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This review focuses on the intricate water relationships between internal and

external tissues in growing fruits within the framework of the epidermal growth

control hypothesis. It considers the components of water potential, including

turgor pressure and osmotic potential of both internal and external tissues, taking

into account factors such as fruit growth rate, sugar accumulation, cell wall

metabolism, and climacteric. It also examines the effects of environmental

conditions, genetic factors, and physiological influences in modifying water

relations. By emphasizing the significance of skin tissue water potential

components as indicators of growth stress, the review underlines their

importance for a comprehensive understanding of water relations and

associated physiological disorders in growing fruit.
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Introduction

Physiological disorders related to water dynamics represent a significant limitation to

fruit growth, particularly fruit cracking, which limits both production and quality,

especially in berries and drupes, but also in citrus (Matthews et al., 2009; Agustı ́ et al.,
2014; Winkler et al., 2015, 2016; Fischer et al., 2021), and purple spot, which can affect up to

60% of the fruit in loquat (Gariglio et al., 2002). There are several other physiological

disorders related to fruit water relations, but they are beyond the scope of this manuscript.

The aim of this review is to examine the water relations between internal and external

tissues in growing fruit through the lens of the epidermal growth control hypothesis. We

examine current knowledge on the influence of environmental, genetic, and physiological

factors on water relations, focusing on skin tissue as a key indicator of growth stress

associated with physiological disorders.

Fruit development involves processes of cell division and expansion after fertilization. It is

regulated by distinct transcriptional patterns and complex regulatory systems involving
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genetic, epigenetic, and hormonal controls at all developmental stages

(Teyssier et al., 2015). Traditional assessment of fruit growth is based

on dry matter accumulation and changes in cell enlargement. Both

cell division and cell enlargement exhibit a sigmoidal or double

sigmoidal growth pattern, depending on the species, that develops

over time, typically in fleshy fruits (Rodriguez et al., 2019).

Fruit dry matter accumulation is the result of photoassimilate

transport through the phloem by mass flow, a phenomenon

elucidated by Mason and Maskell (1928). The pressure gradient

resulting from the altered sugar concentration between source and

sink tissues facilitates phloem sap transport, allowing sink organs to

modulate mass flow rates through various metabolic enzymes, sugar

transporters, and transcriptional and post-translational regulation

(Sun et al., 2022; Ren et al., 2023). In summary, it is possible to

increase crop yield by increasing source capacity and carbohydrate

production in leaves or by increasing the use of photoassimilates in

sink tissues (Driesen et al., 2023). In light of this, a number of

agronomic practices have been developed and adopted by farmers

to improve assimilate allocation to fruit, thereby increasing both the

quantity and quality of their crops. These practices include pruning

(Araújo-Ferreira et al., 2016), irrigation, fertilization, fruit thinning

(Singh-Sidhu et al., 2022), modification of flowering intensity

(Agustı ́ et al., 2022), and the use of growth regulators (Gill et al.,

2023), among others.
Dynamic interaction between internal
and external tissues in growing organs

A poorly explored facet of fruit growth is the relationship between

internal and external tissues within a growing organ, mainly because

of their different growth capacities. According to Kutschera and

Niklas (2007), expansion of the internal tissues leads to elongation

of the external tissues. Specifically, the inner tissues act as the primary

force driving elongation, while the outer cell layers impose a

mechanical constraint (Kraus, 1867). Consequently, this dynamic

results in the generation of tension or stress within the outer cell

layers due to the expansion of the internal tissues. The importance of

the inner tissues in organ growth was highlighted by their active state

of tension, which differed from that of the outer tissues. This led to a

hypothesis that emphasized the role of the epidermis in growth

regulation, the so-called “epidermal growth control hypothesis”

(Kutschera and Niklas, 2007). This hypothesis focused the study on

the architecture and properties of the epidermal cell walls, the

structure and function of the cuticle, and the modification of these

properties by hormonal actions, especially the changes that occur

during fruit ripening (Kutschera and Niklas, 2007).
Water potential components and their
role in cell expansion

Parenchyma cells with a thin primary wall are the predominant

cell type in fleshy fruits. In these cells, the turgor pressure (P)

resulting from osmotic water uptake provides the necessary force to
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induce plastic deformation of the cell walls, allowing cell expansion

and, consequently, the permanent increase in size or growth of

different organs (Ortega, 2023). Plastic deformation occurs only

when the turgor pressure exceeds a critical value (Pc), according to

the following equations:

Relative volumetric plastic deformation rate of the cell wall (h−1)  = f(P –Pc) (1)

where f = coefficient of irreversible extensibility of the cell wall

(h−1 MPa−1), P = turgor pressure (MPa), and Pc = critical turgor

pressure for plastic extension (MPa).

Consequently, the water potential (Ya) of the parenchyma cells

in fleshy fruits is controlled by two primary components. Firstly, the

tissue pressure (P) within the fruit, due to the cell wall and the skin

of the fruit, limits the expansion of both the cell and the flesh.

Secondly, the osmotic potential (p) induced by the presence of

soluble metabolites; hence, Ya = P – p. As a result, the osmotic

potential favors the influx of water into the cell, whereas the

pressure potential exerts a restrictive influence. While elevated

metabolite concentrations are uncommon in plant vegetative

organs, they are a common phenomenon during the ripening of

fleshy fruits (Jia et al., 2020).
Fruit ripening: growth rate, water
potential, osmotic adjustment, and
cell wall dynamics

According to the epidermal growth control hypothesis, the

regulation of fruit growth is controlled by the epidermal tissue

(Kutschera and Niklas, 2007) according to Equation 1. The cell wall

strength and cell–cell adhesion of the fruit epidermis are not

constant, but change over time (Canton et al., 2020; Shi et al.,

2023). Therefore, the critical turgor for fruit growth and the

coefficient of irreversible extensibility of the cell wall are subject

to modification throughout the course of fruit development (Ortega,

2023), resulting in a corresponding change in fruit growth rate.

However, the period of most pronounced change in cell wall

structure, and consequently on fruit growth rate, is during fruit

ripening. This involves a variety of physiological, structural, and

metabolic changes that ultimately lead to the development of edible

fruit. The regulation of this process occurs at different molecular

levels, with phytohormones, transcription factors, and epigenetic

modifications all playing a crucial role (Perotti et al., 2023).

Ethylene has been highlighted as a key phytohormone in the

ripening of climacteric fruits, while abscisic acid also plays a central

role in non-climacteric fruits (Li et al., 2021; Li et al., 2022). During the

ripening process of climacteric fruits, changes in primary cell wall

metabolism are mainly associated with the induction of several gene

families, including expansins (EXPs), xyloglucan endotransglucosylase

(XET)/hydrolases (XTH), and endo-1,4-b-glucanases (EGase or Cel)
(Shi et al., 2023). While some changes in cell wall composition and

structure are common to different species, others are species-specific

(Canton et al., 2020). Interestingly, auxin and other agents can

modulate cell wall growth rates in living plants very rapidly, within

minutes or even seconds. Furthermore, this rapid response could be
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controlled by altering wall pH, which would activate or inactivate

expansins, the proteins responsible for acid-induced wall extension in

growing tissues (Cosgrove, 2000). In addition, cellulose can achieve a

much higher degree of structural order, or crystallinity, which has a

strong effect on the mechanical properties of cell walls, as the ratio of

crystalline to amorphous cellulose is associated with the rate of

extension (Bringmann et al., 2012).

During ripening, the metabolism of climacteric fruit also

induces the degradation of polymers such as starch and cell wall

polysaccharides, leading to changes in cellular water status due to

catabolism. As a result, the cellular concentrations of metabolites

increases, resulting in a lower cellular osmotic potential, which

increases water uptake and turgor pressure, allowing the fruit to

maintain a high growth rate even under adverse conditions (Blum,

2017; Miranda Fernandes et al., 2018). The contribution of

metabolites to osmotic adjustment also includes acids, phenolics,

amino acids, soluble pectins, and minerals, all measured as part of

the soluble solids content (Sharma et al., 2019; Hou et al., 2020).

However, sugar metabolism and accumulation during ripening

are also important in non-climacteric fruits, as observed in loquat,

where almost 90% of the total sugar accumulation takes place

within a 15-day period from color break (Gariglio et al., 2003a),

and this period coincides with the phase of higher fruit growth rate

(Gariglio et al., 2003b). Similar trends were observed in grapes

(Matthews et al., 2009) and sweet cherries (Schumann et al., 2014).

As observed in fruits, the enzymatic modification of the cell wall

of the epidermal tissue is also responsible for modifying of the

growth rate of vegetative tissues, such as the leaves of Lolium

temulentum (Bacon et al., 1997). In Cucurbita pepo, the periods

of maximum growth rate in both fruit and leaves coincide with the

highest levels of ascorbic acid oxidase (AAO) in the epidermis (Lin

and Varner, 1991). This enzyme softens the cell walls, thereby

facilitating an increase in growth rate. Furthermore, the epidermal

growth control hypothesis has been proposed to explain the growth

tension between internal and external tissues of the hypocotyl of

sunflower seedlings (Kutschera and Niklas, 2007).

In summary, specific phytohormones and enzymes play a crucial

role in modulating the water relations and, consequently, the growth

rate of growing tissues by altering the structure of cell walls. These

modifications impact pivotal parameters of the water relations (see

Equation 1), including the coefficient of irreversible extensibility of

the cell wall and the critical turgor pressure required for plastic

expansion. Furthermore, they contribute to the catabolism of reserve

substances, thereby triggering osmotic adjustment processes. By

influencing these factors, phytohormones and enzymes contribute

to the dynamic regulation of growth processes in response to

environmental and developmental cues.
Water relationships between internal
and external tissues during
fruit growth

The epidermal growth control hypothesis establishes the

occurrence of stress between internal and external tissues during

growth; however, the water potentials and their components in both
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internal and external tissues have not been thoroughly studied.

Nevertheless, some studies have indirectly investigated the

evolution of water potentials in flesh tissues, and their analysis is

crucial for understanding this physiological process in fruit. Rain-

induced cracking of sweet cherry fruit significantly limits its global

production and has been the subject of extensive research (Winkler

et al., 2016). An accepted conceptual framework to explain this

phenomenon is the critical turgor model, originally proposed by

Considine and Kriedemann (1972), with a specific focus on grape

(Vitis vinifera L.) berries. According to this theoretical model, the

flesh of the berry is compressed by an elastically stretched skin. As

the fruit absorbs water, the internal pressure within the fruit

increases. Once the critical threshold is reached, the fruit skin is

overstressed beyond its elastic limit, resulting in cracking

(Considine and Kriedemann, 1972).

However, a study in which fruits of 19 sweet cherry cultivars

were incubated in water to analyze water uptake and cracking

contradicted the notion that cracking is a simple function of the

amount of water absorbed, as proposed by the critical turgor model

(Winkler et al., 2016). In the following years, extensive research was

carried out to improve the understanding of water relations in

cherries in order to explain the cracking process (Schumann et al.,

2014). Tissue water potential and fruit turgor showed a decrease 55

days after full bloom and remained low until maturity. In contrast

to the critical turgor model, cell turgor decreased from the

beginning of stage III of sweet cherry fruit growth, dropping from

350 to 25 kPa within the same period. Consequently, in the absence

of cell turgor, both water potential and osmotic potential tended to

converge to similar values. Surprisingly, fruit growth continued at

high rates despite the significant reduction in cell turgor (Schumann

et al., 2014). Based on these results, the hypothesis that cracking is

induced by an increase in tissue turgor was rejected (Schumann

et al., 2014). In another study of 17 European plum cultivars, cell

turgor pressure decreased significantly from 0.33 to 0.35 MPa 78

days after full bloom to 0.02MPa at harvest. This final measurement

was remarkably low compared with the markedly negative osmotic

potential (<−3.00 MPa) and water potential recorded at maturity,

both of which reached similar values at this time. Furthermore, cell

turgor in European plum was found to be independent of osmotic

potential (Knoche and Grimm, 2022). These results showed a

parallel trend to those mentioned for sweet cherry (Schumann

et al., 2014).

In Cabernet Sauvignon berries grown in a greenhouse, cell

turgor declined significantly, from a peak of 0.30 MPa at 48 days

after anthesis to approximately 0.05 MPa at 60 days after anthesis,

and this level was maintained throughout ripening (Matthews et al.,

2009). During the initial phase of turgor decline, from 0.30 to 0.16

MPa, there was only a marginal increase in soluble solids, but cell

turgor continued to decline, increasing to 3.6°Brix within 3 days.

This trend continued, indicating that significant sugar

accumulation did not begin until cell turgor reached about 0.10

MPa or less. In the case of Pinot Noir, the pattern of cell turgor is

similar to that described for Cabernet Sauvignon (Matthews

et al., 2009).

In loquat fruit, the flesh turgor is consistently low, remaining

below 0.15 MPa throughout the growth period. Interestingly, in a
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similar context, turgor becomes almost non-existent around the

time of color break, a phase when the fruit reaches its highest

growth rate (Gariglio et al., 2008a; Reig et al., 2016). In contrast to

observations in sweet cherry (Schumann et al., 2014), European

plum (Knoche and Grimm, 2022), and grape (Matthews et al.,

2009), there is no significant decrease in turgor, osmotic potential,

and water potential in loquat at the beginning of phase III of fruit

growth (Gariglio et al., 2008a).
Water status of the skin tissue

Using a miniaturized pressure probe, Kutschera and Niklas

(2007) observed that cell turgor in the outer tissues of sunflower

hypocotyls of 4-day-old dark-grown seedlings is comparable to that

of the inner tissues (0.48–0.49 MPa). However, there is a marked

difference in osmotic potential between the epidermal layer (0.63

MPa) and the internal tissues (0.56 MPa). Consequently, the water

potential is more negative in the outer tissues (−0.14 MPa)

compared to the inner tissues (−0.08 MPa), meaning that the

water potential gradient drives the movement of water from the

inner tissues into the epidermis (Kutschera and Niklas, 2007).

A limited number of studies have been identified that specifically

investigate water potentials and their components within the internal

and external tissues of growing fruits. One such investigation, which

sheds light on the physiological origins of loquat purple spot, is

reported in the work of Gariglio et al. (2008a). This study focuses on

the analysis of water potential, providing an important perspective for

understanding the underlying physiology associated with water

relations between internal and external tissues.

Purple spot appears as an extensive area with a slightly

depressed surface, characterized by a purple color and irregular

shape, affecting only the epidermal tissue of the fruit. The affected

areas begin in the deepest layers of the skin cells and progress to the

more superficial cell layers. The cuticle shows no signs of damage

and its water permeability is unaffected. Therefore, water loss from

the fruit to the atmosphere cannot be considered as the cause of the

skin dehydration that characterizes purple spot (Gariglio et al.,

2002). Subsequent research has shown that epidermal dehydration

results from a change in the water balance between the flesh and the

rind, which occurs at the same time as fruit color breakdown. This

period is characterized by both a significant increase in sugar

accumulation and a high fruit growth rate. The dehydration

process is also influenced by cultural practices, such as the

intensity of fruit thinning, and environmental factors, such as low

temperature and exposure to sunlight. These factors affect the

assimilation and partitioning of sugars and minerals, favoring the

flesh and increasing the solute concentration gradient between

the two tissues (Gariglio et al., 2008b). In conclusion, the purple

spot of the loquat fruit is a physiological disorder explained by the

tension between internal and external tissues, as postulated by the

epidermal growth control hypothesis. Therefore, their results have

the potential to shed light on this hypothesis and the water relations

established in this context.

As the incidence of purple spot increases with the intensity of

fruit thinning, a comparative analysis was carried out between
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plants thinned at different rates of fruit per panicle. In particular,

unthinned trees showed no incidence of purple spot, whereas plants

thinned at one fruit per panicle showed a significant fruit damage

rate of 34%. Intermediate incidence levels were observed in plants

thinned at five and three fruits per panicle (Gariglio et al., 2003a).

Comparing the extreme treatments of fruit thinning, the average

water potential of both flesh and skin tissues did not show

significant differences, but varied with the sampling date. This is

true for both unthinned plants (Figure 1A) and plants thinned to

one fruit per panicle (Figure 2A). In the absence of purple spot risk

(unthinned plants), the osmotic potential of the skin tends to be

slightly lower than that of the flesh tissue (Figure 1B), while the

turgor remains slightly higher throughout the fruit growth period.

In plants thinned to one fruit per panicle, where the

susceptibility to purple spot is maximal, the evolution of water

potential in both flesh and skin tissues does not show differences

(Figure 2A), as observed in unthinned plants. However, significant

changes are observed in the components, osmotic potential and

turgor pressure. The osmotic potential of the skin tends to decrease

compared to the flesh tissue from the end of February, coinciding

with the appearance of purple spot symptoms. At this time, a

sudden drop in skin osmotic potential is observed (Figure 2B),

corresponding to an abrupt increase in turgor pressure (Figure 2C)

within the skin tissue. The drop in osmotic potential observed at

color break in fruit from thinned trees (Figure 2B) suggests that

either water uptake lags behind sugar accumulation in the skin or

there is a loss of water from the skin to the flesh in fruit from

thinned trees. This dehydration is a characteristic symptom of

purple spot (Gariglio et al., 2002).

Significantly, the stress associated with growth according to the

epidermal growth control hypothesis is evident in the solute

potential and turgor pressure of the skin tissue rather than in the

flesh. This distinction is noteworthy as most studies of fruit growth

tend to focus on the water potential and its component in the

flesh tissue.
Xylem reflux

Similar to the modulation observed in other fleshy fruits, the

primary water import pathway of grape (Vitis sp.) berries undergoes

a transition from xylem to phloem at the onset of veraison.

Consequently, berry water uptake through the xylem is reduced,

although the structural integrity of the berry xylem remains

unaffected and unhindered throughout the ripening process

(Zhang and Keller, 2016).

Sucrose is unloaded from the phloem in sink tissues either

apoplasmically or symplasmically (Ruan, 2014). Apparently, there

is a change in the primary water transport pathway in grape berries

with a transition from symplastic to apoplastic phloem unloading at

the onset of ripening (Zhang et al., 2006). This hypothesis was

confirmed by studying the movement of xylemmobile dyes in grape

berries and root pressure treatments. Modeling studies have shown

that some phloem-derived water contributes to both berry growth

and transpiration, with the excess being recirculated through the

xylem (xylem reflux) (Figure 3). Restricting the release of water
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through the xylem and/or the skin limits the accumulation of

solutes in the berry and its color change. This mechanism can be

viewed as a strategy to increase the berry sink strength and

promotes normal grape ripening and may be particularly

important during periods of rapid sugar accumulation and under

environmental conditions that limit berry transpiration (Zhang and

Keller, 2016).
Hypothesis on the mechanisms of skin
tissue dehydration leading to purple
spot in loquat fruits

At the color break stage, loquat fruits exhibit their highest

growth rate, which is 2.5 times faster in fruits from plants thinned at

one fruit per panicle compared to unthinned plants (Gariglio et al.,

2003a). The concentration of total soluble carbohydrates in flesh

tissue (over dry mass) at color break was also 3.52 times higher in

plants thinned at one fruit per panicle compared to unthinned

plants (Gariglio et al., 2003a). In peel tissue, the concentration of

total soluble carbohydrates at color break is less than a quarter of

that in flesh tissue. In grapes, the ratio of sugar concentration
Frontiers in Plant Science 05
between flesh and skin tissue is in the range of 2 to 3 during fruit

development (Zhu et al., 2017).

In this context, the progressive weakening of the peel tissue

observed in loquat fruits (Figures 1, 2) can be attributed to the

complex biochemical changes associated with the onset of ripening.

This phenomenon facilitates the influx of water with minimal

restriction, given the low turgor and relatively constant osmotic

potential of the flesh tissue at color break (Figure 4), despite the

increased sugar accumulation (expressed as dry weight). This

phenomenon explains the exponential growth of loquat fruit from

the onset of color break to harvest.

As a result of the expansion of the flesh, the cell volume of the

external tissues is compressed, leading to an increase in their turgor

and, consequently, their water potential (Figure 4). The equilibrium is

restored by the migration of water from the outer tissues (higher

water potential) to the inner tissues (lower water potential). As a

result, there is a gradual decrease in osmotic potential (due to water

loss) and a simultaneous increase in turgor in the skin of loquat fruits.

In some cases, the intensity and duration of this growth stress can

lead to irreversible cell dehydration and collapse of the skin cells,

resulting in symptoms of purple spot (Figure 4B). The extreme values

of the osmotic potential recorded in the fruit skin during pre-down

measurements are −2.5 MPa (Gariglio, 2001; Gariglio et al., 2008a).
FIGURE 1

Time course of water potential (A), osmotic potential (B), and cell
turgor pressure (C) in the flesh and skin tissue of loquat through fruit
growth in non-fruit-thinned plants. Arrows indicate the time of color
break. Adapted from Gariglio et al. (2008a).
FIGURE 2

Time course of water potential (A), osmotic potential (B), and cell
turgor pressure (C) in the flesh and skin tissue of loquat through fruit
growth in plants thinned to one fruit per panicle. Arrows indicate the
time of color break. Adapted from Gariglio et al. (2008a).
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In low crop load conditions, the osmotic potential of the peel

tissue is dependent on the rate of sugar accumulation, the sugar

concentration gradient (dry basis) between the flesh and the peel,

and the intensity of the fruit growth rate. The combined effect of

these factors determines the risk of irreversible peel dehydration

(Gariglio et al., 2008a, b). Conversely, in situations of high crop

load, there is no correlation between the peel osmotic potential and

any of the aforementioned factors. This indicates that the intensity

of these factors is insufficient to influence the peel’s hydration status

(Gariglio, 2001; Gariglio et al., 2008a). In contrast to the previous

result, a more negative osmotic potential of the flesh compared to

the skin tissue was observed in sweet cherry (Grimm and Knoche,

2015). In the case of tomatoes, the osmotic potential of the flesh was

found to be slightly lower than that of the skin tissue. Additionally, a

low cell turgor (0.04-0.08 MPa) was observed in the skin (Ikeda

et al., 1999; van Ieperen et al., 2005).
Frontiers in Plant Science 06
Physiological significance of turgor
pressure in internal vs. external tissues
of growing fruit

The physiological significance of cell turgor pressure differs

between flesh and skin tissue. In flesh, turgor pressure is generated

by osmotic water uptake (Figure 4), which is a consequence of sugar

accumulation (Ortega, 2023). Additionally, since the internal tissue

is limited in its expansion, it is in a state of active tension in

accordance with the growth control hypothesis (Vines, 1886;

Kutschera and Niklas, 2007).

In the outer tissues, the pressure exerted by the expanding flesh

tends to reduce the skin cell volume (Figure 4), which indirectly

increases turgor. Consequently, the skin tissue is in a state of passive

tension (Vines, 1886; Kutschera and Niklas, 2007). In light of these

concepts, it can be argued that in tissues that are in a state of active

tension, the flesh, the turgor pressure should be referred to as

“active turgor pressure” or “true turgor pressure”. Conversely, in

external tissues, turgor results from a decrease in cell volume due to

the driving forces of the internally expanding tissue. In this case,

turgor should be referred to as “passive turgor pressure” or “false

turgor pressure” (Figure 4). In the case of loquat fruit, passive turgor

pressure is responsible for maintaining a high water potential of the

skin cells even as the tissue dehydrates under conditions

predisposing to purple spot (Gariglio et al., 2008a).

In sweet cherry, an osmotic potential gradient of 1.1 MPa was

observed between the fruit skin and its flesh, with the osmotic

potential being more negative in the flesh (Grimm and Knoche,

2015). The low turgor pressure measured in the flesh (Schumann

et al., 2014) establishes a significant water potential gradient from

skin to flesh (Grimm and Knoche, 2015). However, the process by

which water potential equilibrium is achieved between the two

tissues remains unclear. There is currently a lack of data available on

apoplastic phloem unloading (Zhang et al., 2006) and the xylem

reflux mechanisms (Zhang and Keller, 2016) in different species. It

is therefore possible that a significant proportion of the solutes

measured in the extracted juice from sweet cherry pulp (Grimm and

Knoche, 2015) are apoplastic and therefore may not accurately

represent the osmotic potential of the pulp tissue. In tomato, the

study by Ikeda et al. (1999) showed no water potential gradient

between flesh and skin tissue during the pre-dawn period.

Nevertheless, an osmotic gradient was observed between the

apoplastic and symplastic spaces, which could facilitate

substantial water import into the cells. In practice, however, this

import did not occur. This may be attributed to the presence of

matrix potentials in the apoplastic space, resulting from capillary

forces within the cell walls (van Ieperen et al., 2005).

The manuscript by Gariglio et al. (2008a) presents an original

hypothesis that sheds light on the changes in water relations

between the flesh and skin tissues of developing loquat fruits, and

the prospective emergence of physiological disorders. In the present

manuscript, the explanation and definition of the presence of

passive turgor in the peel tissue is also and original physiological

concept. The hypothesis and the introduction of the concept of

passive turgor are of great importance as they provide a novel
FIGURE 3

Xylem backflow in grape: phloem photoassimilates in sink tissues
are unloaded preferentially symplasmically (A). However, during
ripening, this process shifts to apoplastic pathways (B). The
unloading of sucrose symplastically results in the accumulation of
this substance within flesh cells, which, in turn, causes osmotic
water uptake and an increase in turgor pressure. Conversely, when
sucrose is partially unloaded via apoplastic pathways, it accumulates
in the intercellular spaces of the flesh tissue. Consequently, when
there is an excess influx of phloem water and sugars into the fruit,
they are recirculated through the xylem (xylem backflow) as turgor
pressure slightly exceeds the resistance offered by the external
tissue. Light blue arrow: cellular osmotic water uptake; dashed
arrow: turgor pressure; curved arrow: excess photoassimilates and
water phloem recirculated through the xylem (xylem backflow).
Created based on the results and discussion of Zhang and
Keller (2016).
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contribution to the understanding of the regulation of water

dynamics in fruit under different crop load conditions.
Factors influencing water relationships
between internal and external tissues

Fruit growth rate

According to the epidermal growth control hypothesis, stress

between internal and external tissues occurs during organ growth.

Under conditions of negligible or low growth rate, changes in water

potential between internal and external tissues are not observed (see

Figure 1). The appearance of purple spot is only observed under

conditions characterized by a high fruit growth rate around the time

of color break (Gariglio et al., 2002, 2008a, b).

Fruit cracking is a common physiological disorder associated

with stress between internal and external tissues of growing fruits.

The complexity of cracking is further compounded by the influence

of a highly variable external environment, which makes it

challenging to study even under controlled conditions (Santos

et al., 2023). The probability of this phenomenon increases

significantly under conditions of high fruit growth rate and

around the time of fruit ripening, particularly in conjunction with

rainfall (Mesejo et al., 2016; Wang et al., 2021; Micheloud et al.,

2023). For example, cracking in tomatoes is most prevalent in the
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early morning or late afternoon, when growth rates and sap flow are

at their highest (Guichard et al., 2001).
Sugar and mineral accumulation
and gradient

Sugar accumulation facilitates osmotic water uptake and

provides the necessary force to induce permanent increases in

size or growth of various organs (Ortega, 2023). Cultural practices

such as fruit thinning allow the manipulation of source–sink

relationships, thereby enhancing the partitioning of dry matter to

fruit and maximizing commercial yield (Costa et al., 2018; Falchi

et al., 2020).

Vascular bundles, both xylem and phloem, are responsible for

delivering essential nutrients and water to either the flesh or seed of

the fruit. The main bundles give rise to numerous branches that

diverge and anastomose extensively throughout the flesh tissue

(Falchi et al., 2020; Hou et al., 2021). This results in an

accumulation of sugars and minerals in the inner tissues, which

creates an imbalance with the outer tissues. The unequal

distribution of minerals and assimilates between the flesh and

peel, which occurs under conditions of high fruit growth rate, is

responsible for the water imbalance that leads to the appearance of

purple spot in loquat fruit (Gariglio and Agustı,́ 2005; Gariglio et al.,

2008b). It is noteworthy that the foliar application of various salts,
FIGURE 4

Water potential (Ya), osmotic potential (p), and cell turgor pressure (P) in flesh and skin tissue of loquat fruit at color break with low (A) and high
(B) risk of purple spot. Ya = p + P. Dashed arrows indicate water flow; solid arrows indicate the origin of turgor. In the flesh, turgor is a consequence
of osmotic water uptake (active turgor); in the skin, turgor is a consequence of flesh expansion reducing skin cell volume (passive turgor).
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including calcium nitrate, calcium chloride, Ca-EDTA, ammonium

nitrate, and potassium nitrate, conducted 2 weeks prior to the color

break, has exhibited the capacity to replenish the osmotic strength

of the skin tissue. These treatments have demonstrated a significant

reduction in the proportion of fruit affected by purple spot (Gariglio

et al., 2005).

In the case of cracking, it has been observed that the resistance

of jujube varieties to cracking was found to be related to the content

of reducing sugars, total soluble sugars, and cellulose, but not to the

starch content. Crack-resistant varieties were found to have lower

levels of total soluble sugars than crack-sensitive varieties (Li et al.,

2020). Instead, it has been proposed that cracking is caused by the

accelerated and uncoordinated growth and expansion of internal

tissues, that exceed the mechanical resistance of the fruit skin

(Mesejo et al., 2016; Butani et al., 2019; Wang et al., 2021).

Therefore, it is essential that any study or interpretation of this

physiological disorder takes into account the different levels of sugar

accumulation and fruit growth rates.

The phloem unloading mechanisms of sucrose and the

apoplastic pathway have been documented (Ruan, 2014; Zhang

and Keller, 2016). However, xylem backflow in fruit flesh tissue,

which is a consequence of apoplastic phloem unloading, has only

been demonstrated in a limited number of species. As a result, our

understanding of this physiological process remains incomplete,

and its role in fruit growth, ripening, and the prevention of

physiological disorders remains unclear. However, there is

evidence that the occurrence of symplastic and apoplastic

mechanisms depends on developmental stage and genotype

(Falchi et al., 2020). Despite its significant impact on source–sink

relationships, sink strength, and sugar accumulation (Zhang and

Keller, 2016), it is essential to investigate this process in each fruit

species to interpret its species-specific role in water relations

between internal and external tissues of growing fruits. According

to Schumann et al. (2014), apoplastic solute accumulation in the

fruit, the physiological mechanism that allows xylem backflow,

prevents a catastrophic increase in cell pressure and subsequent

fruit cracking in grapes. In peach flesh, xylem sap, together with

solutes and water unloaded from the phloem into the apoplast, is

transported predominantly through the flesh by the bulk flow of

water (Morandi et al., 2007, 2010). However, what happens when

the conditions that maintain backflow change significantly? For

instance, this may occur during rainfall or when the fruit is

detached from the tree. What changes occur in the solute and

water balance under these conditions, and how do they affect the

occurrence of cracking or the development of purple spot?

It is important to note the distinction between fruit cracking

and purple spot, particularly in loquat and sweet cherry. It is worth

noting that purple spot on loquat fruit does not occur when the fruit

is removed from the tree. Rather, it is specific to certain stages of

fruit growth, such as color break (Gariglio et al., 2002). In contrast,

sweet cherry cracking is primarily observed under rainy conditions

during the ripening and harvesting season, or when detached fruits

are incubated in water solutions (Winkler et al., 2015; Knoche and

Winkler, 2019).

The authors put forward the “zipper hypotheses” to explain

cherry cracking. These hypotheses posit that stress between internal
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and external fruit tissues during phase III of fruit growth, but

particularly in the cuticle, is a key factor. This is due to negative

regulation of genes involved in the synthesis of cutin and waxes.

Skin stress causes microcracks in the cuticle, which, when combined

with moisture, leads to a further intensification of these microcracks

and a concentration of water absorption in a specific region of the

fruit surface. The water moves towards the flesh cells due to their

lower water potential and thin cell walls, causing them to rupture

and release cellular contents into the apoplast at concentrations

comparable to those in the symplast. Consequently, cell turgor is

either reduced or lost. Malic acid has been shown to effectively

remove calcium from cell walls, thereby reducing their strength and

increasing the permeability of plasma membranes, causing a loss of

adhesion between adjacent cells. These results in swelling of the cell

walls, particularly the pectins of the middle lamella, separation of

adjacent cells along the cell wall, and ultimately skin rupture,

causing the fissure itself to widen (Knoche and Winkler, 2019).
Mechanical resistance of the fruit skin

As discussed in the previous section, fruit growth rate is closely

related to flesh sugar concentration. However, in the case of loquat

fruits, variations in pulp sugar concentration can explain variations

in growth rate when comparing fruits at the same stage of

development. It is important to emphasize that flesh sugar

concentration does not consistently explain the changes observed

in the growth rate during fruit development, particularly the sudden

increase measured at the onset of color break (Gariglio et al.,

2008b). The cell wall metabolism of the peel tissue, as discussed

previously, provides a more comprehensive explanation for the

variation in growth rates during fruit development. This is because

the observed metabolic changes contribute to the variability of both

cell wall strength and intercellular adhesion in the fruit epidermis,

rather than remaining constant over time (Canton et al., 2020; Shi

et al., 2023).

The balance resulting from factors such as fruit growth rate, skin

strength, and sugar accumulation is likely to influence the water

potential and its components between internal and external tissues,

potentially affecting susceptibility to physiological disorders (Gariglio

et al., 2008a). For example, in sweet cherry (Schumann et al., 2014;

Grimm and Knoche, 2015), European plum (Knoche and Grimm,

2022), and grape (Matthews et al., 2009), both the water potential and

the osmotic potential of the flesh tissue decrease during fruit ripening.

In contrast, in loquat (Gariglio et al., 2008a), the stability of both

osmotic and water potentials is maintained. This stability indicates a

delicate balance between sugar accumulation and water influx in

loquat, with a complete dilution of sugars (Gariglio et al., 2008a). On

the other hand, the decrease in osmotic potential in sweet cherry,

European plum, and grape indicates a restriction or delay in water

uptake, coupled with a higher sugar accumulation than water influx,

leading to an increase in total soluble solids content, as exemplified by

grape with a rapid increase of 3.6°Brix in only 3 days (Matthews et al.,

2009). However, and in the absence of turgor in the flesh, it becomes

difficult to explain the water balance between the flesh and the skin

tissue. Grimm and Knoche (2015) suggested that this water potential
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and osmotic gradient is a driving force for the diffusion of osmolytes

from flesh to skin, and for the flow of water in the opposite direction

from skin to flesh. However, this water movement apparently did not

appear to occur, as the osmotic potential of the skin tissue did

not decrease.

The evolution of the water potential components in the skin

tissue has yet to be extensively studied. In loquat, it has been

demonstrated that growth-related stress is markedly more

pronounced in the skin than in the flesh tissue (Figures 2, 4),

with a reduction in osmotic potential observed in the former but not

in the latter. In contrast, sweet cherry shows a more negative solute

potential in the flesh in comparison to the skin (Grimm and

Knoche, 2015). The discrepancy between these species may be

attributed to the strength of the skin in each case, which induces

a different water balance between internal and external tissues.

Consequently, skin strength could potentially represent an

additional variable influencing this water balance in this context.
Climacteric and non-climacteric fruits

The classification of fleshy fruits as either climacteric or non-

climacteric is based on the hormonal mechanisms that control the

ripening process and respiratory response (Bouzayen et al., 2010;

Forlani et al., 2019). The characteristic increase in respiration and

rapid rise in ethylene production observed in climacteric fruits at

the onset of ripening serves as a central signal for initiating and

coordinating the ripening process. In contrast, non-climacteric

fruits do not exhibit an increase in respiration and ethylene plays

a minor role in the ripening process, although there are some

ethylene-dependent processes in this type of fruit (Adams-Phillips

et al., 2004; Bouzayen et al., 2010). Additionally, non-climacteric

fruits have a lower number of ethylene receptor genes compared to

climacteric fruits (Chen et al., 2018). In contrast, abscisic acid is

regarded as the principal hormone governing the ripening process

in non-climacteric fruits (Chen et al., 2020; Jia et al., 2020; Perotti

et al., 2023). Additionally, other plant hormones, including IAA,

gibberellic acid, cytokinin, methyl jasmonate, and brassinosteroids,

have been shown to influence specific aspects of fruit ripening

(Brumos, 2021).

The distinction between climacteric and non-climacteric fruits

extends beyond the hormonal regulation of fruit ripening; it also

encompasses the molecules accumulated during fruit growth. The

accumulation of elevated levels of starch during fruit development is

a distinctive trait of climacteric fruits (Yu et al., 2022), whereas non-

climacteric fruits exhibit only transient storage and accumulate

relatively minimal amounts of starch.

In the case of the banana, the fruit accumulates considerable

amounts of starch in the pulp (20%–25%) during fruit development

(Xiao et al., 2018). This strategy of climacteric species has the

advantage that starch biosynthesis is likely to increase the sink

strength of the fruit. Bananas are typically harvested while still

immature, and the starch is degraded during postharvest ripening.

This process provides the requisite carbon and energy reserves for

the production of sucrose and other quality-related metabolites
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(Xiao et al., 2018; Yu et al., 2022). Consequently, bananas undergo a

period of rapid fruit growth with starch accumulation, followed by a

catabolic process that releases sugars when the fruit stops growing.

This strategy effectively minimizes osmotic perturbations in the

cells (Dong and Beckles, 2019). In contrast, non-climacteric fruits,

such as grapes and loquats, have been observed to exhibit both

elevated sugar accumulation and accelerated fruit growth at the

onset of ripening (Gariglio et al., 2003a; Matthews et al., 2009).

In non-climacteric fruits, this scenario intensifies the water

relations between internal and external tissues in developing

fruits, thereby imposing additional stress on growth. In a similar

context, Zhang and Keller (2016) demonstrated that the

accumulation of sugar in ripening grape berries requires the

removal of excess phloem-derived water, either by transpiration

or xylem backflow, in order to prevent the occurrence of cracks. For

example, the restriction of both xylem backflow and transpiration

resulted in a twofold increase in the incidence of cracks in Concord

and Syrah grapes (Zhang and Keller, 2016). It may therefore be

hypothesized that xylem backflow plays a more significant role in

non-climacteric fruits in order to compensate for the absence of

starch reserves, thereby increasing fruit sink strength. Furthermore,

it may be postulated that xylem backflow replaces the absence of

starch reserves in non-climacteric fruits as a vital energy source for

the synthesis of quality-related metabolites during ripening, while

reducing the risk of osmotic disturbance. However, these

hypotheses require further investigation.
Environmental factors

The primary environmental factor contributing to fruit

cracking is water, with both soil moisture and water on the fruit

surface playing a significant role. The incidence of cracking is

heightened by rainfall that affects crops that were previously

subjected to water stress (see the Fruit growth rate section).

Furthermore, inadequate irrigation practices during fruit ripening

increase the probability of fruit cracking (Mesejo et al., 2016; Wang

et al., 2021).

In tomato, the results of Ikeda et al. (1999) suggest that the

water potential gradient between the flesh and the water source is

more closely related to the incidence of fruit cracking than the water

relations between the flesh and the skin tissues, but it is noteworthy

that although the treatments in their experiment significantly

altered the growth rate of the fruit, the effect on cracking was not

thoroughly discussed.

In the case of loquat, prolonged deficit irrigation before harvest

has been demonstrated to reduce the incidence of purple spot

(Jiménez et al., 2022). However, it should be noted that

temperature and radiation represent the primary environmental

factors influencing the incidence of purple spot (Gariglio

et al., 2003b).

The effect of light exposure on fruit is significant in terms of the

incidence of cracking and purple spot. It has been demonstrated

that fruits exposed to sunlight, particularly on the sun-facing side,

are more susceptible to cracking (Ulinnuha et al., 2020) and purple
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spot (Gariglio et al., 2003b). However, the precise impact of light on

the incidence of cracking remains unclear (Fischer et al., 2021). In

the Mediterranean basin, it has been observed that solar radiation

increases loquat fruit temperature by up to 8°C, thereby increasing

fruit sink activity. Consequently, this increased sink activity results

in increased flesh sugar availability and an accelerated fruit growth

rate, thereby rendering the fruit more susceptible to purple spot

(Gariglio et al., 2008b). Similarly, low night temperatures have been

observed to contribute to an increased incidence of purple spot.

When loquat is grown in a greenhouse with controlled minimum

night temperatures above 15°C, an increase in the concentration of

sugars in the skin has been observed. This phenomenon can be

attributed to increased fruit activity during the night, which favors

the partitioning of assimilates into the skin and reduces the risk of

purple spot (Gariglio et al., 2008b).
Other factors

A close relationship was found between fruit splitting and soil

texture in citrus. Results showed an inverse correlation between clay

and silt soil content and fruit splitting, while sand content was

positively correlated with a reduced incidence of splitting. It was

also found that the incidence of splitting was found to be higher in

trees with larger xylem vessels in the peduncle, which was attributed

to the rootstock. The “Carrizo” and “C-35” citrange rootstocks

exhibited a higher incidence of splitting than the “FA-5”,

“Cleopatra”, and Poncirus trifoliata rootstocks. Furthermore,

reducing irrigation frequency by half resulted in a 5°C increase in

canopy midday temperature and a 15% increase in splitting. The

authors conclude that irregularities in the tree water status, due to

interactions between soil moisture, rootstock, and climatic

conditions, result in significant changes in fruit growth rate and

increased incidence of fruit splitting (Mesejo et al., 2016).

The propensity for fruit to crack is genetically influenced, with

different cultivars exhibiting varying degrees of susceptibility. This

process is regulated by a combination of genes, rather than a single

gene (Wang et al., 2021). For example, the SlGH9-15 gene, which

plays an important regulatory role in cellulose activity, has been

identified as a major factor associated with fruit cracking in

tomatoes. Therefore, tomatoes prone to cracking had increased

cellulase activity and decreased cellulose content, especially at the

red ripening stage (Lin et al., 2023). Similarly, the prevalence of

purple spot is significantly influenced by cultivar, with early

maturing cultivars showing increased susceptibility (Shah

et al., 2023).

The occurrence of fruit cracking is linked to changes in the

biochemical properties of the cuticle, epidermis, and hypodermis.

Recent research has identified genes involved in cell wall

modification, cuticular wax biosynthesis and transport, cuticular

membrane deposition, and associated transcription factors,

providing invaluable insights into the genetic basis of this

phenomenon (Santos et al., 2023). However, despite this progress,

there remains a need to integrate these genetic findings into a

unified hypothesis that elucidates the regulatory mechanisms

governing fruit cracking.
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Concluding remarks

This review puts forth a hypothesis regarding the alterations in

water relations between internal and external tissues in developing

fruit, situated within the context of the epidermal growth control

hypothesis. The pressure potential of the outer tissues is a

consequence of the expansion of the inner tissues, rather than

osmotic water uptake, as observed in the flesh. This results in a false

turgor, which, when considered with the osmotic potential of the

skin, can be used as an indicator of the level of growth stress and the

risk of skin cell dehydration. The primary factors identified as

potential determinants of the water balance between internal and

external tissues include the growth rate of the fruit, the gradient of

sugar concentration (on a dry weight basis) between the flesh and

skin tissues, the proportion of apoplastic and symplastic solutes,

and the strength of the skin. These factors render the fruit

susceptible to physiological disorders associated with water

relations. While the relevance of skin water potential and its

components to the hypothesis presented may be validated in

future research, it is recommended that they be included in

studies of physiological disorders under different predisposing

conditions to improve our understanding of the physiological

process involved.
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