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of the transcriptome and
weather indices through WGCNA
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Ermanno Di Serio2, Elisabetta Nicolosi 1, Filippo Ferlito3

and Angela Roberta Lo Piero1*

1Department of Agriculture, Food and Environment, University of Catania, Catania, Italy, 2Department
of Agricultural Sciences, University of Naples Federico II, Naples, Italy, 3Council for Agricultural
Research and Economics, Research Centre for Olive, Fruit and Citrus Crops, Acireale, CT, Italy
The grapevine (Vitis spp., family Vitaceae) is characterized by marked phenotypic

plasticity. Its ability to withstand specific environmental conditions depends on

the activation of highly coordinated responses resulting from interactions among

genotypes (G) and environmental factors (E). In this study, the transcriptomes of

commercially ripe berries of the Cabernet Sauvignon and Aglianico genotypes

grown in open fields at three different sites in central-southern Italy (Campania,

Molise and Sicily) were analyzed with RNA sequencing. These transcriptomic data

were integrated with a comprehensive set of weather course indices through

weighted gene co-expression network analysis (WGCNA). A total of 11,887

differentially expressed genes (DEGs) were retrieved, most of which were

associated with the Aglianico genotype. The plants from the Sicilian site

presented the greatest number of DEGs for both genotypes. Most of the

weather course data (daily maximum air temperature, relative humidity, air

pressure, dew point, and hours of sun radiation) were significantly correlated

with the “lightcyan1” module, confirming WGCNA as a powerful method for

identifying genes of high biological interest. Within this module, the gene

encoding the ACA10 cation transporter was highly expressed in plants of both

genotypes fromCampania, where the lowest anthocyanin content was recorded.

The transcriptome was also correlated with quality traits, such as total soluble

solids and polyphenol content. This approach could lead to the identification of a

transcriptomic profile that may specifically identify a genotype and its growing

site and to the discovery of hub genes that might function as markers of

wine quality.
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1 Introduction

The phenotype of every organism is determined by the

combination of its genotype (G), the environment (E) and the

genotype-dependent response to different environments, or the

genotype × environment (GxE) interaction (Grishkevich and

Yanai, 2013; El-Soda et al., 2014). Phenotypic plasticity is the

ability of organisms with the same basal genotype to express

different phenotypes depending on the circumstances, and this

ability has gained ample attention from researchers recently

because of the challenges posed by climate change (Nicotra et al.,

2010). The stability of crop growth and yields must be maintained

over diverse and dynamic environments, and understanding how a

genotype responds to and interacts with the environment is

necessary to predict the effects of climate change on ecology and

modern agriculture (Fournier-Level et al., 2011; Sasaki et al., 2015;

Del Santo et al., 2018). The grapevine (Vitis spp., family Vitaceae) is

a fruit crop used to produce food and beverages that is economically

important worldwide. This crop is characterized by pronounced

phenotypic plasticity, which often results in large variations in the

metabolic composition of the berry (Gomez et al., 2024).

Phenotypic plasticity is advantageous because it enables the

production of a diverse range of wines from the same cultivar

and facilitates the adaptation of existing cultivars to different

growing regions (Keller, 2010; Dai et al., 2011). Hence,

understanding the adaptability and phenotypic plasticity of vine

cultivars is becoming fundamental to support the resilience of local

viticultural systems and preserve the typical characteristics of their

wines (Nicolosi et al., 2022).

In the Mediterranean region, a decrease in rainfall coupled with

an increase in temperature are expected (IPCC, 2022), leading to both

a shift in suitable areas to satisfy the specific thermal requirements of

grapevine cultivars and a decline in soil water availability.

Consequently, the combination of stressors and expected water

scarcity will directly affect grape and wine quality (Duchêne, 2016;

Bonfante et al., 2018). However, cultivated grapes possess a specific

biological ability to adapt to changes in climate; this ability is

attributed to the occurrence of a comprehensive reorganization of

whole-genome expression, involving changes at the transcriptional,

epigenetic and network levels. This adaptation might be best

exemplified by the concept of terroir, which encompasses the

combined influences of varietal attributes, climate, soil conditions,

winemaking practices, and their multitude of interactions (Bonfante

and Brillante, 2022; Iorizzo et al., 2023).

Previous investigations of grape GxE interactions revealed a

high level of differentiation among vineyards according to their
Abbreviations: WGCNA, weighted gene co-expression network analysis; CAM,

Campania; MOL, Molise; SIC, Sicily; A, Aglianico; C, Cabernet Sauvignon;

A_CAM, Aglianico Campania; A_MOL, Aglianico Molise; A_SIC, Aglianico

Sicily; C_CAM, Cabernet Sauvignon Campania; C_MOL, Cabernet Sauvignon

Molise; C_SIC, Cabernet Sauvignon Sicily; DMAT, daily maximum air

temperature; RH, relative humidity; AP, air pressure; DP, dew point; TP, total

precipitation; ET, evapotranspiration; HSR, hours of sun radiation; TSS, total

soluble solids; TA, titratable acidity; PP, polyphenols; ANTH, anthocyanins; MI,

maturity index.
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geographical origin (Anesi et al., 2015; Xie et al., 2017; Dal Santo

et al., 2013, 2018). Dal Santo and coworkers investigated the

phenotypic plasticity of grapevines by comparing the berry

transcriptome of a single clone of the vegetatively propagated

cultivar Corvina across eleven vineyards in three major wine

production macro areas of the Verona region (Bardolino,

Valpolicella, and Soave) (Dal Santo et al., 2013). Subsequently,

Anesi et al. (2015) characterized the metabolome and transcriptome

of berries of the Corvina variety cultivated in seven different

vineyards in similar macrozones in the province of Verona

(Garda Lake, Valpolicella and Soave). Both studies revealed a

clear terroir-specific effect on the transcriptome and metabolome

such that each vineyard could be distinguished by a unique profile

of specific metabolites (Dal Santo et al., 2013; Anesi et al., 2015).

More recently, the phenotypic plasticity and GxE interactions of

two grapevine varieties were investigated by transcriptome analysis

of berries from three central Italian locations (Bolgheri on the

Tuscany coast, Montalcino in the Tuscany hills and Riccione on the

Adriatic coast) (Dal Santo et al., 2018). The results confirmed the

previous findings (Dal Santo et al., 2013), indicating that a) the

transcriptomic plasticity of berries is underpinned by broad

transcriptional reprogramming, b) within-cultivar diversity may

modulate gene expression in response to environmental cues, and c)

the location of the vineyard plays an important role in determining

the performance of each genotype by enhancing qualitative traits

related to wine aroma and color. A common characteristic of these

studies is that the different environments were very close to each

other in regions characterized by similar latitudes and altitudes.

Weighted gene co-expression network analysis (WGCNA) is a

systems biology method that clusters genes with similar expression

patterns into the same module according to the correlation between

gene expression and the interrelatedness of life activities in plants.

Therefore, WGCNA has been widely used to study the biological

relationships between co-expression networks and phenotypic traits

(Langfelder and Horvath, 2008). In recent years, WGCNA has been

successfully used to identify hub genes and pathways involved in the

response of several species, including poplar (Wang et al., 2023),

melon (Shen et al., 2022), sugarcane (Tang et al., 2023), maize (Yu

et al., 2023), lemon (Sicilia et al., 2024) and grape (Villano et al.,

2023), to biotic and abiotic stress. In the grape study, the integration

of metabolome and transcriptome data enabled the identification of

15 hub genes that are highly correlated with terpenoids, branched-

chain amino acids and lipids, offering new insights into the regulation

of aroma-related biosynthesis pathways in grape varieties used for

high-quality wine production (Villano et al., 2023).

In this study, we explored the GxE interactions of two red

grape varieties, the internationally renowned Cabernet Sauvignon

and the indigenous Italian variety Aglianico. Aglianico is a

traditional cultivar primarily grown in the central-southern

Italian regions of Campania and Basilicata, whereas Cabernet

Sauvignon, originally from France, is now grown extensively

worldwide. The genomes of both varieties have been fully

sequenced (Chin et al., 2016; Minio et al., 2017; Aversano et al.,

2024) and served as important reference points for our

investigation. The transcriptomes of fully ripe berries grown

under open-field conditions at three different sites in central-
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https://doi.org/10.3389/fpls.2024.1498649
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Sicilia et al. 10.3389/fpls.2024.1498649
southern Italy (Sicily, Molise and Campania) were analyzed

using RNA sequencing (RNAseq). Furthermore, the relationship

between the transcriptomic outcome and the growth site

was revealed using WGCNA. The RNAseq results were

correlated with several weather course parameters, which

together constituted the specific climatic profile of the site, as

well as with quality traits, including total soluble solid,

anthocyanin and polyphenol contents. To our knowledge, this is

the first time that transcriptomic data have been correlated with

weather course parameters and quality traits in the study of

grapes, leading to the discovery of hub genes that might

function as markers of a particular growth site or quality trait.
2 Materials and methods

2.1 Site description, plant material and
trial design

The research was conducted in three commercial vineyards

located in three regions of central-southern Italy: Campania

(CAM), Molise (MOL) and Sicily (SIC), each characterized by

different altitudes and latitudes. The vineyard geo-references and

elevations are detailed in Online Resource 1: Supplementary Table

S1. For each region, two vineyards were chosen. Two black (Vitis

vinifera L.) wine grape cultivars, Aglianico (A) and Cabernet

Sauvignon (C), were grown at each vineyard. All the vines,

which were grafted onto 140 Ruggieri rootstocks, were

approximately fifteen years old and were planted between 2008

and 2010. In Campania and Molise, vines were planted in north

−south rows, whereas in Sicily, they were planted on gentle slopes.

In Molise, both cultivars were planted at a spacing of 1.20 m

(within the row) × 2.90 m (between rows), and both were trained

with the simple Guyot method, with a formation height of 60 cm.

In Campania, Aglianico vines were spaced at 1.50 m (within the

row) × 2.90 m (between rows), and Cabernet Sauvignon vines

were spaced at 1.0 m (within the row) × 2.70 m (between rows);

these vines were also trained using the simple Guyot method, with

a formation height of 60 cm. In Sicily, Aglianico vines were spaced

at 1.10 m (within the row) × 1.10 m (between rows), and Cabernet

Sauvignon vines were spaced at 1.10 m (within the row) × 1.30 m

(between rows). Both cultivars were bush trained at a height of 0.5

m, with two to six main branches, each of which was spur-pruned

to one spur and two buds per spur. The experimental design was

based on sampling three independent randomized plots of five

rows, each containing 30 vines, to ensure representativeness. All

the measurements were carried out on seven ‘index’ vines per

block (Ferlito et al., 2023).
2.2 Sampling

Berries were collected at the commercial ripening stage during

the 2021 growing season (8 September 2021 for the Campania site;

24 September 2021 for the Sicily site; and 20 October 2021 for the

Molise site). At least ten berries were randomly selected from each
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index vine, avoiding those with visible damage and/or signs of

pathogen infection, and pooled with berries from the other index

plants from different blocks. For subsequent analyses, three

independent pools (biological replicates) of 30 whole berries each

were selected, immediately frozen in liquid nitrogen, and stored at

-80°C. Each analysis included six experimental samples: Aglianico

from Campania (A_CAM), Aglianico from Molise (A_MOL),

Aglianico from Sicily (A_SIC), Cabernet Sauvignon from

Campania (C_CAM), Cabernet Sauvignon from Molise (C_MOL)

and Cabernet Sauvignon from Sicily (C_SIC).
2.3 Weather course measurements
and indices

Weather course data were collected during the entire growing

season by a recording climatic station located inside each vineyard.

The daily maximum air temperature (DMAT), relative humidity

(RH), air pressure (AP), dew point (DP), total precipitation (TP),

evapotranspiration (ET) and hours of sun radiation (HSR) were

measured. Weather course indices for WGCNA were calculated as

follows: for DMAT, RH, AP and DP, the average values of the thirty

days preceding the sampling date were used, whereas for TP, ET

and HSR, the sum values of the thirty days preceding the sampling

date were used.
2.4 Chemical analysis for quality traits

The total soluble solids (TSS), pH, titratable acidity (TA),

polyphenol (PP) content, total anthocyanin (ANTH) content and

maturity index (MI) were measured. Free-run juice was used to

determine TSS measured by a digital refractometer with

temperature correction (RX-5000 Atago Co., Ltd., Bellevue, WA,

USA). The pH and titratable acidity were determined with an

automatic titrator (Titrino model 798, Metrohm, Riverview, FL,

USA) on 5.0 mL juice samples titrated against 0.1 M NaOH up to

pH 8.2. TA was expressed as g/L of tartaric acid equivalents. The MI

was estimated at harvest (soluble solids -°Brix and pH) using the

following formula (Lana et al., 2021):

MI = √ pH � °Brix

The PP content was determined using the Folin–Ciocalteu

reagent assay (Singleton et al., 1999) and expressed as mg/kg of

grapes. The total ANTH content was measured according to the

methods of Lo Cicero et al. (2016) and expressed as mg/kg of fresh

weight as reported by Ferlito et al. (2014), Ferlito et al. (2020).

Principal component analysis (PCA) of these quality traits was

carried out with the R function ‘prcomp’.
2.5 Statistical analysis

Analysis of variance (ANOVA) was performed with the R

function ‘aov’ on the differences among quality traits for each

genotype. A post hoc analysis based on the Tukey honestly
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significant differences (Tukey HSD) test was performed with the

‘TukeyHSD’ R function at significance levels (p values) of 0.05, 0.01

and 0.001.
2.6 RNA extraction

Ten berries from each biological replicate, which were kept

frozen by the continuous addition of liquid nitrogen, were ground

using a precooled mortar and pestle. Total RNA was isolated from

ground whole berries, excluding seeds, using a slight modification of

the method described by Japelaghi and coworkers (Japelaghi et al.,

2011). Briefly, because grape berries are rich in water and secondary

metabolites that might interfere with RNA yield and quality, a scale-

up of the ground tissue was needed: in detail, 1 g of sample was

added to 10 ml of extraction buffer. Next, a chloroform:isoamyl

alcohol (24:1) extraction was performed three times. RNA

degradation and DNA contamination were monitored by 1%

agarose gel electrophoresis. The RNA purity and concentration

were assayed using a NanoDrop spectrophotometer (Thermo Fisher

Scientific, Waltham, MA, USA) (Russo et al., 2021; Strano et al.,

2014). Before sequencing, RNA integrity was assessed using the

Agilent Bioanalyzer 2100 system (Agilent Technologies, Santa

Clara, CA, USA) (Santoro et al., 2022).
2.7 Library preparation, clustering
and sequencing

Library preparation, clustering and sequencing were performed

by Novogene Co., Ltd., UK (25 Cambridge Park, Milton Road,

Cambridge, CB4 OFW, United Kingdom). One μg of RNA was used

as input material for library preparation (eighteen libraries: three

biological replicates × two varieties × three sites). The sequencing

libraries were generated using the NEBNext® Ultra™ RNA Library

Prep Kit for Illumina® (New England Biolabs, Ipswich, MA, USA),

as reported in Sicilia et al. (2019). After cluster generation, the

library preparations were sequenced on the Illumina HiSeq2000

platform to generate paired-end reads with a size of 2×150 bp. Raw

reads in fastq format were first processed using in-house Perl scripts

(Novogene Co., Ltd., UK). Clean data were obtained by removing

reads containing adapters, reads containing poly-N and low-quality

reads (Q score below 5 for more than 50% of the bases) (Online

Resource 2: Supplementary Table S2). At the same time, the Q20,

Q30, GC content and sequence duplication level of the clean data

were calculated. All the downstream analyses were based on high-

quality clean data.
2.8 De novo assembly and gene
functional annotation

De novo transcriptome assembly was performed with Trinity

software (version 2.6.6) with the parameters min_Kmer_Cov=3 and

min_glue=4 (Grabherr et al., 2011). Hierarchical clustering was

carried out with Corset (version 4.6) to remove redundancy
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(parameter -m 10) so that the longest transcript of each cluster was

selected as the Unigene (Davidson and Oshlack, 2014). The assembly

assessment and gene prediction were evaluated by comparing the

Unigenes to the set of Embryophyta genes using the BUSCO quality

assessment tool coupled with the OrthoDB (version 9.0) database of

orthologues (Simão et al., 2015). The gene functional annotation was

obtained using seven different databases: National Centre for

Biotechnology Information (NCBI) non-redundant protein

sequences (Nr, Diamond software, version 0.8.22, e-value threshold

1e-5) (Buchfnk et al., 2015), NCBI non-redundant nucleotide

sequences (Nt, NCBI blast software, version 2.9.0, e-value threshold

1e-5), Protein Family (Pfam, hmmscan software, HMMER version

3.1, e-value threshold 0.01) (Finn et al., 2011), Cluster of Orthologous

Groups of Proteins (KOG/COG, Diamond software, version 0.8.22,

e-value threshold 1e-5) (Buchfnk et al., 2015), SWISS-PROT

(Diamond software, version 0.8.22, e-value threshold 1e-5)

(Buchfnk et al., 2015), Kyoto Encyclopedia of Genes and Genome

(KEGG, Diamond and KAAS software, version 0.8.22, e-value

threshold 1e-5) (Buchfnk et al., 2015; Moriya et al., 2007) and

Gene Ontology (GO, blast2GO software, version b2g4pipe_v2.5, e-

value threshold 1e-6) (Götz et al., 2008). The Unigene coding

sequences were aligned to the Vitis vinifera genome PN40024 v4

using the Grapedia BLAST tool (https://grapedia.org)

PN40024.v4.1_REF_prot database with an e-value threshold of

1e-5, followed by annotation as described by Grimplet et al.

(2012). The annotated sequences not corresponding to the plant

species were filtered out.
2.9 Quantification of gene expression and
differential expression analysis

The gene expression level was estimated with RSEM software

(version 1.2.28) by mapping each clean read back onto the

assembled transcriptome, and the read counts for each gene were

obtained from the mapping results (Li and Dewey, 2011).

Furthermore, the read counts of each gene were used as input

data for DESeq2 (version 1.26, padj ≤ 0.05) to obtain differentially

expressed genes (DEGs) (Santoro et al., 2022). Six comparisons

were made to identify the set of DEGs of each variety at the three

sites (A_SIC vs. A_CAM; A_MOL vs. A_CAM; A_SIC vs. A_MOL;

C_SIC vs. C_CAM; C_MOL vs. C_CAM; and C_SIC vs. C_MOL).

An adjusted p value cut-off of 0.05 and a |log2fold change| (log2FC)

threshold of 1 were the criteria used to filter significantly up- and

downregulated genes. A correlation analysis was performed to

demonstrate experimental repeatability and to reveal differences

in gene expression among samples. PCA was performed using R

language, considering the read counts of each sample as input data,

including the biological replicates.
2.10 qRT−PCR validation

Total RNA (2.5 μg) was reverse transcribed using a

SuperScript™ Vilo™ cDNA synthesis kit from Thermo Fisher

Scientific according to the manufacturer’s instructions. To
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validate the reliability of RNAseq in determining gene expression

levels, real-time qRT−PCR was performed for 10 random DEGs

using PowerUp SYBR Green Master mix from Thermo Fisher

Scientific and the Rotor-Gene Q 2plex detection system (Qiagen,

Venlo, Netherlands) (Online Resource 3: Supplementary Table S3).

All the genes were normalized to Vitis vinifera ubiquitin-60S

ribosomal protein L40-2 (LOC100253716), which is a suitable

housekeeping gene (Cheng et al., 2021b). All reactions were

performed in duplicate, and the fold change values were

calculated using the 2−DDCT method.
2.11 GO and KEGG enrichment analyses

Both GO and KEGG enrichment analysis of DEGs separated for

each variety were performed using the ShinyGO V0.80 online tool

(Ge et al., 2020). To define the genotype-specific transcriptomic

response at each site, fragments per kilobase million (FPKM) values

were used to identify genes specifically expressed at each site by each

genotype. Six different gene lists were constructed (A_CAM,

A_MOL, A_SIC, C_CAM, C_MOL, and C_SIC) by filtering genes

that were expressed by a specific genotype at the site (FPKM ≠ 0)

and had FPKM values at the other sites equal to zero. Genes of

interest (expressed in only one site/genotype) were selected from

the ten highest FPKM values in each cluster list.
2.12 WGCNA

A co-expression analysis of the gene expression data, weather

course indices and quality traits was conducted. The co-expression

analysis was performed using the Weighted Gene Co-expression

Network Analysis (WGCNA) package in R (Langfelder and

Horvath, 2008) to obtain hierarchical clustering and identify co-

expressed genes (hub genes). Specifically, an adjacency matrix was

created using the FPKM values of all the DEGs. The

pickSoftThreshold() function was used to determine the optimal

soft-thresholding power (Langfelder and Horvath, 2008). For each

analysis, the lowest power for which the scale-free topology fit index

was 0.90 was used (Online Resource 4: Supplementary Figure S1).

The specific WGCNA parameters were set as follows: Soft powers b
= 20 were selected using the function pickSoft Threshold; WGCNA

‘mergeCutHeight’ was set at 0.25. The adjacency matrix was

transformed into a topological overlap matrix (TOM) and the
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corresponding dissimilarity matrix (1-TOM). Afterwards, a

hierarchical clustering dendrogram of the 1-TOM matrix was

constructed to classify genes with similar expression levels into

different gene co-expression modules. Modules were merged by

using a criterion of MEDissThres = 0.25. Finally, the relationships

between each module and either the weather course indices or

quality traits that were significantly different among sites for each

genotype were estimated by Pearson’s correlation using the module

eigengene values. Modules with high correlation coefficients and a

correlation padj ≤ 0.05 were selected for subsequent analysis.
3 Results

3.1 Weather course data

The weather course indices obtained as described in the Materials

and Methods section are reported in Table 1. The highest DMAT,

AP, DP, ET and HSR values were recorded in Campania, as well as

the lowest values of RH and TP. As expected, the highest TP was

recorded in Sicily because of the seasonal rainfall pattern that is

typical of the eastern slopes of Mt. Etna, where the vineyards were

located. In addition, the lowest ET value was also recorded in Sicily.

Finally, the highest RH and lowest DMAT, AP, DP and HSR values

were recorded at the Molise site, thus indicating opposite weather

conditions compared with those at the Campania site.
3.2 Quality traits

Table 2 shows the mean values of the quality parameters of

grape berries at the commercial ripening stage at the three sites. On

average, Cabernet Sauvignon had a higher PP content than that of

Aglianico at all three sites and the highest ANTH content, except at

the CAM site, where the lowest value was recorded. Moreover, both

Cabernet Sauvignon and Aglianico presented higher contents of

TSS at the CAM and MOL sites than at the SIC site. Aglianico

presented a significantly greater TA at the MOL site (Table 2).

Interestingly, at all three sites, the Cabernet Sauvignon genotype

exhibited significantly higher MI values than those of the Aglianico

genotype (Table 2). Figure 1 shows a PCA in which all the measured

qualitative traits (PP, pH, TSS, TA and ANTH) were used as the

variables. A total of 77.2% of the variability was explained by the

first two components (dim1 and dim2), and the three variables that
TABLE 1 Climatic indices measured at the three sites.

Experimental
site

Parameter

DMAT (°C) RH (%) AP (Bar) DP (°C) TP (mm) ET (mm) HSR (hours)

CAM 31.5 64.9 996.4 16.7 23.9 122.6 308

SIC 29.1 66.2 968.9 15.4 167.5 23.4 252

MOL 19.5 81.1 949.9 10.2 80.3 42.6 186
DMAT, daily maximum air temperature; RH, relative humidity; AP, air pressure; DP, dew point; TP, total precipitation; ET, evapotranspiration; HSR, hours of sun radiation. Measurements from
the thirty days preceding the sampling date were used; the DMAT, RH, AP and DP values were the average values over thirty days, and the TP, ET and HSR values were the sum values over
thirty days.
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best differentiated the samples were TA, pH and PP. Interestingly,

both the genotypes cultivated in Sicily clustered separately from the

same genotypes cultivated at the other two sites. PP, TSS and MI

were the traits that best separated the Sicilian site from the other

sites. In CAM and MOL, the two genotypes were similar in terms of

quality traits (TSS and MI), except for A_MOL, which had higher

TA values than those of A_CAM, C_MOL and C_CAM.
3.3 Transcript assembly and
functional annotation

RNAseq was used to comprehensively identify the transcriptional

profiles of Aglianico and Cabernet Sauvignon berries at the three

sites in central-southern Italy. After library sequencing, the raw

reads were filtered to remove adapter-based or poor-quality reads.

A total of 598 million clean reads, representing 98.3% of the total

reads, were obtained, with a Q30 value and a GC content of 91.54%

and 46.62%, respectively (Table 3). The clean read de novo assembly

yielded 226,498 transcripts and 97,442 Unigenes with N50 lengths
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of 2753 bp and 1881 bp, respectively (Table 3), which is consistent

with previously reported N50 values (Santoro et al., 2022, 2023;

Sicilia et al., 2022) and indicates good contiguity of the

transcriptome. To assess assembly consistency, filtered unique

reads were mapped back to the reconstructed transcriptome, and

the average read mapping rate determined using Bowtie2 alignment

software was 77.3% (mean value between 75.25 and 78.43)

(Table 3). Among the 1440 groups searched with BUSCO, 63.1%

(909 groups) were complete single-copy orthologues (Table 3).

Functional annotation of the Unigenes was conducted by

performing BLAST searches against public databases, such as the

NCBI, Pfam, KOG/COG, SWISS-PROT, KO, and GO databases

(Table 4). A total of 94,058 Unigenes were annotated in at least one

database, corresponding to 96.52% of the total Unigenes. Among

them, 64,056 (65.73%) and 87,354 (89.64%) Unigenes showed

identity with the sequences in the Nr and Nt databases,

respectively. The distributions of Unigenes homologous to the

sequences in the KO, SWISS-PROT, Pfam, GO, and KOG

databases were 21.61%, 45.03%, 41.87%, 41.87% and 18.50%,

respectively (Table 4). With respect to the GO annotation, most
FIGURE 1

Principal component analysis (PCA) of the samples considering the quality traits. The average values of three biological replicates per sample were
used. TSS, Total soluble solids; pH; TA, titratable acidity; PP, polyphenols; ANTH, anthocyanins; MI, maturity index; A, Aglianico; C, Cabernet
Sauvignon; CAM, Campania; MOL, Molise; SIC, Sicily.
TABLE 2 Quality traits measured at the three sites for both genotypes.

Genotype Site
Parameter

TSS (°Brix) pH TA (g*L-1) PP (mg/kg) ANTH (mg*L-1) MI

AGL

SIC 20.04 ± 0.73a 3.71 ± 0.13a 7.5 ± 0.01a 46.75 ± 7.16a 117.73 ± 20.27a 38.62 ± 1.60a

CAM 23.22 ± 0.38b 3.63 ± 0.05a 7.9 ± 0.04a 45.59 ± 1.24a 109.14 ± 5.25a 44.26 ± 0.57c

MOL 22.32 ± 0.88b 3.34 ± 0.08a 10.8 ± 0.41b 36.92 ± 7.03a 119.45 ± 36.63a 40.83 ± 2.08b

CAB

SIC 21.66 ± 0.98a 3.74 ± 0.05a 7.5 ± 0.00a 55.01 ± 12.14a 151.49 ± 34.37b 41.92 ± 1.78a

CAM 22.99 ± 0.89ab 4.22 ± 0.37a 7.5 ± 0.01a 51.67 ± 5.67a 92.85 ± 15.49a 47.29 ± 3.72a

MOL 24.45 ± 0.10b 3.79 ± 0.20a 7.6 ± 0.02a 43.49 ± 3.45a 133.94 ± 21.63ab 47.65 ± 1.44a
The average values of three replicates and the relative standard deviations are reported. Different letters indicate significant differences in each parameter among sites for each genotype. For the
letters, ANOVA was performed. Tukey’s HSD test was performed at significance levels (p values) of 0.05, 0.01 and 0.001. TSS, total soluble solids; pH, pH; TA, titratable acidity; PP, polyphenols;
ANTH, anthocyanins; MI, maturity index.
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of the Unigenes were annotated as “cellular process” (GO:0009987),

“metabolic process” (GO:0008152), “biological regulation”

(GO:0065007), “localization” or “regulation of biological process”

(GO:0050789) within the Biological Process category. “Cellular

anatomical entity” (GO:0110165), “Intracellular” and “Protein-

containing complex” (GO:0032991) were annotated from the

Cellular Component. Finally, “Binding”, “Catalytic activity” and

“Transporter activity” (GO:0005215) were annotated from the

Molecular Function category (Figure 2). In the KOG functional

annotation, the three most annotated categories were

“Posttranslational modification, protein turnover, chaperones”,

“General function prediction only” and “Translation, ribosomal

structure and biogenesis” (Online Resource 5: Supplementary

Figure S2). Finally, in the KEGG pathway functional annotation,
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the pathways with the highest percentage of annotated genes were

“Translation”, “Signal transduction” and “Carbohydrate

metabolism” (Figure 3). The functional annotation analysis

revealed that a total of 39,947 out of 94,058 annotated Unigenes

belonged to the grape fungal community, as characterized by

Iorizzo et al. (2023). These Unigenes were removed, and the

subsequent analyses were conducted on 57,495 Unigenes.
3.4 Sample clustering

With the aim of deciphering the transcriptomic profile of each

sample, the Unigene read counts of the two genotypes cultivated at the
TABLE 4 Functional annotation statistics.

Database Number
of Unigenes

Percentage (%)

Annotated in NR 64,056 65.73

Annotated in NT 87,354 89.64

Annotated in KO 21,062 21.61

Annotated in
SWISS-PROT

43,879 45.03

Annotated in PFAM 40,802 41.87

Annotated in GO 40,799 41.87

Annotated in KOG 18,034 18.5

Annotated in all databases 9,981 10.24

Annotated in at least
one database

94,058 96.52

Total Unigenes 97,442 100
FIGURE 2

Unigene Gene Ontology (GO) functional annotation. The GO terms are grouped into three main categories: biological process, cellular component
and molecular function.
TABLE 3 RNAseq assembly statistics.

Parameter Value

Raw data 608 million

Clean reads 598 million

Q30% 91.54

GC content % 46.62

N° transcripts 226,498

N° unigenes 97,442

Transcripts N50 bp 2,753

Unigenes N50 bp 1,881

Mapping rate % 77.3

BUSCO Complete(single) Transcripts % 63.1

BUSCO Complete(single) Unigenes % 63.1
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three sites were used as inputs for PCA and explained 57% of the total

variability (Figure 4). PCA revealed a sharp separation of Aglianico

(circles) from Cabernet Sauvignon (triangles), suggesting that the

differences in the transcriptomic profiles are due mainly to the

genotype (Figure 4). Moreover, the green and red triangles grouped at

the bottom of the figure indicate that Cabernet Sauvignon is less

influenced by the growing site (CAM and MOL) than the Aglianico

samples are, which shows a greater variance in PC2. However, the

weather variable at the SIC site greatly influences the plant

transcriptomic profiles of both genotypes (light blue circles and

triangles) (Figure 4).
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3.5 Identification of DEGs

The characterization of the Aglianico and Cabernet Sauvignon

transcriptomes was accomplished by identifying those Unigenes with

expression levels that changed as a function of the growing site.

According to the experimental design, a total of 11,887 DEGs among

the two genotypes and the three sites were identified, 1937 of which

were differentially expressed in A_CAM vs. A_MOL (847

upregulated and 1090 downregulated), 3397 in A_SIC vs. A_MOL

(1622 upregulated and 1775 downregulated), 4711 in A_SIC vs.

A_CAM (2221 upregulated and 2490 downregulated), 1914 in
FIGURE 3

Unigene KEGG functional classification. (A) Cellular processes; (B) environmental information processing; (C) genetic information processing; (D) metabolism.
FIGURE 4

PCA of the six samples (A_CAM, A_MOL, A_SIC, C_CAM, C_MOL and C_SIC) using the normalized read counts as input data. The label shapes
correspond to the genotypes (Aglianico, circle; Cabernet Sauvignon, triangle), and the colors correspond to the sites (see legend). Three biological
replicates for each sample are reported.
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C_CAM vs. C_MOL (888 upregulated and 1026 downregulated),

2328 in C_SIC vs. C_MOL (1655 upregulated and 673

downregulated) and 2504 in C_SIC vs. C_CAM (1860 upregulated

and 644 downregulated) (Figure 5). The greatest number of DEGs

was found in the Aglianico genotype (Figure 5). Furthermore, the

comparisons that included the SIC site presented the greatest number

of DEGs for both genotypes (Figure 5). Validation of the RNAseq

experiment was performed by measuring the expression levels of ten

selected DEGs by quantitative real-time PCR (qRT−PCR) (Online

Resource 3: Supplementary Table S3 and Online Resource 6:

Supplementary Figure S3). The results revealed high congruence

between the RNAseq and qRT−PCR results (coefficient of

determination R2 = 0.93), which confirms the high reliability of the

RNAseq analysis in the quantification of gene expression.
3.6 DEG functional enrichment

The enrichment of AGL and CAB DEGs in the GO and KEGG

databases was performed to identify the principal pathways and

biological processes involved in the transcriptome reprogramming

of each genotype. Among the AGL enriched GO terms of the

Biological Process, “Oligopeptide transmembrane transport”,

“Amide transport” and “Organic hydroxy compound metabolic

process” were the three most represented categories (Figure 6A).

Differently, “Ethylene-activated signaling pathway”, “Organic acid

catabolic process” and “Hormone-mediated signaling pathway” were

the three most represented categories in CAB (Figure 6B). The main

KEGG pathways in AGL were associated with the “Tropane

piperidine and pyridine alkaloid biosynthesis” and “Isoquinolone

alkaloid biosynthesis” categories, followed by “Sphingolipid

metabolism” and “Tyrosine metabolism” (Figure 6C). As regards

the KEGG pathways in CAB, “DNA replication”, “Homologous

recombination” and “Mismatch repair” are the most represented,

followed by “Glycine serine and threonine metabolism” and

“Phenylalanine tyrosine and tryptophan biosynthesis” (Figure 6D).
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3.7 Genotype and site specificity of
gene expression

The transcriptomic response of each genotype at the three

distinct sites was evaluated by recruiting clusters that were

expressed in a single genotype per site (FPKM ≠ 0) and were

completely unexpressed at the other sites (FPKM = 0). In particular,

a total of 185 genes were specifically expressed in A_CAM, 90 genes

in A_MOL, 171 genes in A_SIC, 226 genes in C_CAM, 165 genes in

C_MOL, and 206 genes in C_SIC, all of which represent a specific

transcriptomic signature of the genotype at that particular site.

Most of these genes were not annotated and encoded hypothetical

and/or uncharacterized proteins (data not shown). In Table 5, some

genes of interest are listed along with their cluster ID, annotation,

accession number, e-values and specific site. In A_CAM, probable

genes encoding serine/threonine-protein kinase WNK5 (cluster-

39.0) (Su et al., 2024) and DExH-box ATP-dependent RNA helicase

(cluster-27627.0) involved in ribosome biogenesis (Liu and Imai,

2018) were specifically expressed. The gene encoding vegetative cell

wall protein gp1 (cluster 27903.60085), which functions as a major

component of the outer cell wall layer (Niu et al., 2020), was among

the genes specifically expressed in A_MOL, along with the gene

encoding UDP-glycosyltransferase 85A2-like (cluster-1161.0),

which is involved in the key step of secologanin biosynthesis (Jin

et al., 2022). The genes encoding phenylalanine N-monooxygenase

(cluster-27903.31192), which is part of the pathway that converts

phenylalanine to glucosinolate; glucotropaeolin (Wittstock and

Halkier, 2000); and myb-related protein 315 (cluster-

27903.28077), which confers cold and drought tolerance (Fang

et al., 2024), were exclusively expressed in A_SIC. Clusters

specific to C_CAM encode proteins homologous to the

homeobox-leucine zipper protein ATHB-15 (cluster-27903.3260)

(Li et al., 2020) and an endo-1,4-beta-mannosidase 5-like (cluster-

27903.633) (Rahmani et al., 2017). The transcription factor

JUNGBRUNNEN 1 (cluster-17927.0), a regulator of drought

tolerance in tomatoes (Thirumalaikumar et al., 2018), and MLP-
FIGURE 5

Number of differentially expressed genes (DEGs) in each comparison. A, Aglianico; C, Cabernet Sauvignon; CAM, Campania; MOL, Molise; SIC, Sicily.
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like protein 43 (cluster-27903.61696), which confers drought

tolerance (Fujita et al., 2021), are among the genes specifically

expressed in C_MOL. Finally, the specific expression of an

APETALA2/ethylene responsive factor (cluster-20558.0), which is

involved in berry firmness (Wong et al., 2016), and an SRG1 protein

(cluster-21223.0) (Cui et al., 2018) were detected in C_SIC.
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3.8 WGCNA

Co-expression networks of weighted genes associated with the

weather course parameters and quality traits (DMAT, RH, AP, DP,

TP, ET, and HSR values as weather course parameters; TA, TSS,

ANTH, MI and PP values as quality traits) of each site were
TABLE 5 Genotype and site specificity of gene expression.

Cluster ID Annotation v4.1 PN40024.v4.1_REF_prot e-value Site Reference

39.0 probable serine/threonine-protein kinase
WNK5 (XP_019077023.1)

Vitvi08g00843_t001 5.50×10-11 A_CAM Su et al., 2024

27627.0 DExH-box ATP-dependent RNA helicase DExH3 isoform
X1 (XP_002269787.1)

Vitvi18g01725_t001 5.94×10-105 A_CAM Liu and Imai, 2018

27903.60085 vegetative cell wall protein gp1 (XP_010648854.2) Vitvi04g01979_t001 1.58×10-41 A_MOL Niu et al., 2020

1161.0 UDP-glycosyltransferase 85A2-like (NP_001277170.1) Vitvi18g00421_t001 1.10×10-62 A_MOL Jin et al., 2022

27903.31192 Phenylalanine N-monooxygenase (RVX19945.1) Vitvi06g01205_t001 2.58×10-29 A_SIC Wittstock and
Halkier, 2000

27903.28077 myb-related protein 315 (XP_010662108.1) Vitvi16g01449_t001 0 A_SIC Fang et al., 2024

27903.3260 homeobox-leucine zipper protein ATHB-
15 (XP_002284003.2)

Vitvi09g00310_t001 8.03×10-11 C_CAM Li et al., 2020

27903.633 mannan endo-1,4-beta-mannosidase 5-
like (XP_034674580.1)

Vitvi18g02343_t001 0.0 C_CAM Rahmani et al., 2017.

17927.0 transcription factor JUNGBRUNNEN 1 (XP_002265591.3) Vitvi19g01566_t001 3.60×10-63 C_MOL Thirumalaikumar
et al., 2018

27903.61696 MLP-like protein 43 (XP_034672643.1) Vitvi01g01977_t001 9.23×10-109 C_MOL Fujita et al., 2021

20558.0 ethylene-responsive transcription factor
2 (XP_003633905.1)

Vitvi15g01202_t001 3.09×10-28 C_SIC Wong et al., 2016

21223.0 protein SRG1 (XP_002269890.1) Vitvi10g00687_t001 2.71×10-55 C_SIC Cui et al., 2018.
FIGURE 6

(A) Gene Ontology biological process enrichment of AGL DEGs. (B) Gene Ontology biological process enrichment of CAB DEGs. (C) KEGG
functional enrichment of AGL DEGs (D) KEGG functional enrichment of CAB DEGs.
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constructed by WGCNA based on 11,887 DEGs. These genes were

grouped into 20 co-expressed modules (Figure 7A, B). Each set of

highly correlated genes corresponded to a branch of the tree

(Figure 7A). With respect to the weather course parameters,

DMAT (positive correlation, r2 = 0.9), RH (negative correlation,

r2 = -0.9), AP (positive correlation, r2 = 0.86), DP (positive

correlation, r2 = 0.89) and HSR (positive correlation, r2 = 0.92)

were significantly correlated with the “lightcyan1” module (80

genes), and both TP (negative correlation, r2 = -0.85) and ET

(positive correlation, r2 = 0.91) were significantly correlated with

the “indianred3” module (1078 genes) (Figure 7B). With respect to

the quality traits, ANTH, TA and MI were not significantly

correlated with any module (data not shown). Conversely, co-

expression modules that were highly correlated with TSS and PP

were identified; in particular, the “deeppink” module (1400 genes)

was significantly correlated with TSS (positive correlation, r2 = 0.9),
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and two modules, namely, “chocolate3” (113 genes) (positive

correlation, r2 = 0.91) and “plum1” (557 genes) (negative

correlation, r2 = -0.81), were significantly correlated with PP

(Figure 7B). The genes in these latter modules were filtered

according to the highest intramodular connectivity (hub genes,

module membership [MM] > 0.65 and gene significance [GS] >

0.65), as these genes might represent points of biological interest in

defining plant adaptability to the environment (Online Resource 7:

Supplementary Figure S4).
3.9 Biological function analysis of the
hub genes

To describe the biological functions of the hub genes, the

functional categories annotated in the PN40024 v4 Vitis vinifera
FIGURE 7

(A) Clustering dendrogram of genes, with dissimilarity based on topological overlap, together with assigned module colors. (B) Number of
eigengenes in each module and heatmap showing the Pearson correlation among the eigengenes in co-expressed gene modules. The total soluble
solids (TSS), polyphenols (PP), daily maximum air temperature (DMAT), relative humidity (RH), air pressure (AP), dew point (DP), total precipitation
(TP), evapotranspiration (ET) and hours of sun radiation (HSR) were measured.
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genome were considered. Although the modules included a

substantial number of genes, most of them encode unknown or

uncharacterized proteins, resulting in very few enriched genes in

each functional category. As shown in Table 6, TSS was positively

correlated with the deeppink module, with a total of 326 genes

involved in several functional categories, such as cellular

component organization and biogenesis (10 genes), nucleic acid

metabolism (18 genes), protein metabolism and modification (14

genes), regulation of transcription (31 genes), hormone signaling

(14 genes), signaling pathways (12 genes), and transport (19 genes).

PP was positively correlated with the chocolate3 module (32 genes),

containing genes involved in cellular component organization and

biogenesis (3 genes), amino acid metabolism (4 genes), regulation of

transcription (6 genes), and signaling pathways (2 genes).

Interestingly, PP was also negatively correlated with the plum1

module (121 genes), including genes involved in amino acid

metabolism (6 genes), protein metabolism and modification (9

genes), phenylpropanoid metabolism (3 genes), terpenoid

metabolism (3 genes), regulation of transcription (9 genes),

hormone signaling (5 genes), and transport (10 genes). A

substantial number of genes are included in the indianred3

module (255 genes), which is negatively correlated with TP; most

of the genes are involved in cytoskeleton organization and

biogenesis (2 genes), lipid metabolism (3 genes), and the

regulation of transcription (4 genes) (Table 6 and Online

Resource 8: Supplementary Table S4). ET was positively

correlated with the indianred3 model (347 genes), with genes

involved in lipid metabolism (3 genes), protein metabolism and

modification (3 genes), and signaling (6 genes) (Table 6 and Online

Resource 8: Supplementary Table S4). As previously described,

most of the weather course traits were significantly correlated
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with the lightcyan1 module (DMAT, RH, AP, DP and HSR with

18, 16, 21, 15 and 31 genes, respectively) (Table 6 and Online

Resource 8: Supplementary Table S4). These genes are related

mainly to the regulation of transcription (4 genes), signaling

(4 genes) and transport (5 genes). Eight genes are shared

among the weather course traits: a cation transporter

(autoinhibited Ca²+-ATPase 10, ACA10), a plasma membrane

protein [Vitvi11g01176]; a cation exchanger (cation exchanger 7,

CAX7) [V i t v i 0 6 g00999_ t 0 01 ] ; SHATTERPROOF 2

[Vitvi12g00019_t002]; a transcription factor (DExH-box ATP-

dependent RNA helicase, DExH8 [Vitvi07g00315_t001]); a

disease resistance protein (PREDICTED: TMV resistance protein

N isoform X1 [Vitvi18g01746_t001], putative disease resistance

protein [Vitvi13g04668_t001]); and a serine/threonine kinase

(Ribosomal-protein S6 kinase p70 [Vitvi17g00727_t001]). As

shown in Figure 8, the expression levels of these genes in both

genotypes and at all three sites increased with increasing HSR and

DMAT and decreasing RH, indicating a decreasing expression

pattern from the Campania site to the Molise site.
3.10 Hub transcription factors

A total of 58 genes encoding transcription factors were retrieved

since all the modules were significantly correlated with a trait

(Online Resource 9: Supplementary Table S5). Most of these

genes belong to the MYB, bHLH, AUX/IAA, AP2/ERF, C2C2 and

WRKY families (Figure 9). Table 7 lists the genes whose expression

greatly changed among sites. Specifically, MYB61 regulates a

specific set of target genes by binding DNA to the AC within the

cis-element 5’-ACCTAC-3’. Higher expression of this gene was
TABLE 6 Module\trait correlation.

Module\Trait Eigengenes
(GS and
MM > 0.65)

Trait trend Correlation Main functional category

Deeppink\TSS 326 SIC<CAM<MOL Positive cellular component organization and biogenesis, nucleic acid metabolism, protein
metabolism and modification, regulation of transcription, hormone signaling, signaling
pathway, transport

Chocolate3\PP 52 MOL<CAM<SIC Positive cellular component organization and biogenesis, amino acid metabolism, regulation of
transcription, signaling pathway

Plum1\PP 121 MOL<CAM<SIC Negative Amino acid metabolism, protein metabolism and modification, phenylpropanoid
metabolism, terpenoid metabolism, regulation of transcription, hormone
signaling, transport

Lightcyan1\DMAT 18 MOL<SIC<CAM Positive Regulation of transcription, signaling, transport

Lightcyan1\RH 16 CAM<SIC<MOL Negative Regulation of transcription, signaling, transport

Lightcyan1\AP 21 MOL<SIC<CAM Positive Regulation of transcription, signaling, transport

Lightcyan1\DP 15 MOL<SIC<CAM Positive Regulation of transcription, signaling, transport

Lightcyan1\HSR 31 MOL<SIC<CAM Positive Regulation of transcription, signaling, transport

Indianred3\TP 255 CAM<MOL<SIC Negative Cytoskeleton organization and biogenesis, lipid metabolism, regulation of transcription

Indianred3\ET 347 SIC<MOL<CAM Positive Lipid metabolism, protein metabolism and modification, signaling
For each module/trait, the number of included genes, the trait trend (from the site with the lowest value to the site with the highest value), the type of correlation between the trait value and
eigengene expression, and the main functional categories are reported.
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observed in both genotypes grown at the CAM site, which had

higher ET and HSR values and lower TP values. Cluster-

27903.36947 encodes multiprotein-bridging factor 1C (MBF1C), a

transcriptional coactivator that stimulates transcriptional activity by

bridging regulatory proteins and TBP, recruiting TBP to promoters

occupied by DNA-binding regulators. This gene was more highly

expressed in Aglianico than in Cabernet Sauvignon at all sites.

Cluster-27903.38074 encodes Arabidopsis pseudo-response

regulator 7 (APRR7) involved in the positive and negative

feedback loops of the circadian clock. This gene was highly

expressed at the MOL site, where both the DMAT and HSR were

lower than those at the other sites. Cluster-27903.17293 encodes a

CPC (CAPRICE) MYB transcription factor that determines the fate

of epidermal cell differentiation. This gene was more highly

expressed in Aglianico than in Cabernet Sauvignon at sites with

low TP (Campania and Molise).
4 Discussion

Temperature, water, light, and CO2 concentration are among

the most important environmental factors that affect vine and fruit

development by interacting with the genotype (Rienth et al., 2021).

These factors are expected to be largely modulated by global climate

change. The predicted and already observed consequences of

climate change on wine quality include higher alcohol content,

lower acidity, and altered aroma profiles (Schultz, 2016; Pons et al.,

2017b; van Leeuwen and Destrac-Irvine, 2017), leading to a loss of

typicity and terroir expression. Fortunately, vine cultivars have

shown adaptability to different mesoclimates (Morales-Castilla

et al., 2020), making grapevines an interesting model for studying

the genetic and molecular bases that underlie phenotypic plasticity

(Dal Santo et al., 2013, 2016, 2018). The analysis of genotype-based

transcriptional modifications influenced by GxE interaction is

crucial for understanding the different regulatory mechanisms of
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metabolic pathways during berry ripening (Ferrandino et al., 2023;

Dal Santo et al., 2013; Massonnet et al., 2017). However, a precise

definition of the environment component (E) is often unattainable

in open-field studies. In this study, we investigated the GxE

interactions of two different red grape varieties grown across

three different environments in central-southern Italy by

combining and correlating transcriptomic data with weather

indices and berry quality traits. Our goals were to overcome the

challenge of a precise definition of the E component in GxE studies

and to minimize the differences in berry phenology at each site at

harvest time. We defined the concept of the weatherome, a

combination of weather course indices used to characterize the

three sites during the period surrounding the harvest. This weather

characterization showed that Campania was the hottest and

sunniest site, with a ET value and low values of both RH and TP

during the thirty days before harvest. Conversely, Molise was the

coldest and cloudiest site, with a high value of RH. Finally, Sicily was

the rainiest site and was characterized by low ET values. These

climatic conditions led to the lowest TSS content occurring in Sicily

(Nicolosi et al., 2022), which was probably due to the greater

amount of water in the environment diluting the berries’ juice.

Increased temperatures during ripening have been shown to lead to

altered compositions of secondary metabolites, such as phenolic

and aroma-conferring compounds, in grapes (van Leeuwen and

Destrac-Irvine, 2017; Abeysinghe et al., 2019). The data collected for

the Cabernet Sauvignon genotype corroborate these findings, as the

levels of phenolics were increased on average in both Campania and

Sicily, where high DMAT values have been reported. Moreover,

Cabernet Sauvignon intrinsically presented higher MI values than

did Aglianico at all the sites. The transcriptome analysis highlighted

the influence of the environment on genotype adaptation and

behavior. In fact, different tendencies in transcriptomic

remodeling of the two genotypes in response to the growing

environment were observed. Compared with Aglianico, Cabernet

Sauvignon presented lower transcriptome reprogramming across
FIGURE 8

Heatmap representing the relative expression of the eight genes in the lightcyan1 module that correlated with the DMAT, RH, AP, DP and HSR traits
at all the sites under investigation.
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the sites. This result confirms what was reported by Dal Santo et al.

(2018). According to their results, the Cabernet Sauvignon

transcriptome remained more stable across vintages and

locations, this contributing to the success of this cultivar in many

different parts of the world (Dal Santo et al., 2018). In contrast,

Aglianico markedly perceives the changing environment and adapts

to it by modifying the regulation of gene expression. This result is

consistent with what was reported by Nicolosi et al. (2022), who

analyzed berry morphophysiological characteristics and found high

phenotypic plasticity in Aglianico, whereas Cabernet Sauvignon

presented increased potential in terms of bud performance, shoot

growth, leaf area, and total leaf area/vine (Nicolosi et al., 2022).

Furthermore, the different transcriptomic reprogramming observed

between the two genotypes was also qualitative. The Gene Ontology

biological process enrichment clearly indicates that Aglianico

responds to the changing environment mainly with the

deregulation of “Peptide” and “Solute transport” categories. On

the other hand, in Cabernet Sauvignon a significant enrichment of

DEGs involved in the ethylene-dependent signaling pathways was

registered, probably explaining the higher maturity index of

Cabernet Sauvignon berries than Aglianico. However, the

aforementioned divergent ability of the genotypes to respond to

changing environments is minimal in Sicily, where both Aglianico

and Cabernet Sauvignon underwent strong transcriptome
Frontiers in Plant Science 14
reprogramming. This results might indicate that in Sicily the

weather parameters reached values globally representing the limit

beyond which also Cabernet Sauvignon had to deregulate

gene expression.

The analysis of the transcriptomic data also led to the identification

of a specific gene list characterizing the gene expression at a specific

site. Notably, in A_MOL, the specific expression of the gene encoding

7-deoxyloganetin glucosyltransferase-like, which is involved in the

key step in secologanin biosynthesis (Jin et al., 2022), was detected.

Secologanin is a secoiridoid monoterpene synthesized from geranyl

pyrophosphate through the mevalonate pathway. Smoke exposure

has been shown to increase the activity of 7-deoxyloganeticacid

glucosyltransferase in grapevines to facilitate the production of

iridoids and defend the plant against the reactive oxygen species

present in smoke (Szeto et al., 2024). Therefore, we can hypothesize

that Molise experienced some bush fires and that Aglianico was

more sensitive to smoke than Cabernet Sauvignon. Phenylalanine

N-monooxygenase (cluster-27903.31192), which is part of the

pathway that converts phenylalanine to glucotropaeolin, was

exclusively expressed in A_SIC, where it might contribute to the

characteristic flavor of the wine in a site-specific manner. Notably,

this gene was not expressed in Aglianico grown in Campania even

during a previous trial (Villano et al., 2023). In addition, the overall

weather conditions in Molise suggested that a water deficit did not
TABLE 7 Transcription factors highly influenced by site and/or genotype.

Cluster ID PN40024.v4.1_REF_prot A_SIC A_MOL A_CAM C_SIC C_MOL C_CAM Functional
annotation

27903.36947 Vitvi11g00351_t001 41.91 193.72 53.03 22.68 30.45 20.55 Multiprotein-bridging factor
1c MBF1C (Q9LV58)

27903.22182 Vitvi15g04655_t001 1.07 1.09 3.29 1.8 1.42 2.23 Transcription factor
MYB61 (Q8VZQ2)

27903.17293 Vitvi10g01641_t001 1.10 6.47 2.25 0.18 0.97 0.36 Myb caprice CPC (O22059)

27903.38074 Vitvi06g00368_t001 4.37 12.10 6.59 5.07 9.1 5.34 Pseudoresponse regulator 7
(APRR7) (Q93WK5)
The PN40024.v4.1_REF_prot column shows the Vitis vinifera genome v4 annotation. Gene expression is reported as FPKM.
FIGURE 9

Hub genes belonging to transcription factor families. The families are sorted according to the number of genes.
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occur. However, the transcription factors JUNGBRUNNEN 1 and

MLP-like protein 43, both of which are involved in abiotic stress

tolerance, were among the genotype/site-specific genes expressed in

Cabernet Sauvignon, indicating the high basal strength of this

genotype in facing abiotic stress compared to Aglianico at that

specific site. The analysis of the relationships among co-expression

modules (deeppink, chocolate3, plum1 and indianred3) and

weather and quality traits suggested that the traits correlated with

the expression of a limited group of genes involved mainly in

signaling, transcription regulation and transport, thus indicating

the crucial role of these biological processes in establishing the GxE

interaction. The relationships between the lightcyan1 co-expression

module and weather factors, such as DMAT, RH, AP, DP, and HSR,

suggested a significant correlation with the expression of a restricted

group of genes that are involved mainly in transport mechanisms.

Two of these genes encode cation transporters, namely ACA10,

which is known to be involved in sequestering free cytosolic Ca2+ to

the endoplasmic reticulum (Sunitha et al., 2019; Geisler et al., 2000),

and CAX7, a vacuolar membrane-localized K+-dependent Na+/Ca2

+ transporter, that exports cations of the cytosol to maintain optimal

ionic concentrations in the cell (Shigaki et al., 2006). Both of them

are upregulated under both high-temperature and high-sun

radiation conditions and downregulated under high-RH

conditions. These results suggest that an eventual adaptive

mechanism towards the growth environment might involve ion

movement across cell compartments, and more specifically, the

removal of cytosolic Ca2+ ions. Cabernet Sauvignon had the highest

expression level of these transporters, suggesting that the

mechanisms previously described might play a pivotal role in the

high adaptability of Cabernet Sauvignon to different growing

environments. Furthermore, the regulation of ACA10 expression

has been shown to be indirectly related to ANTH accumulation.

Frohnmeyer et al. (1999) demonstrated that an increase in free

cytosolic Ca2+ levels is associated with the induction of chalcone

synthase (CHS) expression, namely, the gene involved in the first

committed step of ANTH biosynthesis. Cytosolic Ca2+

accumulation is a consequence of the downregulation of ACA10

mediated by miR5225, miR3627, and miR4376, indirectly

promoting both the induction of CHS expression and an increase

in ANTH content (Sunitha et al., 2019). This mechanism is strongly

consistent with our results since both Aglianico and Cabernet

Sauvignon samples grown in Campania with a relatively high

expression of ACA10 also presented low ANTH contents.

However, CHS transcripts were not identified among the

significant DEGs (log2FoldChange padj > 0.05). Furthermore, in

our previous work, reduced ANTH accumulation along with low or

insignificant levels of biosynthesis-related gene expression,

including CHS, were reported at sites where high temperatures

and low thermal excursions were registered (Iorizzo et al., 2023).

Finally, some hub genes correlated with weather course and

quality traits are important transcription factors. Among them,

MYB61 is a transcriptional regulator of stomatal closure and

regulates stomatal pore size in an abscisic acid-independent

manner (Liang et al., 2005). Greater expression of this gene was

recorded in the two genotypes grown in Campania, the site with the

lowest TP and the highest ET and HSR, suggesting that both
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genotypes counteract low water availability by regulating stomatal

function. The transcription factor MBF1C is involved in tolerance

to heat and osmotic stress through the partial activation of the

ethylene-response signal transduction pathway (Tsuda et al., 2004;

Suzuki et al., 2005, 2008). Interestingly, MBF1C was more highly

expressed in the Aglianico genotype than in the Cabernet

Sauvignon genotype at all the sites. This result highlights the

lower adaptability of Aglianico to different environments since it

needs to activate tolerance mechanisms in response to changing

environmental cues. APRR7 represses the expression of clock

proteins and master regulators of plant growth, development, and

response to abiotic stress (Kaczorowski and Quail, 2003; Nakamichi

et al., 2010; Salomé et al., 2010; Liu et al., 2013). APRR7 was highly

expressed in plants at the Molise site, where both the DMAT and

HSR were lower than those at the other sites. Additionally, the CPC

MYB transcription factor represses trichome development through

lateral inhibition. It has been suggested that, together with GL3

(GLABRA3) or basic-helix-loop-helix (bHLH) transcription

factors, CPC MYB promotes the formation of developing hair

cells (H position) in the root epidermis, probably by inhibiting

non-hair cell formation (Lee and Schiefelbein, 2002; Schellmann

et al., 2002). The increased expression levels in Aglianico at the sites

with low TP (Campania and Molise) might indicate that Aglianico

is more sensitive to a lack of water than Cabernet Sauvignon is.

Aglianico might respond to this condition by inhibiting the lateral

development of roots and promoting vertical development with the

aim of exploring the soil to reach water.
5 Conclusions

In this study, transcriptome analysis was performed on two

grapevine varieties grown at three different sites in central-southern

Italy (Campania, Molise and Sicily). The data were combined with

several weather course indices using WGCNA. Moreover,

considering the main role of TSS and PP in wine quality, the

correlation of these parameters with the transcriptomic profiles at

each site was also determined. From a climatic point of view,

Campania was the hottest and sunniest site and was also

characterized by low RH and TP values. Conversely, Molise was

the coldest and cloudiest site, with high RH, whereas Sicily was the

rainiest site. With respect to the transcriptomic response to different

environmental conditions, a sharp difference in transcriptomic

plasticity between the two genotypes was observed, as Cabernet

Sauvignon presented less transcriptome remodeling than Aglianico

did, however, in Sicily, both Aglianico and Cabernet Sauvignon

underwent strong transcriptome reprogramming. WGCNA

suggested that most of the weather course parameters were

correlated with the expression of a limited group of genes

involved mainly in signaling and transport mechanisms. We

propose a model in which low levels of ACA10 cation transporter

expression might be responsible for CHS induction. Consistently,

samples of both Aglianico and Cabernet Sauvignon grown in

Campania with higher expression of ACA10 also presented low

ANTH contents. Hub transcription factors correlated with weather

course and quality traits were identified and are likely involved in
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crucial pathways and processes such as stomatal closure and

stomatal pore size (MYB61), tolerance to heat and osmotic stress

(MBF1C), regulation of plant growth (APRR7), and inhibition of

lateral root development (CPC). Finally, the genotype/site

specificity of gene expression led to the identification of a

transcriptomic profile that may specifically identify the genotype

and its growing site.
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