonstrates excellent performance in

wheat grain detection tasks, improving both accuracy and efficiency

while achieving a lightweight design. This provides a novel technical

solution for agricultural automation and intelligent farming. Future

research will continue to explore and optimize the model’s structure

to extend its applicability to a wider range of agricultural scenarios,

driving further advancements in agricultural technology.
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