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(USDA), Agricultural Research Service (ARS), U.S. Arid-Land Agricultural Research Center, Maricopa,
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Cotton (Gossypium hirsutum L.) leaf chlorophyll (Chl) has been targeted as a

phenotype for breeding selection to improve cotton tolerance to environmental

stress. However, high-throughput phenotyping methods based on hyperspectral

reflectance sensing are needed to rapidly screen cultivars for chlorophyll in the

field. The objectives of this study were to deploy a cart-based field

spectroradiometer to measure cotton leaf reflectance in two field experiments

over four growing seasons at Maricopa, Arizona and to evaluate 148 spectral

vegetation indices (SVI’s) and 14 machine learning methods (MLM’s) for

estimating leaf chlorophyll from spectral information. Leaf tissue was sampled

concurrently with reflectance measurements, and laboratory processing

provided leaf Chl a, Chl b, and Chl a+b as both areas-basis (µg cm-2) and

mass-basis (mg g-1) measurements. Leaf reflectance along with several data

transformations involving spectral derivatives, log-inverse reflectance, and SVI’s

were evaluated as MLM input. Models trained with 2019–2020 data performed

poorly in tests with 2021–2022 data (e.g., RMSE=23.7% and r2 = 0.46 for area-

basis Chl a+b), indicating difficulty transferring models between experiments.

Performance was more satisfactory when training and testing data were based

on a random split of all data from both experiments (e.g., RMSE=10.5% and r2 =

0.88 for area basis Chl a+b), but performance beyond the conditions of the

present study cannot be guaranteed. Performance of SVI’s was in the middle

(e.g., RMSE=16.2% and r2 = 0.69 for area-basis Chl a+b), and SVI’s provided more

consistent error metrics compared to MLM’s. Ensemble MLM’s which combined

estimates from several base estimators (e.g., random forest, gradient booting,

and AdaBoost regressors) and a multi-layer perceptron neural network method

performed best among MLM’s. Input features based on spectral derivatives or

SVI’s improved MLM’s performance compared to inputting reflectance data.

Spectral reflectance data and SVI’s involving red edge radiation were the most

important inputs to MLM’s for estimation of cotton leaf chlorophyll. Because
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fpls.2024.1495593/full
https://www.frontiersin.org/articles/10.3389/fpls.2024.1495593/full
https://www.frontiersin.org/articles/10.3389/fpls.2024.1495593/full
https://www.frontiersin.org/articles/10.3389/fpls.2024.1495593/full
https://www.frontiersin.org/articles/10.3389/fpls.2024.1495593/full
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2024.1495593&domain=pdf&date_stamp=2024-11-21
mailto:kelly.thorp@usda.gov
https://doi.org/10.3389/fpls.2024.1495593
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2024.1495593
https://www.frontiersin.org/journals/plant-science


Thorp et al. 10.3389/fpls.2024.1495593

Frontiers in Plant Science
MLM’s struggled to perform beyond the constraints of their training data, SVI’s

should not be overlooked as practical plant trait estimators for high-throughput

phenotyping, whereas MLM’s offer great opportunity for data mining to develop

more robust indices.
KEYWORDS

chlorophyll, cotton, high-throughput, machine learning, mapping population,
phenomics, spectroradiometer, spectral index
1 Introduction

Optimizing leaf chlorophyll is an important cotton (Gossypium

hirsutum L.) breeding goal (Turley and Pettigrew, 2011; Thompson

et al., 2022). As the primary light-harvesting pigment in plants,

chlorophyll is responsible for driving photosynthesis and producing

photosynthate for plant respiration. Naturally, reduced chlorophyll

content limits the energy available for plant growth and marketable

yield. On the other hand, excessive chlorophyll can lead to excess

energy production in environments where light absorption exceeds

capacity for photosynthesis. To avoid harmful effects, the plant

must dissipate the excess energy using non-photochemical

quenching. Breeding cotton cultivars with focus on leaf

chlorophyll can potentially increase cotton production through

increased photosynthetic efficiency and greater tolerance to

environmental stress. However, progress is currently limited by

lack of appropriate screening tools to rapidly evaluate cultivars in

the field (Singh et al., 2007).

Traditionally, plant scientists have measured leaf chlorophyll

via tissue sampling procedures coupled with analytical methods in

the laboratory (Porra et al., 1989). However, these measurements

are often laborious and time-consuming, which limits their

effectiveness for rapid estimation of chlorophyll content among

entries in large breeding populations. In the last decade, high-

throughput phenotyping (HTP) technologies have been developed,

which couple the deployment of electronic sensing systems and use

of automated data workflows to enable rapid estimation of plant

traits in the field (White et al., 2012; Pabuayon et al., 2019; Gill et al.,

2022). Not only do HTP technologies offer a screening tool for plant

breeding decisions but also the data can be used in genomic analyses

to better elucidate the links between plant genetics and expression

of plant traits in field environments. Solving the latter problem is

considered a fundamental step toward enabling agricultural

production to feed a growing human population with the

complication of climate uncertainty in the current century (White

et al., 2012).

Leaf chlorophyll, among other leaf characteristics, is known to

influence the reflectance of light from plant tissue, due to the

absorbance of visible light radiation by the chlorophyll molecule

(Knipling, 1970). Therefore, HTP methods for estimating leaf

chlorophyll have typically utilized hyperspectral sensing
02
technology (Grybowski et al., 2021; Sarić et al., 2021), which

provides measurements of reflected radiation from plant leaves or

plant canopies in narrow, contiguous wavebands. These efforts in

HTP build on a half century of research in remote sensing science

and more than three decades of research in precision agriculture,

where chlorophyll estimation was also relevant for diverse

applications in ecosystem monitoring (Zarco-Tejada et al., 2001;

Le Maire et al., 2008; Kalacska et al., 2015; Inoue et al., 2016) and

crop nutrient management (Daughtry et al., 2000; Gitelson et al.,

2005; Schlemmer et al., 2005; Zhu et al., 2020). Continued efforts are

needed to advance the science of chlorophyll estimation using

modern proximal and remote sensing equipment and by

developing reliable data analysis pipelines.

Considerable research effort has been expended to develop

spectral vegetation indices and machine learning methods to

estimate chlorophyll from vegetative spectral reflectance

measurements. A concurrent literature search (Thorp, 2024)

identified 148 spectral vegetation indices reported in scientific

literature from 1968 to the present time, many of which were

developed specifically to estimate chlorophyll (Supplementary

Tables S.1, S.2). Routinely, researchers consider only a small

subset of available indices, but more comprehensive assessments

of indices are needed. Some spectral vegetation indices are simple

mathematical formulae that combine spectral data from two or

three wavebands (Chappelle et al., 1992; Carter, 1994), while others

are more complex and require, for example, derivative

transformations of hyperspectral data prior to index computation

(Filella and Peñuelas, 1994; Elvidge and Chen, 1995). Machine

learning is often considered a novel and modern technology,

although remote sensing literature suggests that principal

component analyses were being used to evaluate spectral

reflectance data more than forty years ago (Jackson, 1983; Heute

et al., 1984). Nonetheless, modern computational paradigms that

provide accessible machine learning algorithms via open-source

packages in Python and R (Mevik and Wehrens, 2007; Pedregosa

et al., 2011) have enabled novel capabilities for construction of

advanced models to relate spectral reflectance data to leaf

chlorophyll and other plant traits. A common complaint,

however, is that machine learning algorithms are “black box”

methods that know nothing of physiological mechanisms

(Grybowski et al., 2021), while spectral vegetation indices often
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have a physiological basis. Further research is needed to expand the

development and evaluation of machine learning methods and to

identify the advantages and disadvantages of such algorithms as

compared to simpler spectral vegetation index approaches.

Recent literature has demonstrated many HTP studies based on

combining hyperspectral sensing, spectral vegetation indices, and

machine learning methods. For example, Thorp et al. (2015) used a

field spectroradiometer to measure reflected radiation from the

canopies of 25 cotton cultivars grown under well-watered and

water-limited conditions in Arizona. Among several data analysis

methodologies including spectral vegetation indices, partial least

squares regression (PLSR), and Prosail model inversion, PLSR

estimated leaf chlorophyll best with a root mean squared error of

13.1%. Similarly, Yendrek et al. (2017) used a field spectroradiometer

with a leaf clipping device to measure in situ leaf reflectance for

greenhouse- and field-grown maize (Zea mays L.) in Illinois. The

PLSR method outperformed spectral vegetation indices in the

estimation of chlorophyll content with coefficients of determination

(r2) of 0.81–0.85 for PLSR as compared to <0.75 for spectral indices.

Also, Meacham-Hensold et al. (2020) installed a hyperspectral

imaging system on a manual field cart to measure reflected

radiation from field-grown tobacco (Nicotiana tabacum L.) plants

in Illinois. The spectral data were used to estimate photosynthetic

parameters and leaf pigment contents via PLSR, and chlorophyll

content was estimated with an r2 of 0.87. Bhadra et al. (2020) used the

Transportation Energy Resource from Renewable Agriculture,

Phenotyping Reference Platform (TERRA-REF) field scanner at

Maricopa, Arizona to measure reflected radiation from a sorghum

(Sorghum bicolor (L.) Moench) population and used several spectral

vegetation indices and machine learning methods to estimate leaf

chlorophyll. Their results demonstrated that support vector

regression (SVR) with reflectance inputs and extreme learning

regression (ELR) with spectral index inputs were the best

performing models. Grybowski et al. (2021) described several

current challenges for advancing hyperspectral and machine

learning technologies for HTP: 1) assessing the ability of trained

regression models to perform adequately for estimating plant traits in

different years or locations, 2) evaluating additional machine learning

algorithms to limit overreliance on PLSR modeling, and 3) using

feature selection methodologies to improve understanding of

physiological mechanisms for vegetative reflectance of radiation.

The present study aimed to address all three of these issues.

A common complaint against HTP is its primary focus on

technology development without adequate feedback from breeders

on whether the technology is useful and practical (Deery and Jones,

2021). Research activities that directly pair technology experts with

breeding experts are needed for development of practical

approaches to incorporate HTP technologies into breeding

programs. In the present study, the two primary authors

represent this dichotomy of expertise, and they jointly pursued

field-based cotton HTP research at Maricopa, Arizona for 7+ years.

The last four years of effort has led to the research described

elsewhere and herein, where the overall vision was to evaluate a

cart-based hyperspectral sensing system (Thompson et al., 2023) for

field phenotyping of leaf chlorophyll among cotton varieties to

provide data for breeding selection and genomic analysis. The main
Frontiers in Plant Science 03
goal of the present study was to evaluate data processing

methodologies to estimate cotton leaf chlorophyll from

hyperspectral data. Specific objectives were to 1) collect cotton

leaf spectral reflectance data and corresponding leaf tissue samples

for chlorophyll extraction over four growing seasons of cotton field

trials, 2) evaluate existing spectral vegetation indices and machine

learning methods for estimating cotton leaf chlorophyll from the

leaf spectral reflectance data, and 3) determine the importance of

various spectral indices and reflectance wavebands for estimating

cotton leaf chlorophyll using machine learning.
2 Materials and methods

2.1 Field experiments

Two cotton field experiments were conducted at the Maricopa

Agricultural Center (MAC) in Maricopa, Arizona, USA (33.079°N,

111.977°W, 360 m above sea level) over four cotton growing seasons

from 2019 to 2022. In the first two years (2019–2020), the field trial

was arranged in a (0-1) alpha lattice design with six cotton entries,

two planting dates, three irrigation treatments, and three replicates

per entry for each irrigation by planting date treatment. Five entries

were chosen from the National Cotton Variety Test (NCVT)

program and the sixth was a red cotton variety. Cotton was

planted into raised beds with row spacing of 1.02 m on 16 April

(DOY 106) and 17May (DOY 137) in 2019 and 23 April (DOY 114)

and 14 May (DOY 135) in 2020. A subsurface drip irrigation system

was installed under the raised beds at a depth of 20 cm with an

emitter spacing of 30 cm. After establishing the crop with furrow

flood irrigation, three irrigation rates were initiated using the drip

irrigation system on 6 May 2019 (DOY 126) and 14 May 2020

(DOY 135) for the first planting and 4 June 2019 (DOY 155) and 29

May 2020 (DOY 150) for the second planting. Irrigation was

applied at 60%, 80%, and 100% of the recommended irrigation

rate for full production, based on calculations from an irrigation

scheduling tool that estimated evapotranspiration and soil water

balance (Hunsaker et al., 2005). Plots were 10.6 m in length with 2.3

m alleys between plots. The total experiment area was 0.46 ha and

located in Field 119 at MAC.

In the latter two years (2021–2022), the field trial was arranged

in an augmented block design with 379 cotton entries and two

replicates per entry. The entries were from a recombinant inbred

line population with parents that differed in chlorophyll content in

wet and dry environments. Cotton was planted into conventionally

tilled and planed soil with row spacing of 1.02 m on 22 April 2021

and 18–19 April 2022. Plots were 6.1 m long with 1.2 m alleys. The

total experiment area was 0.92 ha and located in Field 13 Bench 4 at

MAC. An overhead lateral-move sprinkler irrigation system was

used to irrigate the field, with irrigation rates calculated using a

newer formulation of the irrigation scheduling tool (Thorp, 2022).

The 2021–2022 field site was adjacent to another cotton field trial

described by Thorp (2023), and further details on the experimental

conditions and irrigation system were provided there.

The soil at both field sites was classified as a Casa Grande sandy

loam. Typical agronomic practices for nitrogen fertilizer,
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insecticide, and defoliant applications were used, but plot areas were

manually weeded due to glyphosate non-resistance among the

cotton varieties.
2.2 Field data collections

Field data collections were scheduled monthly to measure

cotton leaf spectral reflectance and to obtain leaf tissue for

chlorophyll extraction (Table 1; Figure 1). Nine collections were

conducted during the 2019–2020 field study (four in 2019 and five

in 2020), and six collections were conducted during the 2021–2022

field study (three per season). In 2019–2020, each collection was

completed in one day; however, two days were typically required to

complete collections in 2021–2022. Leaves for sampling were

identified from uppermost fully expanded leaves in the canopy on

each collection date. Leaves were pre-marked with paint markers

ahead of the data collection crew, and flags were temporarily placed

in the soil to help the crew quickly find the leaves previously chosen

for sampling.

2.2.1 Leaf spectral reflectance
Radiometric measurements of cotton leaves were collected

using a portable field spectroradiometer (ASD FieldSpec 3,

Malvern Panalytical Ltd. , Malvern, United Kingdom).
Frontiers in Plant Science 04
Radiometric information was reported in 2151 narrow wavebands

from 350 to 2500 nm with bandwidth of 1 nm. The instrument’s 1.0

m fiber optic cable was fitted with a contact probe and a leaf

clipping device for non-destructive, in situ radiometric

measurements of cotton leaves. The probe featured a 4.5-W

halogen light source and measured leaf radiance independent of

external lighting conditions. Two reflectance standards (one made

of white polytetrafluoroethylene material and the other made of

black painted vinyl) were incorporated with the leaf clip and were

easily interchanged to alternate between white reference

measurements and dark background for leaf measurements.

Thompson et al. (2023) described a novel proximal sensing cart

for spectroradiometer transport through the field. The cart also

included a customized cooling device for maintaining the

spectroradiometer at 27°C in field conditions. As compared to

manually transporting the spectroradiometer in the backpack

provided by the manufacturer, the cart-based system facilitated

data collections, enhanced spectroradiometer performance, and

improved operator safety for the collections required in this

study. It also permitted increases in the number of collection

dates and the number of sampled leaves per collection, as

compared to previous phenomics studies at MAC (Thorp et al.,

2015; Melandri et al., 2021).

For the 2019–2020 study, spectral measurements were collected

from three leaves per plot, but only one leaf per plot was measured
TABLE 1 Schedule for field data collections during cotton field experiments in 2019–2020 and 2021–2022 at Maricopa, Arizona, USA, including the
day of year (DOY), the days after planting for the first and second cotton plantings (DAP1 and DAP2, respectively), and the cumulative heat units (°C d)
since the first and second cotton plantings (HUP1 and HUP2, respectively).

Collection Date DOY DAP1 DAP2 HUP1 HUP2
Growth
Stage

2019A 7/5/2019 186 80 49 941 627 First square/flower

2019B 7/26/2019 207 101 70 1275 961 Peak bloom

2019C 8/16/2019 228 122 91 1615 1301 First open boll

2019D 9/6/2019 249 143 112 1952 1639 Maturity

2020A 6/19/2020 171 57 36 757 491 First square

2020B 7/10/2020 192 78 57 1081 815 First flower

2020C 7/31/2020 213 99 78 1432 1165 Peak bloom

2020D 8/21/2020 234 120 99 1779 1512 First open boll

2020E 9/11/2020 255 141 120 2104 1837 Maturity

2021A
5/26/2021
5/27/2021

146
147

34
35

NA
380
391

NA First leaf/square

2021B
6/30/2021
7/1/2021

181
182

69
70

NA
900
916

NA First flower

2021C
7/28/2021
7/29/2021

209
210

97
98

NA
1346
1362

NA Peak bloom

2022A 6/15/2022 166 57 NA 712 NA First square/flower

2022B
7/13/2022
7/21/2022

194
202

85
93

NA
1157
1293

NA Peak bloom

2022C
8/24/2022
8/25/2022

236
237

127
128

NA
1835
1851

NA First open boll
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in the 2021–2022 study due to the increased number of plots for the

mapping population. Five spectral scans were collected from each

leaf and averaged by the instrument’s control software, and the

averaged spectra were saved to one file per leaf. Five to ten spectral

measurements of the white reference panel were frequently

collected to characterize the light provided by the halogen bulb,

bookending the leaf spectral measurements in groups of 18 or less

leaves. Following spectral data collection, leaf reflectance factors at

each wavelength were computed as the ratio of leaf radiance and the

average radiance from the previous set of white reference scans.

2.2.2 Leaf chlorophyll
Immediately following leaf spectral data collection, leaf tissue

was extracted from the same leaf using a 0.283 cm2 leaf punch. To

avoid possible damage previously caused by the spectroradiometer’s

leaf clipping device, leaf tissue sampling occurred on a neighboring

leaf lobe. For the 2019–2020 field study, two samples containing two

0.283 cm2 leaf disks per sample were collected from each leaf, which

permitted an analysis of repeatability for the chlorophyll extraction

data at leaf scale. For the 2021-2022 field study, only one sample

containing two 0.283 cm2 leaf disks per sample was collected per

leaf. Samples were collected in 1.5 mL safe-lock tubes (Eppendorf,

Enfield, CT, USA) and were kept in the dark on ice in the field prior

to transport for storage at -80°C in the laboratory. Chlorophyll was

extracted using methanol and measured using a fluorescence plate

reader as described by Thompson et al. (2022). Chlorophyll

concentration (µg mL-1) from each sample was calculated

following Porra et al. (1989). The data were then adjusted to both

area-basis and mass-basis chlorophyll estimates, which were

expected to be most applicable for comparison to hyperspectral

remote sensing and for quantifying leaf chlorophyll content,

respectively. Dividing the chlorophyll concentration by the total
Frontiers in Plant Science 05
leaf area of the sample (0.566 cm2) provided chlorophyll on a leaf

area basis (µg cm-2). After extraction, the leaf discs were dried at

room temperature (22.2°C) for 48 hours and then weighed on an

analytical balance. Chlorophyll content was then computed as the

ratio of chlorophyll concentration and tissue mass (mg g-1). The

procedure resulted in six chlorophyll metrics for each leaf sample,

including area-basis and mass-basis estimates of chlorophyll a (Chl

a), chlorophyll b (Chl b), and chlorophyll a+b (Chl a+b) in units of

µg cm-2 and mg g-1, respectively (Figure 1). Thompson et al. (2022)

described the outlier removal approach used to remove outliers

from the chlorophyll data sets.
2.3 Field data analysis

An important question for the data analysis involved the choice

of data scale (i.e., the level of data averaging prior to analysis). For

the 2019–2020 data set, there were four choices for data scaling:

sample, leaf, plot, and entry. At sample scale, no averaging was

conducted, and chlorophyll data from the two tissue samples per

leaf were each paired with identical spectral reflectance data as

collected from the leaf. The size (n) of the 2019-2020 data set at

sample scale was 5832, including data from all nine data collections

in two growing seasons. At leaf scale, the chlorophyll data from the

two samples per leaf were averaged and paired with the spectral data

for that leaf (n=2916). At plot scale, chlorophyll data from six leaf

tissue samples among three leaves per plot were averaged and

paired with average spectral reflectance data from the same three

leaves (n=972). At entry scale, data were averaged according to the

genotype, which eliminated replication in the study (n=54). As the

choice of scale was expected to affect the modeling results, all four

scales were preliminarily examined based on the performance of
FIGURE 1

Flow chart of data collection and analysis activities.
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partial least squares regression (PLSR) models that related each of

the six chlorophyll metrics to the leaf reflectance data in 2151

wavebands (Figure 1). For these preliminary evaluations, data from

the 2019–2020 field study were averaged accordingly and used for

model training based on a cross validation approach that divided

the data into 10 segments (Mevik and Wehrens, 2007), and data

from the 2021–2022 field study was used for model testing. No

averaging from sample to leaf and plot scales was required for the

2021–2022 data, because only one chlorophyll sample was collected

per leaf and only one leaf was evaluated per plot, which rendered

sample, leaf, and plot scales identical in the test data set (n=572). At

entry scale, data from the 2021–2022 study were averaged according

to genotype, which eliminated replication in the study (n=513).

Field data from the 2019–2020 study were originally intended

for training of models to relate leaf spectral reflectance and

chlorophyll, whereas data from the 2021–2022 study were

intended for chlorophyll model testing and application to genetic

mapping of chlorophyll traits. However, the preliminary PLSR

results demonstrated poor performance of model tests, and an

alternative strategy was devised as follows. At each of the four scales,

data from all four growing seasons were combined, and samples for

model training and testing were drawn randomly without

replacement. Different fractions of training and testing data were

drawn to identify the optimal choice for data partitioning, including

90%, 80%, 70%, 60%, and 50% of samples for training data and 10%,

20%, 30%, 40%, and 50% for testing, respectively. Additional PLSR

models were fit to these data using 10-segment cross validation,

which revealed the 80% and 20% split for model training and testing

data at plot scale as the optimal choice for further analysis.

2.3.1 Spectral data transformations
Remote sensing literature over the past decades has documented

several spectral transformations used to condition spectral reflectance

(r) data prior to analysis. Examples include 1) the first and second

derivatives of spectral reflectance (r′ and r″, respectively; Horler

et al., 1983), 2) the base-10 logarithm (log10) of the inverse of spectral

reflectance and its first and second derivatives (log10 r-1, (log10 r-1)′,
and (log10 r-1)″, respectively; Yoder and Pettigrew-Crosby, 1995;

Blackburn, 1998), and 3) band depth or continuum removal analysis

of reflectance spectra (rCR; Kokaly and Clark, 1999; Curran et al.,

2001; Huang et al., 2004). These six transformations were computed

and used along with the original spectral reflectance data for further

data analysis. Spectral derivatives were computed using a Savitsky-

Golay filter in Python’s ‘SciPy’ package (Virtanen et al., 2020), and

continuum removal analysis required use of a convex hull algorithm

also in SciPy. Several of the pretreatment calculations were also

required for computation of various spectral vegetation indices.

Concurrent development of the “vegspec” software package for

Python (Thorp, 2024) facilitated the computation of the spectral

data transformations for these data sets.

2.3.2 Spectral vegetation indices
As described in the Supplementary Material (Supplementary

Tables S.1, S.2), an exhaustive literature search identified 148
Frontiers in Plant Science 06
spectral vegetation indices developed in remote sensing science

from 1968 to the present time. Of these indices, the normalized

difference vegetation index (NDVI; Rouse et al., 1973) has become the

most popular and most widely applied spectral index for agricultural

applications. Other spectral indices were developed specifically for

estimating chlorophyll in plant leaves. For example, Chappelle et al.

(1992) developed spectral ratio indices that were highly correlated

with Chl a, Chl b, and carotenoid (Car) concentrations in soybean

(Glycine max (L.) Merr.) leaves. While many of the indices involve

simple waveband ratios or normalized differences, others have more

sophisticated formulations for analysis of chlorophyll absorption

features in reflectance spectra (Kim et al., 1994; Daughtry et al.,

2000; Haboudane et al., 2004). Furthermore, indices by Filella and

Peñuelas (1994) and by Gitelson and Merzlyak (1994) involve

integrals (i.e., summations) of hyperspectral reflectance (or its

derivatives) over a range of wavelengths. Others evaluate

reflectance or derivative spectra relative to linear trends between

two endpoint wavelengths (Oppelt and Mauser, 2004; Cho and

Skidmore, 2006). To comprehensively evaluate the myriad spectral

vegetation indices now available, the “vegspec” Python package

(Thorp, 2024) was developed and used to compute each of the 148

spectral indices for each measurement of cotton leaf spectral

reflectance. Simple linear regression models were developed to

estimate each of the six chlorophyll metrics (Chl a+b, Chl a, and

Chl b in both µg cm-2 and mg g-1) using each spectral index as the

independent variable (Figure 1).
2.3.3 Machine learning
Fourteen machine learning algorithms as implemented in the

‘scikit-learn’ Python package (Pedregosa et al., 2011) were used for

supervised regression of the leaf chlorophyll data with spectral

reflectance data and its various transformations (Table 2).

Specifically, the six chlorophyll metrics were each evaluated as

dependent variables, and eight spectral data sets were each tested as

the independent variables: r, r′, r″, log10 r-1, (log10 r-1)′, (log10 r-1)″,
rCR, and the complete set of 148 spectral indices. Thus, 48 unique

model realizations (6 chlorophyll variables × 8 spectral data sets)

were established for each of the 14 machine learning methods

(Figure 1). The 14 regression algorithms (with their corresponding

function names in scikit-learn) included the following: 1) ridge

regression (Ridge), 2) least absolute shrinkage and selection operator

regression (Lasso), 3) Lasso least angle regression (LassoLars),

4) Bayesian ridge regression (BayesianRidge), 5) kernel ridge

regression (KernelRidge), 6) support vector machine regression

(SVR), 7) nearest neighbors regression (KNeighborsRegressor),

8) Gaussian process regression (GaussianProcessRegressor),

9) partial least squares regression (PLSRegression), 10) decision tree

regression (DecisionTreeRegressor), 11) gradient tree boosting

regression (GradientBoostingRegressor), 12) random forest

regression (RandomForestRegressor), 13) AdaBoost regression

(AdaBoostRegressor), and 14) multi-layer perceptron neural network

regression (MLPRegressor). Prior to fitting the machine learning

models, all data were standardized by removing the mean and

scaling to unit variance via the ‘StandardScaler’method in scikit-learn.
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Hyperparameter specifications for each machine learning

algorithm were achieved using the data sets established for model

training. An exploratory approach was used to determine which

hyperparameters to adjust and how they were specified. First, the

hyperparameters most sensitive for model fitting were identified via

manual adjustment of the function arguments to each machine

learning method. Some of the sensitive parameters were specified

statically among all fitted models for a particular method, and others

were dynamically adjusted for each fitted model via further analysis

(Table 2). For the hyperparameters chosen for dynamic adjustment,

the second step involved use of the scikit-learn ‘GridSearchCV’ or

‘RandomSearchCV’ methods with ‘RepeatedKFold’ cross validation

to identify optimal hyperparameter values. The k-fold cross

validation was conducted with 5 splits (k=5) of the training data set

and repeated 10 times. The objective function for cross validation was

based on maximizing the negative root mean squared error between

measured and modeled chlorophyll data. After model training was

complete, the models were run with optimal hyperparameter

values for the data set previously set aside for model testing.

All machine learning modeling was conducted on the Ceres
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high-performance computing infrastructure provided by the

USDA-ARS SCINet program.

2.3.4 Statistical analysis
Comparisons among the machine learning model performance

results were evaluated by conducting an analysis of variance

(ANOVA) on the root mean squared error (RMSE) between

measured and modeled leaf chlorophyll for each combination of

machine learning algorithm, spectral data transformation approach,

and chlorophyll metric. Tukey’s multiple comparisons tests were

also conducted to identify which methods performed statistically

better than others. The statistical analysis was conducted using the

R Project for Statistical Computing software (www.r-project.org).

2.3.5 Feature importance
Assessments of feature importance focused on the spectral

reflectance data and the set of 148 spectral indices with a goal to

determine which spectral wavebands and which indices were most

informative to the machine learning models. The analysis was further

simplified by focusing only on the RandomForestRegressor with the

80% and 20% random split of data from both experiments, because

this modeling scenario was among the top performers (Figure 1)

Because the spectral indices represent a half century of research

efforts on deriving meaningful features from vegetative spectral

reflectance and its derivatives, the analysis of feature importance

was expected to further elucidate the best performing indices for

chlorophyll estimation. Also, the analysis of reflectance data was

expected to elucidate the most important 1 nm wavebands, which

could potentially be targeted for development of new indices.

Multicollinearity is known to exist in hyperspectral data sets

due to the large correlation between reflectance measurements in

neighboring wavebands. Also, many spectral indices have similar

formulations, leading to potential for multicollinearity among them.

Most machine learning algorithms incorporate techniques to reduce

effects of multicollinearity among input features, which improves

the robustness of model performance for independent data. For

example, Ridge and Lasso regression incorporate a regularization

parameter to constrain regression coefficient estimation, avoid

overfitting, and improve generalization of models. Likewise, PLSR

incorporates a variable reduction strategy similar to principal

component analysis to reduce the number of input features and

the correlation among them. Also, the random sampling and

bagging methodologies of tree-based algorithms like random

forest regression tend to limit the chance that correlated features

will be considered in the model. These characteristics help machine

learning models deal with multicollinearity when used for

estimation purposes; however, when the models are used to assess

feature importance, multicollinearity remains problematic. When

features are colinear, the model receives similar information from

each colinear feature, making it difficult to assess the importance of

one feature independent from the other one. To address this issue, a

hierarchical clustering approach in SciPy was used to develop

clusters of similar reflectance data and spectral indices (Figure 1).

The approach was based on the Ward linkage of a distance matrix
TABLE 2 Hyperparameters (HP) adjusted from default values for the 14
machine learning regression methods in the “scikit-learn”
Python package.

Method in “scikit-learn” Static HP’s Dynamic HP’s

Ridge tol=0.0001 alpha

Lasso none alpha

LassoLars eps=0.0001
normalize=False
max_iter=1000000

alpha

BayesianRidge tol=0.0001 none

KernelRidge none alpha

SVR tol=0.0001 C

KNeighborsRegressor none n_neighbors

PLSRegression scale=False n_components

GaussianProcessRegressor none none

DecisionTreeRegressor none max_depth
min_samples_split
min_samples_leaf

GradientBoostingRegressor none learning_rate
max_depth

RandomForestRegressor none n_estimators
min_samples_split
min_samples_leaf

AdaBoostRegressor none n_estimators
learning_rate

MLPRegressor solver=‘lbfgs’ hidden_layer_sizes
alpha
Static HP’s were set uniformly among all instances of the machine learning method in this
study. Dynamic HP’s were adjusted uniquely for each of 48 trained models with each method.
The optimal HP values for each trained model are given in supplementary tables
(Supplementary Tables S.9–S.14).
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from Pearson correlations among the reflectance data (or spectral

indices) at plot-level from both field experiments (n = 1544),

resulting in a dendrogram that demonstrated groups of similar

data. New RandomForestRegressor models were then constructed

using one random feature from each of the clusters (thereby

reducing multicollinearity among input features). Permutation

importances were finally computed among the inputted features,

which involves computing the reduction in model fit score when

values of a feature are permuted (i.e., jumbled randomly). Iterating

the feature selection and permutation importance processes 10,000

times finally demonstrated which groups of spectral wavebands or

spectral indices were consistently important for estimation of

cotton leaf chlorophyll.
3 Results

3.1 Measurement repeatability

Comparisons of Chl a+b measurements between paired tissue

samples from the same cotton leaf in 2019–2020 revealed

coefficients of determination (r2) of 0.79 and 0.78 and root mean

squared differences (RMSD) of 8.7% and 13.9% for area-basis and

mass-basis measurements of Chl a+b, respectively (Figure 2). The

results demonstrated comparisons of paired samples from 2,916

cotton leaves from nine collections in two growing seasons.

Similarly, the r2 and RMSD statistics for area-basis Chl a

measurements were 0.80 and 8.4% and for mass-basis Chl a were

0.79 and 13.8%, respectively (Supplementary Figure S.1). Likewise,

the r2 and RMSD statistics for area-basis Chl b measurements were

0.73 and 15.4% and for mass-basis Chl b were 0.71 and 19.7%,

respectively (Supplementary Figure S.2). These results represent the

repeatability of the traditional laboratory-based chlorophyll

extraction method for estimating cotton leaf chlorophyll in this

study. Furthermore, the results provide important guidance on the
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expected performance of models developed to estimate chlorophyll

from in-situ leaf spectral reflectance data. Namely, because the

chlorophyll extraction data was used for model fitting and

evaluation, the models can likely not be expected to estimate

chlorophyll better than the use of a second chlorophyll extraction

to estimate the first. Thus, any improvement to model performance

reported herein will foremost require improvements in the

repeatability of measured data used for model development

and evaluation.

Chlorophyll measurements were not particularly similar among

the two experiments (Figure 3). The interquartile ranges for area-basis

Chl a+b, Chl a, and Chl b were 32.3–40.4 µg cm-2, 27.3–34.0 µg cm-2,

and 4.6–6.5 µg cm-2, respectively, for the 2019–2020 experiment

(Figure 3A) and 40.7–63.6 µg cm-2, 32.2–49.6 µg cm-2, 8.9–13.9 µg

cm-2 for the 2021–2022 experiment (Figure 3D). Similarly, the

interquartile ranges for mass-basis Chl a+b, Chl a, and Chl b were

6.0–8.7 mg g-1, 5.1–7.4 mg g-1, and 0.9–1.4 mg g-1, respectively, for the

2019–2020 experiment (Figure 3B) and 7.7–9.8 mg g-1, 6.1–7.7 mg g-1,

1.6–2.3 mg g-1 for the 2021–2022 experiment (Figure 3E). Welch’s t-

tests demonstrated that none of the chlorophyll metrics had equivalent

means for the two experiments (p<0.05). The leaf spectral reflectance

data was more similar for the two experiments (Figures 3C, F) with

Welch’s t-tests demonstrating equivalent means at 602–613 nm, 691–

693 nm, 718–723 nm, 1869–1910 nm, and 2207–2500 nm but unequal

means in other wavebands. As discussed later, the differences in

chlorophyll data for the two experiments led to performance issues

whenmachine learning models were trained using 2019–2020 data and

tested using 2021–2022 data.
3.2 Input data considerations

The r2 and RMSE between measured and modeled chlorophyll

for PLSR models relating Chl a+b and leaf reflectance demonstrated

the model performance impacts due to choices for data scaling and
FIGURE 2

Comparison of cotton leaf chlorophyll a+b (Chl a+b) extractions among paired tissue samples from the same cotton leaf (n=2,916) in units of (A) µg
cm-2 for area-basis estimates and (B) mg g-1 for mass-basis estimates. Samples were collected during a 2019–2020 field study at Maricopa, Arizona.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1495593
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Thorp et al. 10.3389/fpls.2024.1495593
for partitioning the training and testing data (Figure 4). For area-

basis Chl a+b, the RMSE’s for model training based on the 2019–

2020 data alone improved with additional data averaging: 12.4%,

12.1%, 6.8%, and 1.7% for sample, leaf, plot, and entry scales,

respectively (Figure 4A). However, the corresponding model tests

using data from 2021–2022 alone were poorest with RMSE’s greater

than 26.0% no matter the scale. Similarly, the r2 for model training

based on the 2019–2020 data alone improved with additional

averaging: 0.56, 0.56, 0.81, and 0.98 for scale, leaf, plot, and entry

data, respectively (Figure 4B); however, the r2 for model testing

using the 2021–2022 data alone were poorest and all less than 0.6.

For area-basis Chl a+b, the best performing scenario involved plot-

scale averaging and an 80% and 20% random split of data from all

four years, which provided RMSE’s of 10.3% and 12.5% and r2 of

0.86 and 0.81 for training and testing phases, respectively

(Figures 4A, B). The results were similar for mass-basis Chl a+b.

When using 2019-2020 data alone for model training, the RMSE’s

for mass-basis Chl a+b improved with additional data averaging:

17.9%, 16.6%, 10.5%, and 3.0% for sample, leaf, plot, and entry

scales respectively (Figure 4C). However, model testing

performance worsened with these improvements in model

training performance. Likewise, the r2 for model training based

on 2019–2020 data alone improved with additional averaging: 0.61,

0.65, 0.83, and 0.98 for sample, leaf, plot, and entry scales,

respectively (Figure 4D). However, the model testing performance

using 2021-2022 data resulted in r2 less than 0.14 no matter the

scale. For mass-basis Chl a+b, the best performing scenario again

involved plot-scale averaging and an 80% and 20% random split of
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data from all four years, which provided RMSE’s of 12.2% and

14.1% and r2 of 0.74 and 0.69 for model training and testing phases,

respectively. Model performance results for other fractions of

random data splitting (not shown) were often not greatly different

from results with the 80% and 20% random split. Also, findings for

Chl a and Chl b (Supplementary Figures S.3, S.4) were generally

similar to that for Chl a+b. The results revealed three considerations

for further data analysis: 1) plot-scale data averaging performed

optimally in most cases, 2) PLSR models trained using 2019–2020

data were often ineffective for use with the 2021–2022 data, and 3)

use of an 80% and 20% random split of data from all years provided

consistent and optimal model performance in both training and

testing phases. Based on these findings and the reality that most

plant breeding and agronomic applications involve plant

communities (i.e., crops in field plots), the remainder of the data

analysis was performed with plot-scale data averaging. Further

comparisons of splitting data by experiment or by using the 80%

and 20% random split of data from all years were also performed.
3.3 Spectral indices

The best-performing spectral vegetation indices estimated area-

basis Chl a+b and Chl a with RMSE’s less than 17% and r2 from 0.61

to 0.72, while area-basis Chl b was estimated with RMSE’s less than

35% and r2 not exceeding 0.56 (Figures 5A, B). Wu’s revision of the

modified chlorophyll absorption in reflectance index (WUMCARI;

Wu et al., 2008) was notably the best-performing index for area-basis
FIGURE 3

Summary of measured chlorophyll (Chl) and spectral reflectance data collected from cotton leaves during field studies at Maricopa, Arizona, USA,
including (A) area-basis Chl, (B) mass-basis Chl, and (C) the minimum, median, and maximum of spectral reflectance data from the 2019–2020
experiment and (D) area-basis Chl, (E) mass-basis Chl, and (F) the minimum, median, and maximum of spectral reflectance data from the 2021–
2022 experiment.
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Chl a+b and Chl a for both the 80% and 20% random splits of the full

dataset, as well as for Chl b for the 20% random split. For the 2019–

2020 data set, the best-performing indices for estimating area-basis

Chl a+b, Chl a, and Chl b were, respectively, the wavelength of the

red edge inflection point as determined using a Gaussian model

fitting approach (WLREIPG; Miller et al., 1990), the new Double

Difference index (DDN, Le Maire et al., 2008), and the ratio of the

modified chlorophyll absorption in reflectance index and the

optimized soil adjusted vegetation index (MOR; Daughtry et al.,

2000). For the 2020–2021 data set, a simple ratio of reflectances at 750

and 700 nm (GTSR2 = r750/r700; Gitelson and Merzlyak, 1996, 1997)

was the best-performing index for estimating Chl a+b and Chl a,

while a simple ratio of reflectances at 605 and 760 nm (CRSR2 = r605/
r760; Carter, 1994) was the best-performing index for estimating area-

basis Chl b.

The best-performing spectral vegetation indices estimated

mass-basis Chl a+b and Chl a with RMSE’s less than 20% and

mass-basis Chl b with RMSE’s less than 32%, while the r2 for these
Frontiers in Plant Science 10
estimates ranged from 0.24 to 0.44 (Figures 5C, D). Spectral

vegetation indices tended to estimate mass-basis chlorophyll more

poorly than area-basis chlorophyll. One of Chapelle’s ratio indices

(CPSR2 = r675/(r650r700); Chappelle et al., 1992) was notably the

best-performing index for estimating mass-basis Chl a+b and Chl a

for the 2019-2020 data set and for both the 80% and 20% random

splits of the full data set. For the 2021–2022 data set, best-

performing indices for mass-basis Chl a+b and Chl a were,

respectively, Filella’s implementation of the photochemical

reflectance index (PRI2 = (r539-r570)/(r539+r570); Filella et al.,

1996) and one of Blackburn’s simple ratio indices (PSSRB = r800/
r635; Blackburn, 1998). To estimate mass-basis Chl b, the best-

performing index for the 2019–2020 data set was the chlorophyll

absorption in reflectance index (CAR; Kim et al., 1994) and for the

2021–2022 data set was Filella’s PRI2. For the 80% and 20% random

splits of the full data set, mass-basis Chl b was best estimated by the

cellulose absorption integral (CAI) and double-peak canopy

nitrogen index (DCNI), neither of which were developed
FIGURE 4

Goodness-of-fit statistics for partial least squares regression (PLSR) models that were fit using cotton leaf chlorophyll a+b (Chl a+b) and spectral
reflectance data at four different scales (i.e., sample, leaf, plot, and entry) and using two methods to split data for training and testing phases (i.e., by
experiment and by using an 80% and 20% random split of combined data from both experiments). Results are shown as (A) root mean squared
errors (RMSE) and (B) coefficients of determination (r2) for area-basis Chl a+b (µg cm-2) and (C) RMSE and (D) r2 for mass-basis Chl a+b (mg g-1).
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specifically for estimating Chl b. The Supplementary Material

provides a complete listing of simple linear regression

performance statistics for all 148 spectral indices for area-basis

Chl a+b (Supplementary Table S.3), area-basis Chl a

(Supplementary Table S.4), area-basis Chl b (Supplementary

Table S.5), mass-basis Chl a+b (Supplementary Table S.6), mass-

basis Chl a (Supplementary Table S.7), and mass-basis Chl b

(Supplementary Table S.8).
3.4 Machine learning

Between zero and three hyperparameters were selected for

dynamic adjustment in the training of each machine learning

model (Table 2). For several of the methods, the regularization

parameter (i.e., alpha) was the only adjusted parameter. In fact, only
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5 of the 14 methods required adjustment of more than one

hyperparameter. For the KNeighborsRegressor and PLSRegression

methods, hyperparameters for the number of neighbors and

number of components, respectively, were most important. For

the DecisionTreeRegressor and RandomForestRegressor methods,

hyperparameters that governed the tree size were most sensitive.

Likewise, the number of hidden layers was important for the

MLPRegressor neural network method. The opt imal

hyperparameter values for each trained model are provided in the

Supplementary Material for area-basis Chl a+b (Supplementary

Table S.9), area-basis Chl a (Supplementary Table S.10), area-basis

Chl b (Supplementary Table S.11), mass-basis Chl a+b

(Supplementary Table S.12), mass-basis Chl a (Supplementary

Table S.13), and mass-basis Chl b (Supplementary Table S.14).

Note that no hyperparameters were dynamically adjusted for the

BayesianRidge and GaussianProcessRegressor methodologies.
FIGURE 5

Best-performing spectral vegetation indices for estimating chlorophyll a+b (Chl a+b), chlorophyll a (Chl a), or chlorophyll b (Chl b) using simple
linear regression. Data sets were developed from plot-scale averaging of field data and partitioned according to the 2019–2020 experiment, the
2021–2022 experiment, an 80% random split of combined data from 2019–2022, and the remaining 20% random split of combined data from
2019–2022. Results are provided as the (A) root mean squared error (RMSE, %) and (B) coefficient of determination (r2) for estimating area-basis
chlorophyll (µg cm-2) and (C) RMSE and (D) r2 for estimating mass-basis chlorophyll (mg g-1). The spectral index abbreviations are provided in the
Supplementary Material (Supplementary Table S.1).
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The original research plan was to use data from the 2019–2020

experiment for training the machine learning models, while data

from the 2021–2022 experiment was reserved for model testing and

application. However, poor performance of the machine learning

models when tested using 2021–2022 data, likely related to the

differences in chlorophyll data among the two experiments

(Figure 3), demonstrated the fallacy of this initial plan. The best-

performing machine learning models estimated area-basis Chl a+b,

Chl a, and Chl b with RMSE’s of 3.9%, 6.1%, and 7.1%, respectively,

for the 2019–2020 training data, but performance degraded to 23.7%,

21.5%, and 41.4%, respectively, for the 2021–2022 testing data

(Figure 6A). The r2 for these estimates were greater than 0.84 for

training data, but less than 0.51 for the testing data (Figure 6B).

When partitioning data according to the experiments, the best-

performing algorithms and spectral data transformations for
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estimating area-basis Chl a+b, Chl a, and Chl b were, respectively,

MLPRegressor with the first derivative of spectral reflectance,

LassoLars with the second derivative of the log-inverse of spectral

reflectance, and MLPRegressor with the first derivative of the log-

inverse of spectral reflectance. Similarly for mass-basis Chl a+b, Chl

a, and Chl b, the best performing machine learning models provided

estimates with RMSE’s of 12.2%, 6.5%, and 8.6%, respectively, for the

2019–2020 training data, but performance degraded to 16.6%, 17.0%,

and 33.9%, respectively, for the 2021–2022 testing data (Figure 6C).

The r2 for these estimates were greater than 0.79 for the training data

but less than 0.23 for the testing data (Figure 6D). The best-

performing algorithms and spectral data transformations for

estimating mass-basis Chl a+b, Chl a, and Chl b were, respectively,

AdaBoostRegressor with the full set of 148 spectral indices,

RandomForestRegressor with the first derivative of log-inverse
FIGURE 6

Best-performing machine learning model and spectral data set combinations for estimating chlorophyll a+b (Chl a+b), chlorophyll a (Chl a), or
chlorophyll b (Chl b). Data sets were developed from plot-scale averaging of field data and partitioned according to the 2019–2020 experiment, the
2021–2022 experiment, an 80% random split of combined data from 2019–2022, and the remaining 20% random split of combined data from
2019–2022. Results are provided as the (A) root mean squared error (RMSE, %) and (B) coefficient of determination (r2) for estimating area-basis
chlorophyll (µg cm-2) and (C) RMSE and (D) r2 for estimating mass-basis chlorophyll (mg g-1). Best-performing machine learning algorithms included
the AdaBoostRegressor (ABR), GradientBoostingRegressor (GBR), LassoLars (LL), MLPRegressor (MLPR), RandomForestRegressor (RFR), and support
vector regression (SVR). Best-performing spectral data sets included the first derivative of reflectance (D1), first derivative of log-inverse reflectance
(LID1), second derivative of log-inverse reflectance (LID2), continuum removed spectra (CR), and the set of 148 spectral vegetation indices (SI).
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reflectance, andMLPRegressor with the first derivative of log-inverse

reflectance. When comparing results for spectral vegetation indices

(Figure 5) with that for machine learning algorithms trained with

2019–2020 data and tested with 2021–2022 data (Figure 6), the best-

performing spectral indices for the 2021–2022 data set each provided

better statistical results than the best-performing machine learning

algorithms. This means leaf chlorophyll from the 2021–2022

experiment was better estimated using spectral vegetation indices

than using machine learning algorithms previously trained with data

from the 2019–2020 experiment. As this called into question the

original plan for developing the machine learning models, the

alternative plan based on random splits of data from both

experiments was undertaken.

Improved machine learning model performance was achieved

when model training and model testing were based on an 80% and

20% random split, respectively, of all data from both experiments.

In this case, the best-performing machine learning models

estimated area-basis Chl a+b, Chl a, and Chl b with RMSE’s of

5.5%, 9.3%, and 5.2%, respectively, for the training data, and

RMSE’s were 10.5%, 10.6%, and 18.5%, respectively, for the

testing data (Figure 6A). The r2 for these estimates were greater

than 0.84 for both the training and testing data sets (Figure 6B).

When partitioning by the random split of all data, the best-

performing algorithms and spectral data transformations for

estimating area-basis Chl a+b, Chl a, and Chl b were,

respectively, RandomForestRegressor with the first derivative of

log-inverse reflectance, MLPRegressor with all 148 spectral indices,

and GradientBoostingRegressor with the first derivative of log-

inverse reflectance. Similarly for mass-basis Chl a+b, Chl a, and

Chl b, the best performing machine learning models provided

estimates with RMSE’s of 4.9%, 4.7%, and 10.2%, respectively, for

the training data, and RMSE’s were 12.6%, 12.7%, and 16.9%,

respectively, for the testing data (Figure 6C). The r2 for these

estimates were greater than 0.74 for both the training and testing

data sets. The best-performing algorithm for estimating mass-basis

Chl a+b, Chl a, and Chl b was support vector regression (SVR)

based on the first derivative of spectral reflectance for Chl a+b and

Chl a and continuum removed spectra for Chl b. When comparing

results for spectral vegetation indices (Figure 5) with that for

machine learning algorithms trained and tested via an 80% and

20% random split of data from both experiments (Figure 6), the

machine learning algorithms outperformed the spectral indices for

both the training and testing data sets. While the performance of the

machine learning models has improved in this case, the results also

raise concern about the robustness of machine learning models

when applied even slightly beyond the scope of the data used for

their training. The Supplementary Material provides a complete

listing of performance results for all 14 machine learning algorithms

and 8 spectral data sets for estimating area-basis Chl a+b

(Supplementary Table S.15), area-basis Chl a (Supplementary

Table S.16), area-basis Chl b (Supplementary Table S.17),

mass-basis Chl a+b (Supplementary Table S.18), mass-basis Chl a

(Supplementary Table S.19), and mass-basis Chl b (Supplementary

Table S.20).

The cumulative distribution functions (CDF’s) of RMSE

between measured and modeled cotton leaf chlorophyll among all
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machine learning models and all spectral vegetation indices further

demonstrated the issue with choice of strategy for partitioning the

model training and testing data (Figure 7). For the data sets used for

machine learning model training, the trained models better

estimated chlorophyll with lower RMSE as compared to use of

spectral vegetation indices and simple linear regression (Figures 7A,

B). However, for the data sets used for machine learning model

testing, results depended on the strategy for partitioning the model

training and testing data sets. When partitioning the data according

to the 2019–2020 and 2021–2022 field experiments, machine

learning models generally did not estimate chlorophyll with lower

RMSE than spectral vegetation indices (Figure 7C). When

partitioning using an 80% and 20% random split of data from

both experiments, the opposite result was found (Figure 7D). This

means machine learning model performance was more dependent

on arbitrary choices made by the modeler, while the spectral

vegetation indices offered a more consistent performance. For

example, the best-performing spectral indices estimated

chlorophyll with RMSE from 15% to 20% no matter the data set,

while the best-performing machine learning models estimated

chlorophyll with RMSE less than 10% for training data sets and

from 10%-15% or 20%-25% depending on the choice of data

partitioning strategy (Figure 7). The results highlight the

limitation of machine learning models to perform consistently,

particularly for data sets that diverge from data used for

model training.

The analysis of variance for RMSE between measured and

modeled cotton leaf chlorophyll indicated that the chlorophyll

metric (i.e., area-basis or mass-basis estimates of Chl a+b, Chl a,

and Chl b) led most greatly to variability in machine learning model

performance, because the F statistics were greatest for this factor

(Table 3). For the training data sets, the machine learning algorithm

also contributed substantially to the variability in performance

results, but lesser so than the chlorophyll metric. For the testing

data sets, the F statistic for chlorophyll metric was an order of

magnitude greater than that for either the machine learning

algorithm or the spectral data transformation. This result was due

mainly to the relatively poorer performance of machine learning

models to estimate Chl b as compared to Chl a and Chl a+b

(Figure 8). For machine learning models trained with data from

2019–2020 and tested with data from 2021–2022, model testing

demonstrated significantly superior performance for estimating

mass-basis Chl a+b and Chl a as compared to other chlorophyll

metrics (Figure 8A), followed by area-basis Chl a, area-basis Chl a

+b, mass-basis Chl b, and area-basis Chl b. However, for machine

learning models trained and tested with an 80% and 20% random

split of all data, model testing demonstrated superior performance

for area-basis Chl a and Chl a+b (Figure 8B), followed by mass-

basis Chl a+b and Chl a, mass-basis Chl b, and area-basis Chl b.

Thus, the performance of machine learning models to estimate

area-basis versus mass-basis chlorophyll was also dependent on the

arbitrary choice of strategy for determining the model training and

testing data sets.

Model testing performance among many of the machine

learning algorithms were often not statistically different.

For models trained with data from 2019–2020 and tested with
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TABLE 3 Analysis of variance results (F statistics and p values) for the percent root mean squared error between measured and modeled cotton
leaf chlorophyll.

Training Data Testing Data

df F p value F p value

————— Split by experiment —————

Machine Learning Algorithm 13 229.10 0.0000*** 19.46 0.0000***

Spectral Transformation 7 24.54 0.0000*** 11.92 0.0000***

Chlorophyll Metric 5 445.86 0.0000*** 1179.73 0.0000***

— 80% and 20% random split of all data —

Machine Learning Algorithm 13 202.00 0.0000*** 60.45 0.0000***

Spectral Transformation 7 13.20 0.0000*** 17.85 0.0000***

Chlorophyll Metric 5 234.40 0.0000*** 197.45 0.0000***
F
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Results are provided for two conditions of model training and testing data for machine learning: 1) splitting the data by experiment (i.e., 2019–2020 data for training and 2021–2022 data for
testing) and 2) using an 80% and 20% random split of data from both experiments.
FIGURE 7

Cumulative distribution functions (CDF) for the root mean square error (RMSE) between measured and modeled cotton leaf chlorophyll among
evaluations of machine learning models and spectral vegetation indices for (A) model training data from the 2019–2020 field experiment, (B) model
training data based on an 80% random split of all field data, (C) model testing data from the 2021–2022 field experiment, and (D) model testing data
based on a 20% random split of all field data.
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FIGURE 8

Machine learning model performance expressed as the root mean squared error (RMSE, %) between measured and modeled leaf chlorophyll (Chl)
among combinations of 6 chlorophyll metrics (A, B), 14 machine learning algorithms (C, D), and 8 spectral data transformations (E, F). The left
column (A, C, D) demonstrates model testing results with model training and testing based on data from the 2019–2020 and 2021–2022 field data
sets, respectively. The right column (B, D, F) demonstrates model testing results with model training and testing based on data from an 80% and
20% random split of data from both field experiments, respectively. Letters below box plots indicate mean separation via Tukey’s multiple
comparisons tests. The evaluated machine learning algorithms from Python’s scikit-learn package include Ridge (R), Lasso (L), LassoLars (LL),
BayesianRidge (BR), KernelRidge (KR), SVR (SV), KNeighborsRegressor (KN), PLSRegression (PL), GaussianProcessRegressor (GP),
DecisionTreeRegressor (DT), GradientBoostingRegressor (GB), RandomForestRegressor (RF), AdaBoostRegressor (AB), and MLPRegressor (MP). The
spectral data transformations include reflectance (R), first derivative of reflectance (D1), second derivative of reflectance (D2), log-inverse reflectance
(LIR), first derivative of log-inverse reflectance (LID1), second derivative of log-inverse reflectance (LID2), continuum-removed spectra (CR), and 148
spectral vegetation indices (SI).
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data from 2021–2022, 10 of 14 algorithms provided statistically

s imilar results among those with the smallest mean

RMSE’s, including Ridge, Lasso, LassoLars, BayesianRidge,

KernelRidge, PLSRegression, GradientBoostingRegressor,

RandomForestRegressor, AdaBoostRegressor, and MLPRegressor

(Figure 6C). One of the algorithms, GaussianProcessRegression,

performed significantly poorer than the others. For models

trained and tested with an 80% and 20% random split of

all data, 5 of 14 algorithms provided statistically similar

results among those with the smallest mean RMSE’s, including

SVR, GradientBoostingRegressor, RandomForestRegressor,

AdaBoostRegressor, and MLPRegressor (Figure 8D). Notably, the

methods denoted in scikit-learn as “ensemble” approaches

(GradientBoostingRegressor, RandomForestRegressor, and

AdaBoostRegressor), which combine the estimates of several base

estimators to improve robustness over a single estimator, and also

the neural network modeling approach (MLPRegressor) performed

well for both ways of specifying model training and testing data.

Future analyses could likely be condensed by focusing on these

latter four algorithms.

Model testing performance among the 8 spectral data

transformations were also often not statistically different. For

models trained with data from 2019–2020 and tested with data

from 2021–2022, 5 of the 8 spectral transformation provided

statistically similar results among those with the smallest mean

RMSE’s, including the first and second derivatives of reflectance, the

first and second derivatives of log-inverse reflectance, and the set of

148 spectral vegetation indices (Figure 8E). Notably, derivative

spectra and spectral indices, some of which involve derivative

analysis, provided a statistically better performance than raw

reflectance or continuum-removed spectra. For models trained

and tested with an 80% and 20% random split of all data, log-

inverse reflectance and continuum-removed spectra performed

significantly more poorly than the other spectral data sets. The

favorable performance of the 148 spectral vegetation indices is a

positive result due to the large research investment to develop these

indices over the past half century. Because the indices theoretically

embody a biophysical understanding of light interaction with

vegetation, they offer a unique way to synthesize prior knowledge

for input to the “black box” machine learning algorithms.
3.5 Feature importance

A truncated dendrogram from hierarchical clustering of

spectral vegetation indices demonstrated 10 groups of similar

indices (Figure 9). To cluster the indices, the cut-off point was

manually selected at a Ward distance of 1.0 with an aim to balance

cluster sizes and maximize distance from the cut-off point to the

previous node in the tree. Cluster A indices focused on contrasting

near-infrared and red radiation at default wavelengths of 670 and

800 nm, respectively, and three indices computed the area of the

first derivative peak over a broad 80+ nm waveband straddling the

red edge. Cluster B indices used near-infrared and short-wave

infrared radiation for estimating contents of water, nitrogen,
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cellulose, or lignin. Like Cluster A, indices in Clusters C and D

focused on contrasts of near-infrared and visible light radiation.

Cluster E contained a single index based on the wavelength of the

minimum first derivative in the range 900 to 970 nm, developed for

plant water status estimation. Cluster F contained indices developed

by Peñuelas et al. (1995) for assessing the ratio of carotenoid and

Chl a. Many indices in Cluster G analyzed the red edge region or

included a red edge waveband in the index calculation. For example,

all the indices that compute the wavelength of the red edge

inflection point were in Cluster G. Also, many of the indices by

Wu et al. (2008), which substituted a red edge waveband into the

equations of other indices, were in Cluster G. A few additional

indices contrast radiation in red and blue visible light wavebands.

All the Cluster G indices were developed for the purpose of

estimating contents of chlorophyll or nitrogen in plant leaves

(Supplementary Table S.2). Cluster H indices had a similar focus

on chlorophyll estimation, but fewer of them focused squarely on

the red edge. Cluster I related to photochemical reflectance indices

with focus on xanthophyll cycle pigments. Finally, Cluster J focused

on greenness, and many of these indices included a waveband for

visible green radiation. Generally, the hierarchical clustering

algorithm performed very well at grouping similar indices

together, and indices developed by the same researcher with the

same data were often contained in the same cluster.

As compared to RandomForestRegressor models with all 148

spectral indices inputted, the RMSE’s for RandomForestRegressor

models with 10 inputted indices was typically increased by only 1-

3% for Chl a+b and Chl a and up to 6% for Chl b. Indices within

Cluster G were typically most important for estimation of area-basis

Chl a+b (Figure 10A). Except for 5 of 36 indices in Cluster G, the

mean importance among the 10,000 permutation trials for indices

in Cluster G was greater than 0.50, which was substantially greater

than the maximum whisker position for box plots of any other

cluster (Figure 10A). Clusters C, H, and J each had outlier

importances greater than 0.5; however, these importances were

typically achieved when one of the five poorer indices was selected

to represent Cluster G. For estimation of mass-basis Chl a+b, the

most important indices were more distributed among Clusters C, G,

H, and I (Figure 10B), indicating the red edge radiation response to

chlorophyll may be more dictated by the chlorophyll per leaf area

than per leaf mass. Interpretations of permutation importances

were similar for Chl a (Supplementary Figure S.5) and Chl b

(Supplementary Figure S.6). Furthermore, for each of the 148

indices, the mean importance among the 10,000 permutation

trials for estimation of all six chlorophyll metrics are given in the

Supplementary Material (Supplementary Table S.21) .

Overwhelmingly, indices from Clusters G and C were highly

important for estimating cotton leaf chlorophyll, followed by

selected indices from Clusters H, I, and J.

A truncated dendrogram from hierarchical clustering of cotton

leaf spectral reflectance in 2151 wavebands demonstrated 14 groups

of similar data (Figure 11). To cluster the data, the cut-off point was

manually selected at a Ward distance of 0.865. The reflectance data

tended to cluster together among ranges of wavelengths both within

and among clusters. For example, Clusters K, L, M, N, O, and P
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FIGURE 9

Truncated dendrogram based on hierarchical cluster analysis of 148 spectral vegetation indices computed from cotton leaf reflectance data
collected during two field experiments in the 2019–2022 growing seasons at Maricopa, Arizona, USA. To cluster the data, the dendrogram was
truncated at a Ward distance of 1.0 and nodes below this value indicate points of further branching for within-cluster indices. Further information on
the definition and formulation of each index is provided in the Supplementary Material (Supplementary Tables S.1, S.2).
FIGURE 10

Permutation importances (computed as the reduction in model fit score when values of a feature input to random forest models were permuted) among 10
clusters of 148 spectral vegetation indices for estimation of (A) area-basis chlorophyll a+b (µg cm-2) and (B) mass-basis chlorophyll a+b (mg g-1).
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were comprised of 2 or 3 groups of consecutive wavelengths in the

short-wave infrared. Clusters P and Q represented green and red

visible light, respectively. Clusters R and S contained data from the

lower and upper sections of the red edge region, respectively, with a

split at 721–722 nm near the red edge inflection point. Clusters T

and U contained near-infrared radiation, and Cluster V represented

ultraviolet radiation. Clusters W represented a combination of red

and blue visible light, and Cluster X corresponded to blue light. The

clustering algorithm demonstrated how hyperspectral reflectance

data can be grouped into meaningful groups according to their

position on the electromagnetic spectrum.

The RMSE’s for RandomForestRegressor models with 14

inputted wavebands was typically very similar and within 0-2%

of values with all 2151 wavebands inputted. Cluster R, which

represented a narrow set of red edge wavebands at 696–721 nm,

was the most important for estimation of area-basis Chl a+b,

followed by near-infrared wavebands at 742–1321 nm in Cluster U

(Figure 12A). For mass-basis Chl a+b, Cluster R was again

most important, but reflectance data in Cluster M (short-wave

infrared radiation), Cluster P (visible green light), and Cluster Q

(visible red light) had greater importances as compared to area-
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basis Chl a+b (Figure 12B). Interpretations of permutation

importances were similar for Chl a (Supplementary Figure S.7)

and Chl b (Supplementary Figure S.8). The results confirm the

importance of red edge radiation for estimation of cotton

leaf chlorophyll.
4 Discussion

Grybowski et al. (2021) suggested a need to assess the ability of

trained machine learning models to perform adequately for

estimating plant traits in different years or locations. In the

present study, the working hypothesis during the four years of

data collection was that data from the 2019–2020 experiment could

be used for machine learning model training, and those models

could be tested and applied using data from the 2021–2022

experiment. However, this strategy ultimately did not provide

useful models, because model performance was substantially

degraded for 2021–2022 data when trained with 2019–2020 data.

The finding was likely due to the unexpected differences in amounts

of leaf chlorophyll measured in 2019–2020 compared to 2021–2022.
FIGURE 11

Truncated dendrogram based on hierarchical cluster analysis of cotton leaf spectral reflectance data in 2151 wavebands from 350 to 2500 nm,
collected during two field experiments in the 2019–2022 growing seasons at Maricopa, Arizona, USA. To cluster the data, the dendrogram was
truncated at a Ward distance of 0.865 and nodes below this value indicate points of further branching for within-cluster wavebands.
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Better model performance was attained when using the more

common approach of randomly dividing the complete dataset

from both experiments into training and testing sets. While the

data from both experiments were gathered using the same methods

from cotton plants grown in relatively similar field environments,

the reasons for the differences in chlorophyll measurements

between experiments, other than obvious differences in the

evaluated cultivars, are largely unknown. However, the results

suggest major limitations in the use of machine learning models

across experiments as originally intended in this study and

furthermore suggest that the machine learning models developed

in this study were unable to perform adequately beyond the

experimental conditions of the data used for their training. This

means the models trained using data from the 2019–2020

experiment could likely be useful only for the experimental

conditions in those two growing seasons. Likewise, the models

trained and tested using an 80% and 20% random split of data from

all four growing seasons could be reliably used within the conditions

of those four experiments, but likely not applied with data from

experiments in other growing seasons or locations. For example, the

data collection protocols for the 2021–2022 experiment included

collections of cotton leaf spectral reflectance data from additional

plots, which were not included in the present study because

corresponding leaf tissue samples for chlorophyll extractions were

not collected. The plan was to use the modeling results from the

present study to rapidly estimate chlorophyll from these additional

plots and therefore avoid the labor required to obtain chlorophyll

estimates from tissue extractions. The results suggest that the

models trained and tested using an 80% and 20% random split of

data from all four growing season could be used to make these

chlorophyll estimations, but the reliability of the models for any

estimation tasks beyond the additional plots from the 2021–2022

experiment would be questionable. As the ideal goal for model

development is a model that is transferrable to the conditions of
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other growing seasons or locations, the results call to question the

utility of machine learning models for this purpose, even for studies

conducted in different years, in different fields, or with different

varieties at the same research station. Improved model

generalizability likely requires much more data collected in more

diverse conditions than was collected during the four cotton

growing seasons presented herein, and machine learning

modelers must therefore ensure that their models are not applied

beyond the conditions represented in their training data.

A second need expressed by Grybowski et al. (2021) was that

machine learning studies should more often evaluate multiple

machine learning algorithms. Herein, fourteen regression

approaches were compared for estimating cotton leaf chlorophyll

from spectral reflectance data. While outcomes were similar for

many of the techniques, the results demonstrated significant

performance boosts (p < 0.05) for “ensemble” methods, including

GradientBoostingRegressor, RandomForestRegressor, and

AdaBoostRegressor. These methods improve estimation by

combining several basic estimators to improve generalizability

and robustness as compared to a single estimator. Similarly, the

MLPRegressor neural network approach demonstrated significant

performance boosts (p < 0.05). Preliminary results using deep

learning, specifically a one-dimensional convolutional neural

network from the ‘keras’ package in Python, did not provide

satisfactory results (not presented). One explanation could be the

limited size of the data set, as deep learning typically requires many

more samples than there are features. Herein, four years offield data

collection efforts provided 1544 samples at plot scale while the

hyperspectral data included 2151 reflectance measurements (i.e.,

features). Thus, the present study focused on non-deep learning

methods and further refinement of dimensionality reduction and

feature selection approaches for the hyperspectral data set. Based on

the knowledge gained in the present studies, exploration of deep

learning methodologies should be revisited in future research.
FIGURE 12

Permutation importances (computed as the reduction in model fit score when values of a feature input to random forest models were permuted)
among 14 clusters of 2151 spectral reflectance wavebands at 350–2500 nm for estimation of (A) area-basis chlorophyll a+b (µg cm-2) and (B) mass-
basis chlorophyll a+b (mg g-1).
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Based on the findings reported herein, a primary disadvantage

of machine learning is that subjective decisions by the modeler can

have substantial effects on modeling results. Foremost, the choice of

strategy for splitting data into required training and testing data sets

had major implications for modeling outcomes, and the initial plan

to train and test models using data from two separate experiments

ultimately failed. Using the more traditional approach of training

and testing based on random splitting of the complete data set

worked better, but the usability of these models with data from

other site-years remains questionable. Second, modeling outcomes

are affected by choices on standardization of input variables, such as

whether it should be done or not and, if so, which method to use.

Third, the modeler must choose a machine learning algorithm or

try a set of them. Fourth, the modeler must choose how

hyperparameters are specified for each algorithm, whether they

are evaluated using cross validation techniques, and, if so, which

values or ranges of values to evaluate, which cross validation

technique to use, and the values for number of splits, repeats and

other cross validation options. Altogether, the level of subjectivity

required for machine learning may be too great for the practical

breeder or agricultural field scientist. On the other hand, machine

learning models can be good estimators when used within the

constraints of their training data sets.

Biological data sets may present additional challenges for

machine learning models due to the potential for uncertainty in

biological processes and associated measurement errors. For

example, increased canopy temperature and reduced soil water

content have previously been associated with changes to leaf

morphological traits, such as leaf thickness, that could convolute

the estimation of leaf chlorophyll from spectral reflectance

measurements (Salem-Fnayou et al., 2011; Khan et al., 2023).

Furthermore, leaf spectral reflectance is also influenced by leaf

water content (Schlemmer et al., 2005), protein content (Veverka

et al., 2021), and pigments other than chlorophyll (Sims and

Gamon, 2002). Variation in these other factors can contribute to

noise in models relating spectral reflectance to chlorophyll alone. In

the present study, performance of machine learning models was

also limited by measurement error in the chlorophyll data used for

model training. Comparisons of chlorophyll extractions from

paired tissue samples from the same cotton leaves in 2019–2020

suggested that one chlorophyll extraction could estimate the other

with RMSD ranging 8%–20%. Likewise, the RMSE between

measured and modeled chlorophyll for machine learning model

testing was also in this range. Results suggested that the

improvement of chlorophyll measurement repeatability would

assist improvements in model performance. Alternatively,

breeders and geneticists could forego the direct estimation of

chlorophyll and rely instead on spectral features or indices that

demonstrate greatest correlation to chlorophyll for the species of

interest. Unlike machine learning, spectral vegetation indices had

consistent performance when applied to data from separate field

experiments. Furthermore, simple linear regression models relating

some indices to chlorophyll could perform with RMSE no more

than 6% greater than chlorophyll estimation from a second tissue

extraction. Spectral vegetation indices also have greater
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biophysiological basis than machine learning models, and new

tools developed during this study (Thorp, 2024) can speed their

computation. Practical breeders and field scientists may prefer to

focus on development of rapid and repeatable sensing techniques

for computation of spectral vegetation indices as a surrogate for

direct laboratory-based estimates of chlorophyll and in lieu of

chlorophyll estimation via machine learning modeling. If such

indices demonstrated better measurement repeatability in

addition to adequate biological heritability (Grybowski et al.,

2021), they could potentially be used for both breeding selection

and genome-wide association studies (Rufo et al., 2021).

Another research need expressed by Grybowski et al. (2021) was

to reduce the “black box” nature of machine learning models by

evaluating model input feature importance to better understand the

physiological mechanisms that govern reflectance of radiation from

plants. However, whereas machine learning models are often robust

to multicollinearity for purposes of estimation, they are less robust to

multicollinearity when used for interpretation. Herein, a clustering

methodology was used to group similar indices and reflectance

wavebands to reduce effects of multicollinearity in analyses of

feature importance using a permutation methodology. Results

clearly indicated the great importance of reflectance information at

the red edge, specifically at 696–721 nm, and the importance of

existing spectral vegetation indices that incorporate or analyze

reflectance information at the red edge. Also, unlike the

chlorophyll estimates from laboratory extractions, the means of

spectral reflectance data in the red edge region, specifically at 691–

693 nm and 718–723 nm, were not significantly different for the

2019–2020 and 2021–2022 experiments (p > 0.05), suggesting a

measurement that is both highly related to chlorophyll content and

repeatable across experiments. Future research should continue to

develop and fine-tune spectral indices and related methodologies to

utilize red edge radiation to estimate cotton leaf chlorophyll. The real

value of machine learning in this study and for hyperspectral data

analysis in general is likely in its data mining capabilities to identify

informative spectral features or indices with greater biophysical

meaning, as compared to its strict use as a trait estimation tool.
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