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Characterization of rhizosphere
bacterial communities in oilseed
rape cultivars with different
susceptibility to Plasmodiophora
brassicae infection
Yue Deng1,2, Wenxian Wu2, Xiaoqing Huang1,2,
Xiaoxiang Yang1,2, Yaoyin Yu1,2, Zhongmei Zhang1,2, Zijin Hu1,
Xiquan Zhou1, Kang Zhou3,4*, Yong Liu1,2* and Lei Zhang1,2*

1Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, China, 2Key
Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture and Rural
Affairs, Chengdu, China, 3Anhui Province Key Laboratory of Environmental Hormone and
Reproduction, Fuyang Normal University, Fuyang, China, 4Anhui Province Key Laboratory of Embryo
Development and Reproductive Regulation, Fuyang Normal University, Fuyang, China
Rhizosphere microbiomes are constantly mobilized during plant–pathogen

interactions, and this, in turn, affects their interactions. However, few studies

have examined the activities of rhizosphere microbiomes in plants with different

susceptibilities to soil-borne pathogens, especially those that cause clubroot

disease. In this study, we compared the rhizosphere bacterial community in

response to infection of Plasmodiophora brassicae among the four different

clubroot susceptibility cultivars of oilseed rape (Brassica napus). Our results

revealed obvious differences in the responses of rhizosphere bacterial

community to the P. brassicae infection between the four cultivars of oilseed

rape. Several bacterial genera that are associated with the nitrogen cycle,

including Limnobacter, Thiobacillus, Anaeromyxobacter, Nitrosomonas,

Tumebacillus, and Halomonas, showed significantly different changes between

susceptible and resistant cultivars in the presence of P. brassicae infection.

Moreover, increased connectedness and robustness were exhibited in the

rhizosphere bacterial community co-occurrence network in clubroot-

susceptible cultivars that were infected with P. brassicae, while only slight

changes were observed in clubroot-resistant cultivars. Metagenomic analysis

of microbial metabolism also indicated differences in the rhizosphere bacterial

community between susceptible and resistant cultivars that were infected with P.

brassicae. Functional analysis of the nitrogen cycle showed that genes related to

nitrification (nxrB) were upregulated in susceptible cultivars, while genes related

to assimilatory nitrate reduction (nasA, narB, and nirA) were upregulated in

resistant cultivars that were infected with P. brassicae. These findings indicate

that the synthesis and assimilation process of NO3
- content were promoted in

susceptible and resistant cultivars, respectively. Our study revealed differences in
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the characteristics of rhizosphere bacterial communities in response to

P. brassicae infection between clubroot-susceptible and clubroot-resistant

cultivars as well as the potential impact of these differences on the plant–P.

brassicae interaction.
KEYWORDS

rhizosphere microbiome, Plasmodiophora brassicae, susceptible cultivar, resistant
cultivar, microbial metabolism, nitrogen cycle
1 Introduction

Plant rhizosphere microbiomes are increasingly being studied

in recent years in relation to their contributions to various aspects of

plant growth, development, and health (Berendsen et al., 2012;

Bardgett and van der Putten, 2014; Saleem et al., 2019). Rhizosphere

microbiomes are sensitive to alterations in biotic and abiotic factors,

including plant development, infection by pathogens, and disorders

in soil properties, resulting in a highly dynamic and diverse

microbial community throughout the entire life cycle of plants

(Zegeye et al., 2019; Panke-Buisse et al., 2015; Kwak et al., 2018; Sun

et al., 2020). Moreover, rhizosphere microbiomes are responses to

plant/soil-borne pathogen interactions and have been widely

studied in recent years. Furthermore, there is a two-way effect

between microbial community assemblage and plant/pathogen

interaction. In the plant/pathogen systems, plants secrete root

exudates and recruit specific microbial communities that confer

them with disease resistance according to the “cry for help” theory

(Hu et al., 2020, 2018). Similarly, some microbes are conducive to

pathogen invasion through nutritional complementarity feedback

mechanisms (Li et al., 2019; Pacheco et al., 2019; Kramer et al.,

2020). Changes in the microbial community of diseased plants

compared with those of healthy plants are external manifestations

of disease processes, and this contributes to variations in microbial

metabolisms associated with energy and material metabolic cycles,

such as carbon and nitrogen cycles (Cao et al., 2024). Therefore,

recent studies have focused mainly on identifying certain microbial

taxa in rhizosphere microbiomes that contribute to crop health by

affecting microbial metabolism or inhibiting pathogen growth.

These microorganisms are considered potential tools for soil-

borne disease control and sustainable farming and have been

widely studied in multiple crops (Sun et al., 2022; Zhang et al.,

2022; Compant et al., 2019). However, relatively limited studies

have focused on the impact of changes in rhizosphere microbiomes

in response to plant/pathogen interactions on the development of

crop disease.

Clubroot, caused by the obligate protist, Plasmodiophora

brassicae (P. brassicae), is a soil-borne disease that threatens the

production of Cruciferous crops worldwide, as it results in a

significant reduction of 40% to 60% in both crop yield and

quality (Javed et al., 2023; Chai et al., 2014). The typical
02
symptoms of clubroot disease are the presence of root galls as

well as wilting and stunting of the above-ground parts of the plant

(Schuller and Ludwig-Müller, 2016; Kageyama and Asano, 2009).

Traditional measures for clubroot control cannot achieve the goals

of eradication due to the long survival times (5–20 years) of resting

spores in the soil (Donald and Porter, 2014). Moreover, severely

affected fields are unsuitable for crop cultivation for extended

periods of time (Dixon, 2009). Genetic resistance is presently

being considered the most economical and effective approach for

clubroot control worldwide (Diederichsen et al., 2009; Rahman

et al., 2014). Multiple potential clubroot resistance genes (CR gene)

in Brassica crops that are involved in modulating disease resistance

responses to P. brassicae infections have been identified using next-

generation sequencing (NGS) and other “omics”-based methods

(Nagaoka et al., 2010; Hasan et al., 2021). Furthermore, numerous

clubroot-resistant cultivars of Brassica crops have been bred and

promoted commercially, including Huashuang 5R and Huayouza

62R (Zhan et al., 2015; Shah et al., 2019). Brassica crops with CR loci

have been shown to successfully resist P. brassicae infection through

regulating the plant innate immunity (Zhou et al., 2020).

Differences in clubroot resistance between susceptible and

resistant cultivars were directly reflected in plant roots, including

transcription, proteins, and metabolism (Chen et al., 2015; Zhang

et al., 2016; Pedras et al., 2008; Cao et al., 2008; Li et al., 2022).

However, studies on whether these CR genes participate in

interactions between host root and soil microbiome during the

clubroot disease process are limited.

Recent studies on clubroot have indicated a distinct shift in

microbial communities of Brassica crops when infected with P.

brassicae (Kang et al., 2024; Wu et al., 2020). Moreover, variations

in microbial community diversity have been shown to be correlated

with clubroot disease severity and are highly sensitive as indicated

by the microbial community in response to infections with P.

brassicae (Lebreton et al., 2019; Liu et al., 2024). Changes in the

microbial community due to host/P. brassicae interactions also

differ in multiple situations, including disease resistance,

pathotype, soil property, and fertilization (Lebreton et al., 2019;

Liu et al., 2024; Cordero-Elvia et al., 2024; Gazengel et al., 2021). A

more diverse microbial community also appeared to have a more

obvious effect in promoting clubroot occurrence; however, this

effect varied between susceptible and resistant cultivars (Wang
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et al., 2023; Daval et al., 2020). Moreover, the positive impact of

nitrogen supply on clubroot occurrence also varies between

susceptible and resistant cultivars (Gazengel et al., 2021). These

phenomena suggest that clubroot resistance mechanisms in

resistant cultivar may participate in the interaction within plants,

pathogens, and soil microbiomes and may play an important role in

shaping microbial communities. Although several studies have

shown significant differences in root performance between

clubroot-susceptible and clubroot-resistant cultivars when

infected with P. brassicae, it is still unclear how clubroot-resistant

cultivars manipulate the shaping of microbial communities based

on their resistance mechanisms when infected with P. brassicae.

Additionally, we selected four cultivars of Brassica napus with

different clubroot resistance levels to investigate whether clubroot

resistance mechanisms affect the response of the rhizosphere

microbiomes to plant/P. brassicae interactions. Based on 16S rRNA

and metagenomic sequencing, we revealed the differences in

microbial community, interaction within microbial communities,

and microbial metabolisms of rhizosphere microbiomes between

clubroot-susceptible and clubroot-resistant cultivars with or

without P. brassicae infection. Our results suggest that those

obvious differences in the rhizosphere microbiomes between two

type cultivars may be caused by a resistant mechanism based on CR

genes, which further affects the plant/P. brassicae interactions. Our

study will help broaden the strategies for clubroot resistance breeding

of oilseed rape and lay the foundation for utilizing soil microbial

communities to control the occurrence of clubroot disease.
2 Materials and methods

2.1 Biological materials and
pathogen inoculation

The cultivars of oilseed rape (Brassica napus subs. napus,

hybrid) C36, H62, H62R, and Menh, as well as P. brassicae

pathotype 4 isolate (Williams, 1966) were used in this study

(Table 1). C36, also referred to as Chuanyou 36, was provided by

the Crop Research Institute, Sichuan Academy of Agricultural

Sciences (China) (Jiang et al., 2011). H62 and H62R, referred to

as Huayouza62 (clubroot susceptible) and Huayouza62R (clubroot

resistant), were provided by Prof. Chunyu Zhang of the College of

Plant Science and Technology, Huazhong Agricultural University

(China) (Li et al., 2021). Menh, referred to as Menhir (clubroot

resistant), was provided by Norddeutsche Pflanzenzucht Hans
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Georg Lembke KG (NPZ) (Germany, https://www.proplanta.de/

pflanzenbauberater/sorten/menhir-winterraps-hauptfruchtanbau_

sks_4351raw1.html). Meanwhile, cultivars C36 and H62 are

conventional hybrids without any clubroot resistance genes.

H62R was generated by crossbreeding with H62 (Brassica napus,

recipient parent) and CR Shinki (Chinese cabbage, CRb, donor

parent). Menh was generated by crossbreeding with clubroot-

resistant (P. brassicae pathotype 3) Mendel. Resting spores were

extracted from galled root tissue collected from Brassica napus

‘Chuanyou 81’ in Shifang City, Sichuan Province. Resting spore

suspensions were prepared as described in a previous study

(Strelkov et al., 2006). The spore suspension was adjusted to a

final concentration of 107 spores/mL. Each plant was inoculated

with 10 mL of resting spore suspension. The resting spore

suspension was injected into the soil close to the plant using a 10-

mL syringe to ensure successful infection.
2.2 Experimental design and rhizosphere
soil sample collection

All experiments were conducted in a greenhouse (23°C, 16-h

light/8-h dark). Organic matter soil was purchased from a local

market and directly used for plant cultivation without sterilization.

Four cultivars of oilseed rape were also planted separately in organic

matter soil in plugs (size: 540 mm × 280 mm), with each plug

containing 21 holes for sowing oilseed rape. Each cultivar of oilseed

rape was planted with a total of six plugs. Three plugs of plants per

cultivar with a total of 63 plants were inoculated by resting spore

suspensions of P. brassicae at 7 days; the rest of the three plugs of

plants were treated with sterile water as the control treatment. For

the P. brassicae-treated group, clubroot incidence (CI) and the

disease severity index (DSI) of clubroot in each plug were calculated

after 40 days of inoculation, and the rhizosphere soil of all diseased

plants in the same plug were collected simultaneously into a single

bag (Kuginuki et al., 1999). Regarding the control treatment, the

rhizosphere soil of all plants in the same plug was also collected

simultaneously into a single bag. Finally, a total of 24 rhizosphere

soil samples were collected, and each treatment contained three

replicates for the subsequent sequencing.

Collection and pretreatment of rhizosphere soil were done as

described in a previous study (Edwards et al., 2015). The soil that

remained tightly adhered to the roots after intense shaking was used

as the rhizosphere soil sample. Root samples were collected into a

50-mL centrifuge tube with 25 mL of 1× PBS solution (137 mM
TABLE 1 Summary of oilseed rape cultivars used in this study.

Sample Year Resource CR locus Gene source Reference

Chuanyou36 (C36) 2011 China No – Jiang et al., 2011

Huayouza62 (H62) 2011 China No – –

Huayouza62R (H62R) 2021 China CRb Gelria R Li et al., 2021

Menhir 2015 Germany Unknown Unknown
North German plant
breeding
Hans-Georg Lembke KG
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NaCl, 2.7 mM KCl, 10 mMNa2HPO4·12H2O, and 2 mM KH2PO4).

The mixture was sonicated at 40 Hz for 1 min and then shaken to

separate rhizosphere soil from the roots. The rhizosphere soil was

then transferred to a new sterile 50-mL centrifuge tube and

centrifuged at 9,000 rpm for 5 min, after which the precipitated

rhizosphere soil was subjected to freeze drying (BILON-FD80AD,

Shanghai Bilang Instrument Manufacturing Co., Ltd., China). The

dry rhizosphere soil was then homogenized by grinding

(Tissuelyser-48, Jingxin, China). Finally, the processed samples

were stored at -80°C for the subsequent 16S rRNA and

metagenome sequencing.
2.3 DNA extraction and 16S
rRNA sequencing

Microbial DNA was extracted from 5 g of rhizosphere soil

samples of oilseed rape using the E.Z.N.A.® stool DNA Kit

(Omega Bio-tek, Norcross, GA, U.S.) according to the

manufacturer’s instructions. DNA samples were prepared and

stored at -80°C for the subsequent 16S rRNA and metagenomic

sequencing. The V3–V4 region of the 16S rRNA gene was PCR-

amplified (95°C for 2 min, followed by 25 cycles at 95°C for 30 s, 55°C

for 30 s, 72°C for 30 s, and a final extension at 72°C for 5 min) to

investigate bacterial communities using the primers 338F (5′-
ACTCCTACGGGAGGCAGCA-3′) and 806R (5′-GGACTACHV
GGGTWTCTAAT-3′) (Mori et al., 2013). PCR reactions were

performed in triplicate 20-mL mixtures containing 4 mL of 5×

FastPfu buffer, 2 mL of 2.5 mM dNTPs, 0.8 mL of each primer (5

mM), 0.4 mL of FastPfu Polymerase, and 10 ng of template DNA. The

PCR products were detected using 1.5% agarose gel electrophoresis

and further purified using an AxyPrepTM DNA Gel Extraction Kit

(Axygen Scientific, USA). PCR products were quantified using

Qubit®3.0 (Life Invitrogen) and pooled in equimolar

concentrations of 10 ng/mL. Paired-end sequencing was performed

on an Illumina HiSeq 2500 platform at Beijing Biomarker

Technologies Co., Ltd., Beijing, China. Microbial bioinformatic

analysis was performed using QIIME 2 2021.11 (Bolyen et al.,

2019). The raw sequencing data was demultiplexed and filtered

using the q2-demux plugin followed by denoising with DADA2

(Callahan et al., 2016). The phylogenetic affiliation of each 16S rRNA

gene sequence was analyzed using RDP Classifier (http://

rdp.cme.msu.edu/) against the silva (SSU132) 16S rRNA database

using a confidence threshold of 70% (Amato et al., 2013).
2.4 Metagenomic sequencing

Total DNA was also extracted from the above-mentioned

rhizosphere soil samples using the E.Z.N.A.® Viral DNA Kit

(Omega Bio-tek, Norcross, GA, USA) according to the

manufacturer’s protocols. High-quality DNA sample (OD260/280

= 1.8–2.2, OD260/230 ≥ 2.0) was used to construct a sequencing

library. Metagenomic shotgun sequencing libraries were

constructed and sequenced at Shanghai Biozeron Biological

Technology Co., Ltd. Briefly, for each sample, 1 mg of genomic
Frontiers in Plant Science 04
DNA was sheared by Covaris S220 Focused-ultrasonicator

(Woburn, MA, USA), and sequencing libraries were prepared

with a fragment length of approximately 450 bp. All samples were

sequenced using the Illumina NovaSeq 6000 platform at Shanghai

Biozeron Biotechnology Co., Ltd., Shanghai, China.

Raw sequence reads underwent quality trimming using

Trimmomatic v0.36 to remove adaptor contaminants and low-

quality (quality below 20 and shorter than 50 bp) reads (Bolger

et al., 2014). The taxonomy of clean reads for each sample was

determined by Kraken2 using the customized kraken database. The

abundances of taxonomy were estimated using Bracken (https://

ccb.jhu.edu/software/bracken/) which can produce accurate

species- and genus-level abundance even in multiple near-

identical species. Clean sequence reads were assembled with

MegaHit (v1.1.1-2-g02102e1). Assembled contigs were predicted

using METAProdigal (v2.6.3), and a set of unique genes were

generated using CD-HIT. Gene prediction was generated using

MetaGeneMark software to identify coding regions in the genome.

A non-redundant genome set (95% similarity threshold, 90%

coverage threshold) was conducted using MMseq2 software. GO

(Gene Ontology) annotation was performed using the goatools

package. The unique gene set was first translated into protein

sequences and then searched against the NCycle database (Tu

et al., 2019) using DIAMOND (Buchfink et al., 2015) to identify

the gene functions with the following filter parameters: evalue

0.00001, identity 90%. CAZymes were annotated using HMMER

(v.3.2.1) to match the protein sequences to entries in the hidden

Markov model (HMM) libraries of CAZyme (carbohydrate-active

enzymes database) families downloaded from the CAZy (Lombard

et al., 2014) database (http://www.cazy.org/, v12). KEGG (Kyoto

Encyclopedia of Genes and Genomes) ortholog annotation was

performed using KofamScan (https://www.genome.jp/tools/

kofamkoala/) with the HMMSEARCH package (https://

www.ebi.ac.uk/Tools/hmmer/search/hmmsearch).
2.5 Bioinformatic analyses

The composition of the rhizosphere bacterial community at the

phylum level based on the OTUs (operational taxonomic units) data

was generated using the ggplot2 package in R (v 4.3.1). The a-
diversity of the bacterial community was estimated using the non-

parametric Shannon and Chao1 indices. A principal coordinate

analysis (PCoA) based on Bray–Curtis distance metrics was

performed with R (version 4.3.1) using the vegan package to

explore differences in bacterial community compositions between

clubroot-susceptible and clubroot-resistant cultivars of oilseed rape.

The Bray–Curtis distance was generated based on OUT datasets at

the genus level. Multivariate analysis of variance (MANOVA) was

conducted based on Bray–Curtis distance metrics to further confirm

the observed differences. The heatmap of the down- and upregulation

of bacterial genera in the four cultivars of oilseed rape was calculated

based on the relative abundance of each bacterial genera data in all

the sequencing samples. Significance analysis of bacterial genera in

the four cultivars of oilseed rape was generated using the STAMP

software. Commonality analysis of variation in bacterial genera
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between the four cultivars was performed using an upset-venn

diagram. The upset-venn diagram was completed using Wekomo

Bioincloud (https://www.bioincloud.tech) (Gao et al., 2024).

Based on the disease index of clubroot and commonality analysis of

variation in bacterial genera between the four cultivars, C36 and H62

were classified as clubroot-susceptible types, and H62R and Menhir

were classified as clubroot-resistant types (Table 2; Figure 1F).

The averages of sequencing data from two cultivars representing the

clubroot-susceptible or clubroot-resistant type data were used for the

subsequent analysis. The bubble diagram was completed using

Wekomo Bioincloud. Microbial co-occurrence networks were used

to uncover the potential interactions between rhizosphere microbiomes

for clubroot-susceptible and clubroot-resistant oilseed rape cultivars

with or without P. brassicae treatment. For each treatment, we

constructed one network to display the co-occurrence patterns of

bacterial ASVs (amplicon sequence variants) in the rhizosphere with

or without exposure to P. brassicae infection. Bacterial ASVs (with a

relative abundance >0.1% for at least one sample) in the rhizosphere

were selected for network construction. A pairwise Spearman

correlation matrix was calculated with the “corr.test” function in the

psych package in R (version 4.3.1). Robust correlations with Spearman’s

correlation coefficients (p) > 0.6 or < -0.6 and p < 0.01 were used to

construct networks. Network properties were performed in the igraph

package in R (version 4.3.1). SIMPER (similarity percentages) analysis,

which was completed based on the abundance data of bacterial ASVs

using Wekomo Bioincloud, was used to identify the key bacterial

genera that contribute significant differences in the rhizosphere

bacterial co-occurrence network between susceptible and resistant

cultivars. The mean relative abundance of bacterial genera was

generated using the ggplot2 package in R (version 4.3.1). Alpha and

beta diversity of GO, KEGG, and CAZy pathways were performed

using the ggplot2 package in R (version 4.3.1). Significant difference

analyses of the relative abundance of the KEGG pathway were

completed using the STAMP software.
2.6 Data availability

The 16S rRNA ampl icon data (SAMN40276299-

SAMN40276322) and metagenome data (SAMN40350186-
Frontiers in Plant Science 05
SAMN40350209) associated with this study have been deposited

in the NCBI sequence read archive (SRA) under project accession

PRJNA1084241. Source data have been provided in this article.
3 Results

3.1 Diversity of rhizosphere bacterial
communities among the four oilseed rape
cultivars infected with P. brassicae

The greenhouse experiment revealed that the four oilseed rape

cultivars had varying susceptibility to P. brassicae infection. Data of

CI and DSI showed that C36 andH62 cultivars were more susceptible

than H62R and Menhir cultivars to P. brassicae infection (Table 2).

We also tested rhizosphere bacterial community diversity in all

treatments through 16S rRNA sequencing. A total of 794,568 16S

rRNA gene reads were obtained from 16S rRNA sequencing data of

all samples, with 2,277 bacterial zero-radius OTUs identified. The

rhizosphere bacterial community in all samples was mainly

dominated by phylum Proteobacteria (reads: 229,250),

Planctomycetota (reads: 102,023), Acidobacteriota (reads: 96,102),

Chloroflexi (reads: 68,968), Actinobacteriota (reads: 63,380),

Gemmatimonadota (reads: 60,356), and Bacteroidota (reads:

31,054) (Figure 1A). The infection of P. brassicae did not

significantly affect the rhizosphere bacterial a-diversity of oilseed

rape at 40 dpi. Compared with the control group, the bacterial

Shannon (6.58–6.78) and Chao1 (1,237–1,483) indices showed no

significant difference in the four cultivars that were treated for P.

brassicae (P > 0.05, Figure 1B). However, shifts in the rhizosphere

bacterial communities were varied in the four cultivars under P.

brassicae infection. PCoA analysis at the genus level indicated a

significant difference in the structure of the rhizosphere bacterial

community between C36 and Menhir cultivars in the control

treatment, excluding H62 and H62R (Figure 1C). Consistently,

MANOVA analysis confirmed that the cultivar type was the main

driver of rhizosphere bacterial b-diversity under normal growth

conditions (R2 = 0.58, P < 0.001). However, compared with the

control, the responses among the four cultivars differed when infected

with P. brassicae, suggesting that the rhizosphere bacterial
TABLE 2 Summary of clubroot disease indices in all the treatment groups in this study.

Sample Treatment Number of plants Clubroot incidence (%) Disease severity index

C36C Control 63 - -

H62C Control 63 - -

H62RC Control 63 - -

MenhC Control 63 - -

C36T P. brassicae-treated 63 90.5 ± 7.8 a 74.1 ± 3.3 a

H62T P. brassicae-treated 63 79.4 ± 6.0 a 61.4 ± 6.4 b

H62RT P. brassicae-treated 63 39.7 ± 9.8 b 20.1 ± 6.5 c

MenhT P. brassicae-treated 63 28.6 ± 11.7 b 11.1 ± 3.9 c
Different letters (a,b,c) represent significant differences among the treatments (Tukey test. P < 0.05, n = 3).
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community changed in response to P. brassicae infection among the

four cultivars (R2 = 0.64, P < 0.001, Figure 1C).

Compared to the controls, the relative abundance of 76 (76/443,

17.2%) bacterial genera was significantly changed in the four
Frontiers in Plant Science 06
cultivars when infected with P. brassicae (P < 0.05). A relative

abundance of 40 bacterial genera was also significantly

downregulated in the four cultivars when infected with P.

brassicae, wherein nine bacterial genera underwent different
FIGURE 1

Comparison of rhizosphere bacterial diversity among the four of oilseed rape cultivars with or without P. brassicae. (A) Composition of rhizosphere
bacterial community in the phylum level in all samples. C36C, H62C, H62RC, and MenhC means cultivars Chuanyou36, Huayouza62, Huayouza62R,
and Menhir treated with water (Control). C36T, H62T, H62RT, and MenhT means four oilseed rape cultivars treated with resting spores of P.
brassicae. (B) Rhizosphere bacterial a-diversity (Shannon and Chao1 indices) in all samples. “n.s.” means no significant difference between two
samples (P > 0.05, n = 3, Student's t-test). (C) PCoA of rhizosphere bacterial community in C36, H62, H62R, and Menh of oilseed rape cultivars
between the P. brassicae-treated and control groups. (D) Downregulation of bacterial genera in the four cultivars with P. brassicae-treated group
compared with those of controls. “*, **” indicate significant differences among the samples (P < 0.05 and P < 0.01, n = 3, Student's t-test).
(E) Upregulation of bacterial genera in the four cultivars with P. brassicae treatment compared with the controls. “*, **” indicate significant
differences among the samples (P < 0.05 and P < 0.01, n = 3, Student's t-test). (F) Commonality analysis of variation in bacterial genera among the
four cultivars based on the statistical results shown in (E, F).
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changes in the four cultivars (Figure 1D). The rest of the 36 bacterial

genera in the relative abundance level was significantly upregulated

in the four cultivars (Figure 1E). The commonality analysis of

variation in bacterial genera based on the upset-venn diagram

showed that the four cultivars could be classified into two

categories, C36 and H62 (top 2 intersection size: 8) and H62R

andMenh (top 1 intersection size: 14) (Figure 1F)—for example, the

relative abundance of Gemmatimonas, Glutamicibacter, and

Tumebacillus, respectively, were significantly downregulated in

the C36 and H62 cultivars. The relative abundance of

Limnobacter was significantly upregulated in the C36 and H62

cultivars, while it was significantly downregulated in the H62R

cultivar (Figure 1D). The relative abundance of Luteimonas,

Dokdonella, Arenimonas, Woeseia, Methylophaga, and Cavicella

were only significantly upregulated in the H62R and Menh

cultivars (Figure 1E).
3.2 Differences in rhizosphere bacterial
communities among different cultivars
with varying susceptibility to infections by
P. brassicae

Two categories, clubroot-susceptible (C36 andH62) and clubroot-

resistant cultivars (H62R andMenh), were classified based on DSI and

commonality analysis of variation in rhizosphere bacterial genera for

subsequent analysis (Table 2; Figure 1F). Compared with the control

groups, the bacterial Shannon index showed no significant differences

in both clubroot-susceptible and clubroot-resistant cultivars infected

with P. brassicae (P > 0.05, Figure 2A). However, the bacterial b-
diversity showed significant differences among the four groups (R-C,

R-T, S-C, and S-T), indicating an obvious difference in bacterial

community composition between them (R2 = 0.15, P < 0.05,

Figure 2B). Compared to the control group, a total of 49 bacterial

genera with relative abundance levels were significantly changed in the

clubroot-susceptible (N = 22) or clubroot-resistant (N = 24) cultivars

under P. brassicae infestation (Figure 2C). Meanwhile, the relative

abundance of Pseudomonas and Amaricoccus were significantly

upregulated in both susceptible and resistant cultivars. Some

bacterial genera, such as Limnobacter, Thiobacillus, and

Anaeromyxobacter, were significantly upregulated in susceptible

cultivars, while thy were downregulated in resistant cultivars.

Furthermore, Nitrosomonas, Tumebacillus, and Halomonas were

significantly downregulated in susceptible cultivars; however, these

were upregulated in resistant cultivars.

Moreover, a rhizosphere bacterial co-occurrence network was

generated to evaluate the interaction of rhizosphere bacterial

communities of oilseed rape with or without P. brassicae infection.

Compared to the control group (susceptible control, S-C), increased

connectedness and robustness were exhibited in the rhizosphere

bacterial community in susceptible cultivars infected with P.

brassicae (susceptible treat, S-T) (Figure 2D). Consistently, the

number of nodes and edges in the bacterial co-occurrence network

in the S-T treatment was also higher than those in the S-C treatment

group (S-C: nodes = 1,444, edges = 6,611, S-T: nodes = 1,962, edges =
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14,376). On the contrary, similar changes were not observed in

clubroot-resistant cultivars, while the connectedness and robustness

of the bacterial co-occurrence network was slightly affected by P.

brassicae infections (Figure 2D). The number of nodes and edges in the

bacterial co-occurrence network showed a similar level between R-T

and R-C treatments (R-C: nodes = 1,514, edges = 10,096; R-T: nodes =

1,552, edges = 8,441), while it was lower than those in the S-T

treatment (Figure 2D). The above-mentioned results implied that P.

brassicae infection had a significant impact on the interaction of the

rhizosphere bacterial community in susceptible cultivars. The SIMPER

analysis identified the top 10 bacterial genera responsible for

differences in microbial co-occurrence network between susceptible

and resistant cultivars (Figure 2E). Meanwhile, seven bacterial genera

coexist in both susceptible and resistant cultivars, with the top three

contributing bacterial genera being unclassified_Gemmatimonadaceae,

unclassified_Pirellulaceae, and Pirellula. Compared to the controls, the

relative abundance of unclassified_Gemmatimonadaceae was

upregulated in resistant cultivars when subjected to P. brassicae

infestation, while it was significantly downregulated in susceptible

cultivars (P < 0.05) (Figure 2F). However, the relative abundance of

unclassified_Pirellulaceae and Pirellula, respectively, were

downregulated in resistant cultivars, while it was upregulated in

susceptible cultivars (P > 0.05).
3.3 Functional diversity in the rhizosphere
microbial community of clubroot-
susceptible and clubroot-resistant
oilseed rape cultivars exposed to
P. brassicae infestation

Metagenomic analysis was used to investigate functional

differences in the rhizosphere microbial community between

clubroot-susceptible and clubroot-resistant cultivars when exposed

to P. brassicae infection. An analysis of functional diversity annotated

based on GO and KEGG databases showed that there was a

significant difference between susceptible and resistant cultivars

with or without P. brassicae infestation. Compared to the controls,

rhizosphere microbial functional a- and b-diversity based on GO and

KEGG databases showed significant changes in susceptible cultivars

exposed to P. brassicae infection, while there was no significant

change in resistant cultivars (Figures 3A, B). In contrast to the two

types previously mentioned, rhizosphere microbial functional a- and
b-diversity based on CAZy database showed no significant changes in
both of the two cultivars exposed to P. brassicae infection compared

with the controls (Figure 3C).

An analysis of KEGG pathways showed that the relative

abundance of multiple pathways was significantly changed in

susceptible and resistant cultivars under P. brassicae infection

compared with the controls. In susceptible cultivars, the relative

abundance of 11 pathways were significantly downregulated when

exposed to P. brassicae infection compared with the controls, while

the other seven pathways were significantly upregulated

(Figure 3D). In the resistant cultivars, the relative abundance of

10 pathways was significantly downregulated when exposed to P.
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brassicae infection compared with the controls, while the other nine

pathways were significantly upregulated (Figure 3D). Among them,

most of the pathways belonged to microbial metabolism, and three

pathways (biosynthesis of secondary metabolites, microbial

metabolism in diverse environments, and nitrotoluene

degradation) showed significant changes in both susceptible and

resistant cultivars. However, microbial metabolism in diverse

environments and nitrotoluene degradation pathways showed

opposite changes between susceptible and resistant cultivars. Both
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of the two pathways were significantly upregulated in the

susceptible cultivars under P. brassicae infection compared with

the controls, while they were significantly downregulated in

resistant cultivars.

Subsequently, we focused on the variation of genes and

pathways in the nitrogen (N) cycle between susceptible and

resistant cultivars with or without P. brassicae infection. A total

of 351 unigene protein sequences (identity ≥90%) were matched to

23 genes involved in the N cycle pathway, including nitrification
FIGURE 2

Comparison of rhizosphere bacterial community diversity between clubroot-susceptible and resistant oilseed rape cultivars. (A) Rhizosphere
bacterial a-diversity (Shannon index) in clubroot susceptible cultivars treated with water (C36 and H62, S-C) and P. brassicae (S-T); clubroot-
resistant cultivars treated with water (H62R and Menhir, R-C) and P. brassicae (R-T). “n.s.” means no significant difference between two samples (P >
0.05, n = 3, Student's t-test). (B) PCoA analysis of rhizosphere bacterial community structure between susceptible and resistant cultivars.
(C) Comparison analysis of bacterial genera that underwent significant changes in the susceptible and resistant cultivars. FC means fold change in
relative abundance level between the treated and control samples. RA means the relative abundance of bacterial genus in each sample. The blue dot
means bacterial genera in relative abundance levels that only showed significant changes in susceptible cultivars. The red dot means bacterial
genera in relative abundance levels that only showed significant changes in resistant cultivars. The purple dot indicates bacterial genera in relative
abundance level that showed significant changes in both susceptible and resistant cultivars. (D) Rhizosphere bacterial co-occurrence networks
between clubroot-susceptible and resistant oilseed rape cultivars treated with or without P. brassicae. (E) SIMPER analysis of the top ten bacterial
genera that contribute to differences in the bacterial co-occurrence network in the susceptible and resistant cultivars between the control and P.
brassicae-treated groups. *, *** indicate significant differences among the samples (P<0.05, P<0.005, n=6, Permutation test). (F) Mean relative
abundance of the top 10 contributing bacterial genera in the susceptible and resistant cultivar samples. “ns” means no significant difference between
two samples (P > 0.05, n = 6, Student's t-test). “*” indicate significant differences among the samples (P < 0.05, n = 6, Student’s t-test).
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(amoB, hao, and nxrB; number of unigenes = 3), denitrification

(nirS, nirK, norB, and nosZ; number of unigenes = 249), nitrogen

fixation (nirH; number of unigenes = 4), assimilatory nitrate

reduction (nasA, narB, and nirA; number of unigenes = 8),

dissimilatory nitrate reduction (narG, narH, napA, and nrfA;

number of unigenes = 14), and organic nitrogen metabolism

(nmo, gdh_K00261, gdh_K00262, gdh_K15371, glsA, glnA, ureA,

and ureC; number of unigenes = 73) (Figure 4A). Among them, 16

genes were further analyzed. Compared to the controls, multiple

genes showed different changes between susceptible and resistant

cultivars when exposed to P. brassicae infection. In susceptible

cultivars, we observed a higher abundance of genes associated to

nitrification (amoB and nxrB), dissimilatory nitrate reduction

(narH and nrfA), and denitrification (nirS, nirK, norB, and nosZ)

when exposed to P. brassicae infection compared with the controls

(Figure 4B). A variation in the nxrB gene abundance in the

nitrification pathway (NO2
-→NO3

-) indicated an accelerated

process in NO3
- synthesis, which was consistent with the results

above (Figure 2). However, in the resistant cultivars, a number of

genes associated with assimilatory nitrate reduction (nasA, narB,

and nirA), denitrification (nirS and nosZ), nitrogen fixation (nirH),

and nitrification (amoB and hao) were upregulated when infected

with P. brassicae compared with the controls, while the other genes

associated with denitrification (nirK) and organic nitrogen

metabolism (nmo) were downregulated. Additionally, a variation

in the abundance of nasA, narB, and nirA genes in the assimilatory

nitrate reduction pathway indicated an accelerated process in

NO3
- assimilation.
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4 Discussion

Alterations in the rhizosphere microbiome always occur in

plants after being infected by soil-borne pathogens; this

phenomenon has been reported in several crop/pathogen disease

systems, including clubroot (Kwak et al., 2018; Hu et al., 2020; Ni

et al., 2022). However, studies on the differences in response of

rhizosphere bacterial community to P. brassicas infection between

clubroot-susceptible and clubroot-resistant cultivars are limited.

Herein we investigated the variation in rhizosphere bacterial

community in oilseed rape cultivars with different susceptibility to

P. brassicae infection. Our results revealed a distinct shift in

rhizosphere bacterial communities in the four cultivars when

infected with P. brassicae compared with the control, and this

also varied among the cultivars (Figure 1). The results of this study

indicated that the response of rhizosphere bacterial community to

P. brassicae infection was different among the four cultivars, and the

cultivar type was the main driving factor that led to variations in the

rhizosphere bacterial community (Figure 1). Our results are

consistent with those of previous studies, indicating that the host

genotype has a significant impact on shaping the plant rhizosphere

microbial community, which has also been extensively confirmed in

other crops (Zhang et al., 2019)—for example, the Indica variety of

rice showed a higher nitrogen use efficiency than that of the

Japonica variety through recruiting more microbial taxa with

nitrogen metabolism functions, which is determined by a nitrate

transporter and sensor named NRT1.1B. Moreover, this distinct

shift in rhizosphere bacterial community is a result of the
FIGURE 3

Functional diversity of rhizosphere microbiomes between clubroot-susceptible and resistant oilseed rape cultivars when exposed to P. brassicae
infestation. (A–C) Functional diversity (Shannon index and PCoA) of rhizosphere microbiomes based on GO, KEGG, and CAZy databases between
susceptible and resistant cultivars. Different letters represent significant differences among the treatments (P < 0.05, n = 6, Tukey test).
(D) Differential KEGG pathways of rhizosphere microbiomes in the susceptible and resistant cultivars between the control and P. brassicae-
treated groups.
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interaction between the host plant and P. brassicae. Previous studies

have also proven that a distinct transcriptome landscape existed in

the roots of clubroot-susceptible and clubroot-resistant Chinese

cabbage lines after P. brassicae infection, indicating an obvious

difference in clubroot resistance mechanisms and root exudations

(Jia et al., 2017). A variation in the root transcription landscape

could also lead to alterations in root metabolites, which, in turn,

may affect the rhizosphere bacterial community (Pedras et al., 2008;

Li et al., 2022). Moreover, shaping plant rhizosphere microbiomes

can be achieved through the secretion of root exudates (Hu et al.,

2018). In cereal crops such as wheat and maize, plant root would

release benzoxazinoids to alter root-associated fungal and bacterial

communities under a pathogen’s infestation.

Although four cultivars showed significant differences in their

rhizosphere bacterial community when infected with P. brassicae,

clubroot occurrence performance and commonality analysis of

variation in bacterial genera also confirmed that cultivars C36 and
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H62, H62R, and Menhir, could be classified into clubroot-susceptible

and clubroot-resistant types (Table 2; Figure 1). A comparative

analysis further revealed differences in rhizosphere bacterial

communities between clubroot-susceptible and clubroot-resistant

cultivars in response to P. brassicae infection (Figure 2). Compared

to the controls, some bacterial genera, such as Limnobacter,

Thiobacillus, Anaeromyxobacter Nitrosomonas, Tumebacillus, and

Halomonas, showed significant changes in relative abundance level

between susceptible and resistant cultivars when exposed to P.

brassicae infection. Meanwhile, Limnobacter, Thiobacillus, and

Anaeromyxobacter were reported to be associated with BNF

(biological N2 fixation) and were significantly upregulated in

susceptible cultivars infected with P. brassicae and were

downregulated in resistant cultivars. Additionally, Thiobacillus and

Anaeromyxobacter were reported to be associated with arsenite

oxidation-dependent biological nitrogen fixation, and Limnobacter

was reported to be associated with nitrification-anammox (PN/A)
FIGURE 4

Metagenomic analysis of nitrogen cycle pathways of rhizosphere microbiomes in susceptible and resistant cultivars. (A) Number of unigenes
annotated to genes related to the nitrogen cycle pathway. The color of the cake is consistent with that shown in (B), indicating the type of nitrogen
cycle pathway. (B) The red arrow indicates the nitrification pathway (amoB, hao, and nxrB) of the nitrogen cycle. The blue arrow indicates the
denitrification pathway (nirS, nirK, norB, and nosZ) of the nitrogen cycle. The purple arrow indicates the nitrogen fixation pathway (nifH) of the
nitrogen cycle. The green arrow represents the assimilatory nitrate reduction pathway (nasA, narB, and nirA) of the nitrogen cycle. The brown arrow
indicates the dissimilatory nitrate reduction pathway (narG, narH, napA, and nrfA) of the nitrogen cycle. The black arrow represents the organic
nitrogen metabolism pathway (nmo) of N cycle. “*” indicates significant differences among the samples (P < 0.05, n = 6, Student's t-test).
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processes (Li et al., 2023; Wang P. et al., 2024). Our results suggested

that variations in the relative abundance of those three bacterial

genera may lead to an accumulation of NO3
- and SO4

2- in the soil and

a reduction in pH value, which may be conducive to P. brassicae

infection by reducing the soil’s pH value (Wang et al., 2023).

Moreover, Nitrosomonas, Tumebacillus, and Halomonas were

significantly downregulated in susceptible cultivars but were

upregulated in resistant cultivars. Nitrosomonas, Tumebacillus, and

Halomonas were reported to be associated with nitrosation and

aerobic denitrification; variations in the relative abundance of those

bacterial genera have also been shown to lead to an accumulation of

NO3
- and SO4

2- in soil samples from susceptible cultivars (Arp et al.,

2002; Zhang et al., 2014; González-Domenech et al., 2010).

A variation in bacterial taxa is also reflected in microbial

interactions. The bacterial co-occurrence network also showed a

distinct interaction intensity within rhizosphere bacterial

communities in susceptible cultivars infected with P. brassicae

compared with the controls. Meanwhile, increased connectedness

and robustness of the bacterial co-occurrence network were observed

in susceptible cultivars exposed to P. brassicae infestation compared

with the controls, while there were slight changes in resistant cultivars.

The SIMPER analysis revealed that unclassified_Gemmatimonadaceae,

unclassified_Pirellulaceae, and Pirellula were the three most common

bacterial genera that contributed to the differences in bacterial co-

occurrence network between the P. brassicae-treated and control

samples in susceptible and resistant cultivars (Figure 2E). Among

them, the relative abundance of unclassified_Gemmatimonadaceae

was upregulated in resistant cultivars exposed to P. brassicae, while it

was significantly downregulated in susceptible cultivars (Figure 2F).

Gemmatimonadaceae was reported to be associated with plant root

metabolites, which had a negative correlation with organic acid and a

positive correlation with ketone content (Wang M. et al., 2024).

Flavonoids, a type of ketone, have been reported to be associated

with clubroot disease resistance in Arabidopsis thaliana (Päsold et al.,

2010). The relative abundance of unclassified_Pirellulaceae and

Pirellula was downregulated in the resistant cultivars when exposed

to P. brassicae, while it showed slight changes in susceptible cultivars.

Pirellula belonged to Planctomycetes and has been shown to be

associated with anaerobic ammonia oxidation (Huang et al., 2014).

In this study, a decrease in the relative abundance of Pirellula in

resistant cultivars may also lead to the degradation of NO3
- in the soil.

Variations in bacterial taxa and interaction within rhizosphere

bacterial communities may also be reflected in microbial metabolisms.

Functional diversity analysis based on metagenomic sequencing data

further confirmed that changes in bacterial communities resulted in

alterations in microbial metabolism. Our results showed that multiple

pathways associated with microbial metabolism were significantly

different in susceptible and resistant cultivars when exposed to P.

brassicae infection compared with the controls (Figure 3). Among

them, pathways associated with the nitrogen cycle exhibited distinct

differences between susceptible and resistant cultivars (Figure 3D). Our

results also demonstrated that the synthesis (nitrification) and

assimilation (assimilatory nitrate reduction) processes of NO3
-

content were promoted in susceptible and resistant cultivars,

respectively. Meanwhile, the abundance of nxrB gene related to

nitrification (NO2
-″NO3

-) was upregulated in susceptible cultivars
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exposed to P. brassicae infection compared with the control, while it

only changed slightly in resistant cultivars. Moreover, the expression of

nasA, narB, and nirA genes, which are related to assimilatory nitrate

reduction, was upregulated in resistant cultivars when exposed to P.

brassicae infections compared with the controls, while it was

downregulated in susceptible cultivars (Figure 4). In this study, the

differences in nitrification and assimilatory nitrate reduction pathways

between susceptible and resistant cultivars were due to rhizosphere

microbiomes in response to B. napus/P. brassicae interaction. Our

results suggested that NO3
- may be one of the critical factors that affect

B. napus/P. brassicae interaction and could reduce the incidence

of clubroot.

Nitrogen, which is widely considered as a central element in soil

ecosystems, has a huge impact on plant/pathogen interactions (Cui

et al., 2014). Meanwhile, nitrogen supply could enhance the

development of biotrophic pathogens, while the opposite effect is

observed for necrotrophic pathogens (Solomon et al., 2003; Mur

et al., 2016). The different forms of nitrogen supply (ammonium

NH4
+ or nitrate NO3

-) can have various effects on the occurrence of

plant disease due to differences in assimilation and metabolism

pathways (Mur et al., 2016). NO3
- feeding can strengthen host

hypersensitive response (HR)-mediated resistance through enhancing

the production of polyamines, while NH4
+ nutrition can attenuate host

defense. Regarding clubroot, although some studies suggest that the

occurrence of clubroot is reduced with the application of high-nitrogen

fertilizers, this may be attributed to the fact that oilseed rape requires a

relatively large amount of nitrogen fertilizer during its entire growth

period for growth and disease resistance (Gossen et al., 2014; Rathke

et al., 2005). However, recent studies have shown that a high nitrogen

supply could promote the occurrence of clubroot in susceptible B.

napus cultivars by regulating the transcriptomic profile of P. brassicae,

including pathogenicity-related genes (NUDIX and NEP-proteins) and

genes associated to obligate biotrophic functions (glutamine synthetase,

associated with nitrogen metabolism), whereas the effect differs in

resistant cultivars (Gazengel et al., 2021). The above-mentioned results

suggest that nitrogen supplymay be beneficial for P. brassicae infection.

Germination of P. brassicae’s resting spores is crucial for the occurrence

of clubroot disease. Recent studies have proven that a diverse bacterial

community, rather than root exudates, is necessary to stimulate the

germination of the resting spores of P. brassicae (Wang et al., 2023).

Meanwhile, the relative abundance of Sphingobacteriia, Flavobacteriia,

and Bacteroideteswas significantly enriched in the “high”-germination-

rate group, while Proteobacteria dominated in the “low”-germination-

rate group. Moreover, the addition of NO3
-, not NH4

+, was conducive

for the induction of the microbial community, leading to the

germination of resting spores. The NO3
- supply may be utilized as

nutrients by certain microorganisms and could enhance nitrogen cycle

pathways within microbial communities. The results of this study are

consistent with the conclusions of previous studies. The NO3
- synthesis

pathways in the rhizosphere microbiomes were promoted in

susceptible cultivars when exposed to P. brassicae infection compared

with the controls, while the NO3
- assimilation pathways in the

rhizosphere microbiomes were promoted in resistant cultivars.

Furthermore, in this study, variations in the NO3
- assimilation and

synthesis pathways in rhizosphere microbiomes were a result of the

occurrence of clubroot, suggesting that changes in rhizosphere
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microbial community were directed by the B. napus/P. brassicae

interaction. We considered that this rhizosphere microbial ecology

environment associated with NO3
- accumulation in the susceptible

cultivar may be conductive to the further development of clubroot. In

the clubroot-susceptible cultivar, once the host’s own defense system

was breached, P. brassicae may control the rhizosphere microbial

community to facilitate further infection by regulating the host’s

metabolism. However, in clubroot-resistant varieties, the rhizosphere

microbial community may be continuously manipulated by the host to

jointly resist the P. brassicae infection. The differences between

susceptible and resistant cultivars may be determined by their

distinct resistance mechanisms. Multiple studies have also shown

that Brassica crop roots showed different changes in genes,

transcription, metabolomics, and proteome perspectives after P.

brassicae infection, while the situation varied between susceptible and

resistant cultivars due to the CR gene (Chen et al., 2015; Zhang et al.,

2016; Pedras et al., 2008; Cao et al., 2008; Li et al., 2022). In this study,

although we revealed the differences in NO3
- assimilation and synthesis

pathways in the rhizosphere microbiomes between susceptible and

resistant cultivars after infection with P. brassicae, it is still unclear that

soil NO3
- participated in the interaction between hosts, P. brassicae,

and rhizosphere microbiomes. In this study, the results of microbial

diversity were conducted based on relative abundance indicators, and

we only focused on limited microbial taxa that were differentially

distributed among different samples. Hence, we might ignore those

microbial taxa that showed significant changes in absolute abundance

level across different samples while having similar relative abundance

levels, and these microbes might be crucial for regulating microbial

ecological functions. Moreover, all the conclusions obtained in this

study were completed in the greenhouse condition, so several

environmental impact factors, such as soil property, fertilizer regime,

and cultivation pattern, were overlooked compared to field

experiments. Our further study will validate the effect of NO3
-

pathway of microbial community on clubroot occurrence and clarify

the relationship between soil NO3
- content and microbial community

function.We will also investigate the succession pattern of soil nitrogen

cycling during the occurrence of the clubroot disease process, which is

conducive to clarify the occurrence mechanism of clubroot disease and

lay a theoretical foundation for clubroot disease control by using

soil microorganisms.
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Bhatnagar, S., et al. (2015). Structure, variation, and assembly of the root-associated
microbiomes of rice. Proc. Natl. Acad. Sci. U.S.A. 112, E911–E920. doi: 10.1073/
pnas.1414592112

Gao, Y. Y., Zhang, G. X., Jiang, S. Y., and Liu, Y. X. (2024). Wekemo Bioincloud: A
user-friendly platform for meta-omics data analyses. IMeta. 3, e175. doi: 10.1002/
imt2.175

Gazengel, K., Aigu, Y., Lariagon, C., Humeau, M., Gravot, A., Manzanares-Dauleux,
M. J., et al. (2021). Nitrogen supply and host-plant genotype modulate the
transcriptomic profile of Plasmodiophora brassicae. Front. Microbiol. 12.
doi: 10.3389/fmicb.2021.701067
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