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TomatoGuard-YOLO: a novel
efficient tomato disease
detection method
Xuewei Wang and Jun Liu*

Shandong Provincial University Laboratory for Protected Horticulture, Weifang University of Science
and Technology, Weifang, China
Tomatoes are highly susceptible to numerous diseases that significantly reduce

their yield and quality, posing critical challenges to global food security and

sustainable agricultural practices. To address the shortcomings of existing

detection methods in accuracy, computational efficiency, and scalability, this

study propose TomatoGuard-YOLO, an advanced, lightweight, and highly

efficient detection framework based on an improved YOLOv10 architecture.

The framework introduces two key innovations: the Multi-Path Inverted Residual

Unit (MPIRU), which enhances multi-scale feature extraction and fusion, and the

Dynamic Focusing Attention Framework (DFAF), which adaptively focuses on

disease-relevant regions, substantially improving detection robustness.

Additionally, the incorporation of the Focal-EIoU loss function refines

bounding box matching accuracy and mitigates class imbalance. Experimental

evaluations on a dedicated tomato disease detection dataset demonstrate that

TomatoGuard-YOLO achieves an outstanding mAP50 of 94.23%, an inference

speed of 129.64 FPS, and an ultra-compact model size of just 2.65 MB. These

results establish TomatoGuard-YOLO as a transformative solution for intelligent

plant disease management systems, offering unprecedented advancements in

detection accuracy, speed, and model efficiency.
KEYWORDS

tomato disease detection, YOLOv10, multi-path inverted residual unit, dynamic
focusing attention framework, focal-EIoU loss function
1 Introduction

With the advent of artificial intelligence (AI) and the global shift towards smart

agriculture, precision farming techniques have emerged as essential tools for addressing

crop disease challenges in modern agricultural production (Li et al., 2021). AI has

significantly transformed the field of plant disease detection, enabling more accurate and

timely diagnosis while becoming an increasingly integral part of agricultural practices,
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particularly in identifying crop diseases (Wang et al., 2020). Among

the most widely cultivated crops globally, tomatoes are highly

susceptible to various diseases such as late blight, leaf mold, and

bacterial speck. These diseases can cause extensive damage, leading

to severe plant wilting and significant reductions in yield. The

economic impact of such outbreaks is substantial, underscoring the

critical importance of timely detection and control measures to

ensure food security and sustain agricultural productivity.

Traditional methods for disease detection often rely on visual

diagnosis by experienced agronomists. While effective in certain

contexts, these approaches are inherently subjective and prone to

inconsistencies (Kaniyassery et al., 2024). Moreover, as agricultural

production scales up, manual monitoring of crops becomes

increasingly inefficient and imprecise, rendering it inadequate to

meet the demands of large-scale farming operations (Singh et al., 2020).

To address these limitations, AI-based image recognition

technologies have been increasingly utilized in crop disease

identification. In particular, deep learning-based object detection

algorithms have demonstrated significant potential in automating

disease detection in both drone-assisted and greenhouse

environments. This has driven research efforts toward developing

efficient, accurate, and scalable automated disease detection systems

that can enhance agricultural productivity and resilience against

crop diseases.

Object detection, a fundamental research area within computer

vision, primarily comprises traditional methods and deep learning-

based approaches. Traditional methods, such as SIFT and HOG

features paired with SVM for object detection (Lowe, 2004), continue

to grapple with limitations in detection accuracy and generalization

when confronted with complex backgrounds and varied disease

symptoms (Zhang et al., 2018; Liu et al., 2018; Zhu et al., 2019).

The advancement of deep learning technology has significantly

propelled the development of CNN-based object detection

techniques for tomato disease recognition, encompassing Faster

R-CNN (Girshick, 2015), SSD (Liu et al., 2016), and YOLO

(Redmon et al., 2016) (Fuentes et al., 2017). Among these, the

YOLO series of algorithms has garnered substantial attention owing

to its speed and accuracy. With the introduction of YOLOv4

(Bochkovskiy et al., 2020), YOLOv5 (Jocher et al., 2022), YOLOX

(Ge et al., 2021), YOLOv6 (Li et al., 2022), YOLOv7 (Wang et al.,

2023), and other epoches, performance levels have consistently

improved. The continuous evolution of YOLO algorithms

demonstrates significant improvements in object detection

capabilities through systematic architecture optimization and

technical innovations. The core architectural enhancements

include implementing more efficient backbone networks for

feature extraction, optimizing neck structures for better feature

fusion, introducing advanced head designs for more accurate

predictions, and incorporating attention mechanisms for

improved feature focus. These fundamental improvements are

complemented by technical innovations such as enhanced loss

functions for better convergence, adaptive feature aggregation for

multi-scale detection, improved anchor-free detection mechanisms,

and advanced data augmentation strategies.
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The latest YOLOv10 algorithm has achieved innovations in

multiple aspects, significantly enhancing detection accuracy and

speed (Wang et al., 2024; Alif and Hussain, 2024). Specifically, the

BGF-YOLOv10 algorithm, designed for small object detection,

achieved a remarkable mAP of 42.0% on the VisDroneDET2019

dataset, demonstrating significant improvement over earlier

versions (Mei and Zhu, 2024). Additionally, the BLP-YOLOv10

model, optimized for safety helmet detection in low-light

environments, achieved an impressive mAP of 98.1% (Du et al.,

2024). This model excels in feature extraction and image processing

by adjusting backbone channel parameters, incorporating sparse

attention mechanisms, and integrating low-frequency

enhancement filters.

Nevertheless, YOLOv10 still faces challenges in small object

detection, complex background interference, and multi-scale target

handling (Kang et al., 2024; Lee et al., 2024; Sangaiah et al., 2024).

Compared to other versions, the decision to improve YOLOv10 was

based on several key factors. First, YOLOv10 introduces a

lightweight architecture and multi-path convolution modules,

significantly enhancing adaptability in complex environments

while maintaining precision and optimizing computational

efficiency, making it suitable for real-time, resource-constrained

scenarios. Second, its modular design provides high flexibility for

integrating novel mechanisms such as adaptive attention and

inverted residual units, making it well-suited for large-scale

disease detection tasks. Lastly, YOLOv10 has demonstrated

excellent performance in practical applications. For example,

BGF-YOLOv10 has improved crop disease detection in

agricultural scenarios, while BLP-YOLOv10 has shown

exceptional robustness in industrial settings under challenging

lighting conditions (Mei and Zhu, 2024; Du et al., 2024). These

comprehensive improvements and remaining challenges make

YOLOv10 an ideal candidate for continued development and

optimization, particularly in addressing specific application

requirements while maintaining general-purpose detection

capabilities. The balance between addressing current limitations

and leveraging existing strengths positions YOLOv10 as a

promising framework for future advancements in object

detection technology.

To significantly enhance the accuracy and efficiency of tomato

disease object detection, this study proposes an improved algorithm

based on YOLOv10. The research framework comprises three key

stages. First, a self-built tomato disease dataset is constructed to

provide high-quality input data, including standardized annotation

and preprocessing. Second, during model construction, the

proposed Multi-Path Inverted Residual Unit (MPIRU) and

Dynamic Focusing Attention Framework (DFAF) enhance feature

extraction and small target detection capabilities. Additionally, the

optimization of the loss function and class balance strategies

improves overall detection performance. Finally, the effectiveness

of the enhanced model is validated through comparative

experiments with existing models. This study aims to provide

robust technical support for early detection and precise control of

tomato diseases, contributing to the development of intelligent
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agriculture and ensuring food safety and agricultural

production efficiency.
2 Literature review

2.1 Agricultural disease detection: from
traditional methods to deep learning

In recent years, artificial intelligence and deep learning

technologies have been gradually applied to various agricultural

domains, such as crop cultivation, harvesting, and disease detection

(Kamilaris and Prenafeta-Boldú, 2018). Farmers have begun using

smartphones to detect crop diseases and pests (Liu et al., 2020).

However, this field still faces numerous challenges and

development opportunities.

Traditional agricultural disease detection and identification

methods primarily rely on manual feature extraction. While these

methods have achieved certain research results (Camargo and Smith,

2009; Shekhawat and Sinha, 2020), they have apparent limitations.

These conventional approaches necessitate substantial professional

expertise and a deep reservoir of knowledge, are inherently subjective,

and often neglect valuable attributes that are challenging to identify

with unaided human perception. Furthermore, when confronted with

voluminous data in authentic natural settings, the precision of

traditional methods frequently deteriorates significantly (Buja et al.,

2021; Wiesner-Hanks et al., 2019).

In contrast, deep learning technologies, with their potent feature

representation capacities, can autonomously extract features from

voluminous multi-type disease data, thereby substantially

enhancing detection performance (Saleem et al. , 2021;

Bhattacharya et al., 2022). AI has made disease detection more

automated, efficient, precise, and reliable, primarily manifested in

the following aspects:
Fron
1. Automatic feature learning: Capable of automatically

learning and recognizing disease features from millions of

images, greatly enhancing detection accuracy.
tiers in Plant Science 03
2. No manual intervention: Does not require manual feature

extraction or threshold setting, can automatically adapt to

various environments and conditions.

3. Efficient processing: Capable of rapidly identifying a

substantial quantity of diseases, thereby enhancing

detection efficiency and accuracy.
The efficacy of deep learning models in plant disease detection is

intrinsically tied to the quality of the training data. Currently, the

creation of datasets for agricultural disease detection models can be

broadly classified into two primary categories: natural environment

photography (with background) and ideal environment (without

background), as depicted in Figure 1. Images captured in natural

environments present complex backgrounds, which can enhance the

robustness and generalization capabilities of trained models.

Conversely, images acquired in ideal environments lack background

distractions, but the resulting models often struggle to achieve

satisfactory detection performance in real-world scenarios.
2.2 Agricultural disease detection in ideal
environments: achievements
and limitations

Given the intricate relationship between agricultural diseases

and factors like cultivation practices, management strategies, and

climate fluctuations, prevailing open-source tomato disease datasets

largely depend on laboratory samples, exemplified by AI Challenger

2018, Kaggle, and PlantVillage. Recognizing the considerable time

and effort necessary to accumulate a substantial quantity of natural

environment samples, numerous agricultural disease detection

model studies predominantly leverage open-source ideal

environment samples for training purposes. Although models

developed based on ideal environment samples have achieved

notable outcomes in laboratory settings, many have not

undergone validation in natural environments. Existing research

suggests that these models are primarily well-suited for scenarios

where disease-affected areas constitute a significant portion of the
FIGURE 1

Dataset examples. (A) natural environment photography (with background) (B) ideal environment (without background).
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image but may encounter difficulties in handling complex

backgrounds, lighting variations, changes in shooting angles, and

diverse lesion sizes within natural scenes.

For instance, Bora et al. (2023) developed a system capable of

detecting diseases on tomato leaves, stems, fruits, and roots with

remarkable accuracy rates of 99.84%, 95.2%, 96.8%, and 93.6%,

respectively. Zhang et al. (2023) introduced the M-AORANet model,

which demonstrated exceptional recognition accuracy of 96.47% on a

dataset comprising 3,123 tomato leaf images. Sunil et al. (2023)

employed a Multi-level Feature Fusion Network (MFFN) to achieve

an impressive external test accuracy of 99.83% on publicly available

tomato disease datasets. Although these models exhibited exceptional

performance in controlled environments, their primary limitation lies

in their inability to pinpoint the exact location of lesions within images,

hindering their direct application in real-world agricultural settings.
2.3 Agricultural disease detection in natural
environments: progress and challenges

Although models trained on natural environment data more

accurately reflect real-world conditions, the majority of research

continues to concentrate on model development, refinement, and

structural analysis using personal computers. This neglects the

critical need for lightweight and highly accurate solutions in

practical applications.

Several prior studies have explored the use of deep learning for

plant disease detection in various agricultural settings. Li et al.

(2019) developed a mobile application for early detection of tomato

late blight, demonstrating the potential for smartphone-based

disease diagnosis. Sun et al. (2021) proposed the MEAN-SSD

model, achieving an accuracy of 83.12% for apple leaf disease

detection while maintaining real-time processing speeds (12.53

frames per second). Zhang K. et al. (2021) incorporated skip

connections within the Faster R-CNN architecture, achieving an

accuracy of 83.34% on a custom dataset of soybean disease images.

Similarly, Chen et al. (2021) constructed a model for cucumber leaf

disease detection with an accuracy of 85.52%. Finally, Dananjayan

et al. (2022) demonstrated the effectiveness of YOLOv4 for rapid

and accurate detection of citrus leaf diseases. Qi et al. (2022)

introduced an enhanced SE-YOLOv5s network model that

achieved an impressive 91.07% accuracy on the tomato disease

test set. While these studies demonstrated real-time disease

recognition capabilities, the models developed for individual

agricultural diseases face challenges in widespread deployment

due to the fluctuating nature of disease occurrences.

Machine vision detection of tomato diseases faces significant

obstacles in actual planting environments, including complex

growing conditions, multiple disease types, and subtle symptom

variations (Barbedo, 2018; Kadry, 2021; Fuentes et al., 2021), which

impose exceptionally high demands on the multi-feature and cross-

scale extraction capabilities of detection algorithms. While the

YOLO series models have garnered widespread adoption for their

swift and precise detection capabilities, there remains potential for

enhancement in feature extraction and detection accuracy within

complex environments.
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Considering the current research status and challenges, this

study proposes a tomato disease detection method based on a

refined YOLOv10 architecture. By meticulously analyzing tomato

disease types and image characteristics, the algorithm is iteratively

enhanced and experimentally validated, aiming to fulfill the

accuracy and speed requirements of intelligent tomato disease

detection and reduce manual diagnosis costs. The innovations of

this study are primarily as follows:
1. The introduction of the Multi-Path Inverted Residual Unit

(MPIRU) significantly enhances the model’s ability to fuse

multi-scale features through parallel processing across

multiple paths, effectively reducing the number of

model parameters.

2. Integration of a Dynamic Focusing Attention Framework

(DFAF) into the C2f module, improving the focus on

important target areas and localization accuracy.

3. By incorporating Focal-EIoU as a refined loss function, we

significantly enhanced the model’s ability to accurately

match objects while effectively mitigating the challenges

posed by imbalanced datasets.

4. The improved YOLOv10 performs excellently in detection

accuracy, parameter optimization, and complexity control,

making it suitable not only for tomato disease detection

but also for other crop disease detection tasks in

complex backgrounds.
3 Materials and methods

3.1 Data collection and dataset preparation

In this study, we utilized a custom-built tomato disease dataset

aimed at capturing disease features in real agricultural environments,

reflecting the imbalanced nature of disease occurrence in actual

scenarios. The data collection process was rigorously controlled to

ensure quality and representativeness. Table 1 summarizes the key

parameters of data collection.

The data acquisition process prioritized capturing a broad

spectrum of environmental conditions, encompassing diverse

lighting scenarios, angles of view, and background elements, such

as leaves, weeds, and soil. This diversity is crucial for improving the

model’s generalization ability and applicability in real-world

conditions. Each image was accompanied by rich metadata,

including environmental temperature, precise location, and

timestamp, providing valuable context for subsequent analysis

and model training. Figure 2 shows representative samples of the

various tomato diseases in the dataset, visually illustrating the

characteristics and complexity of different diseases.

Our dataset reflects the natural distribution of disease

occurrence in actual agricultural environments, thus exhibiting

significant class imbalance. Table 2 details the sample count for

each category and its proportion in the overall dataset.

This imbalanced distribution reflects the relative frequency of

various diseases in actual agricultural production, providing us with
frontiersin.org
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a realistic challenge scenario. In particular, the sample sizes for leaf

mold and gray mold are notably smaller than other categories,

highlighting the importance and difficulty of identifying rare

diseases in practical applications.

To address the dataset’s class imbalance, we employed a

stratified random sampling technique. This method ensured that

the distribution of each category in the training, validation, and

testing sets accurately mirrored the original dataset. A detailed

breakdown of the dataset division is provided in Table 3.

This division method ensures that each subset contains

balanced representations of all categories while preserving the

imbalanced characteristics of the original dataset, contributing to

stable performance and reliable evaluation of the model in real-

world scenarios.
3.2 Data annotation

Accurate data annotation is indispensable for guaranteeing the

efficacy of model training. This research employed the widely

utilized open-source annotation tool Labellmg to prepare data for

object detection purposes. The annotation process is visually

depicted in Figure 3.
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3.3 Data augmentation

Given the dataset’s uneven distribution, we implemented

focused data augmentation techniques designed to address class

imbalance concerns and bolster the model’s capacity to identify

uncommon classes.
3.3.1 Offline data augmentation
To improve model generalization and mitigate overfitting, this

study performed data augmentation on the training set. When

selecting data augmentation methods, we paid special attention to

preserving key disease features while avoiding unnecessary

distortions. We adopted more aggressive offl ine data

augmentation strategies for categories with fewer samples (such

as leaf mold and gray mold). Table 4 outlines the offline

augmentation methods and their parameters applied to

different categories.

Figure 4 demonstrates the effects of four image processing

techniques. Through this strategy, we significantly increased the

sample size of rare categories while maintaining the overall diversity

of the dataset. This approach helps balance the performance across

categories, especially improving the model’s ability to recognize

relatively rare diseases such as leaf mold and gray mold.

Through the offline data augmentation strategy, we significantly

expanded the total number of samples. The original dataset

contained 10,537 images, which increased to 31,053 after

augmentation, approximately 2.95 times the original size.

Notably, for rare categories such as leaf mold and gray mold, the

sample counts increased from 805 and 1358 to 4025 and 5432,

respectively. This category-specific augmentation approach

effectively mitigated the class imbalance issue, improved the

model’s ability to recognize rare categories, and preserved critical

disease features, thereby providing a more robust foundation for the

model’s generalization performance.
3.3.2 Real-time data augmentation
Given the dataset’s uneven distribution and the intricate

agricultural setting, we implemented a variety of real-time data

augmentation techniques within YOLOv10 with the objective of
FIGURE 2

Shows five samples of the various tomato diseases in the dataset: (A) Late blight (B) Early blight (C) Gray mold (D) Leaf mold (E) Health.
TABLE 1 Overview of data collection parameters.

Parameter Description

Collection equipment
Agricultural IoT monitoring equipment (HS-

CQAI-1080)

Location
Tomato production base, Shouguang City,

Shandong Province, China

Precise coordinates Longitude: 118.782956°, Latitude: 36.930686°

Image resolution 3648 × 2056 pixels

Daily collection times 08:30–11:30 and 14:30–17:30

Distance between device
and lesions

0.2~0.5 meters

Environmental conditions
Sunny and cloudy days; various infected regions

and conditions

Total number of images 10,537
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enhancing the model’s capacity for generalization and its aptitude

for identifying uncommon categories (Table 5).

This all-encompassing real-time data augmentation approach

not only substantially expands the diversity of the training dataset

but also enhances the model’s capacity to adapt to a wide range of

intricate scenarios. Especially for disease categories with fewer

samples (such as leaf mold and gray mold), these enhancement

methods help the model learn more diverse feature representations

from limited samples. Through this approach, we expect the model

to better handle the complex and variable real-world scenarios in

agricultural production, improving detection accuracy for various

diseases, particularly under challenging conditions such as

insufficient lighting, partial occlusion, or unfavorable

shooting angles.
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3.4 The improved tomato disease
detection model based on YOLOv10

Although the C2f module in YOLOv10 enhances feature

extraction capabilities through the Bottleneck structure, its equal

treatment of all channels and positional information introduces a

significant amount of irrelevant interference. This results in

suboptimal performance when handling multi-scale small targets

and complex backgrounds in tomato disease images. Additionally,

in the YOLOv10 model, the backbone network extracts deep

features through multiple down-sampling convolution layers.

Although this multi-stage downsampling enhances the model’s

capacity to handle large targets and intricate backgrounds, it also

leads to a significant reduction in small target features. To mitigate

the loss of these crucial details during detection, the neck network

utilizes multiple upsampling operations to restore feature map

resolution and integrate features from various levels, thereby

improving the model’s ability to detect targets of varying sizes.

However, this alternating process of downsampling and

upsampling also results in excessive layer stacking within the

backbone and neck networks, increasing the model’s parameter

count and computational complexity, making it challenging to meet

real-time detection requirements in practical applications. To

overcome these aforementioned challenges, given the nature of

multi-scale target detection of tomato diseases in intricate

environments, this study proposes a streamlined target detection

algorithm, TomatoGuard-YOLO, as illustrated in Figure 5.

This model is an enhancement of version n of YOLOv10 (referred

to as YOLOv10 unless otherwise specified), featuring lightweight

designs for both the backbone and neck networks. Initially, a novel

feature extraction and fusion module, termed the Multi-Path Inverted

Residual Unit (MPIRU), is devised. Subsequently, the proposed

Dynamic Focusing Attention Framework (DFAF) is integrated into

the C2f module, resulting in the C2f-DFAF module. Subsequently, all

C2f modules within the foundational YOLOv10 backbone and neck

networks are supplanted with MCIR and C2f-DFAF. Furthermore, the

backbone network’s downsampling operations have been curtailed to
FIGURE 3

Data Annotation Process. Using LabelImg tool for disease area annotation. Example of generated VOC format XML file.
TABLE 3 Dataset division.

Dataset Sample size Proportion

Training set 8430 80%

Validation set 1054 10%

Test set 1053 10%

Total 10,537 100%
TABLE 2 Sample count for each category of our dataset.

Category Sample count Proportion

Healthy 3526 33.46%

Late Blight 2745 26.05%

Early Blight 2103 19.96%

Gray Mold 1358 12.89%

Leaf Mold 805 7.64%

Total 10,537 100%
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retain a greater quantity of feature information. Concurrently, the

upsampling and feature concatenation procedures within the neck

network have been streamlined to diminish the number of layers and

complexity, thereby further reducing computational expenses. In

conclusion, the loss function has been meticulously refined to Focal-

EIoU, effectively rectifying the deficiencies of the original loss function

and bolstering the model’s capacity to concentrate on a variety

of samples.

The subsequent sections elucidate each improved module,

aiming to elevate the model’s performance in detecting tomato

diseases in intricate agricultural environments, particularly in

handling small targets, complex backgrounds, and class

imbalance challenges.

3.4.1 Multi-path inverted residual unit
In complex agricultural environments, tomato diseases often

exhibit multi-scale and multi-form characteristics. To bolster the

model’s capacity to extract these intricate features, we introduce the

Multi-Path Inverted Residual Unit (MPIRU). The design of MPIRU

incorporates the inverted residual structure from MobileNetV2

(Sandler et al., 2018) and the channel separation concept from

ShuffleNetV2 (Ma et al., 2018), aiming to enhance feature extraction
Frontiers in Plant Science 07
diversity while preserving computational efficiency. Figure 6

illustrates the detailed structure of MPIRU.

As shown in Figure 6, MPIRU first evenly divides the input

feature map (X) into (n) branches {X1, X2,…, Xn}, with each branch

independently processing a portion of the channels. Each branch

adopts an “expand-convolve-squeeze” inverted residual structure,

which can be expressed as:

Fi(Xi) = Hi(Gi(Ei(Xi))) (1)

where Ei, Gi, and Hi represent the expansion (1x1 convolution),

depthwise separable convolution (3x3), and compression (1x1

convolution) operations, respectively. The output (Y) of MPIRU

can be expressed as:

Y = Concat(F1(X1), F2(X2),⋯, Fn(Xn) + X) (2)

Where Concat denotes the concatenation operation along the

channel dimension.

To facilitate information exchange between different branches,

we apply a channel shuffle operation after concatenation. This

design not only enhances the diversity of feature extraction but

also maintains relative computational stability.
FIGURE 4

Offline data augmentation examples. (A) Original image; (B) Horizontal flip; (C) Vertical flip; (D) Small angle rotation; (E) Brightness adjustment.
TABLE 4 Offline data augmentation methods (for different categories).

Category Augmentation Methods Parameters

Leaf mold Horizontal flip, Vertical flip, Small angle rotation, Brightness adjustment Rotation range: ± 20°, Brightness range: ± 15%

Gray mold Horizontal flip, Vertical flip, Small angle rotation Rotation range: ± 15°, Brightness range: ± 10%

Early blight, Late blight Horizontal flip, Vertical flip –

Healthy samples Horizontal flip –
TABLE 5 Real-time data augmentation methods.

Method Parameters Purpose

Mosaic Probability = 1.0, Number of images = 4 Increase contextual information, improve small object detection performance

Random Affine Rotation = ± 10°, Scale = 0.8~1.2 Simulate different shooting angles and distances

MixUp Probability = 0.15 Increase sample diversity, improve model generalization ability

Random HSV Hue = ± 10, Saturation = 0.5, Value = 0.5 Simulate different lighting and weather conditions

Cutout Probability = 0.3 Improve model robustness to partial occlusions
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3.4.2 C2f-DFAF module
Accurately locating and identifying diseased areas is essential in

disease detection tasks. Attention mechanisms have proven highly

effective in enhancing the architecture of deep neural networks,

achieving notable success in various applications. However, their

integration into lightweight networks has significantly lagged

behind their implementation in larger models. This disparity

arises primarily because most mobile and edge devices have

limited computational resources, making it challenging to

accommodate the high overhead associated with traditional

attention mechanisms. To address this limitation, we propose the

Dynamic Focusing Attention Framework (DFAF), which is

seamlessly integrated with the C2f module to form the novel C2f-
Frontiers in Plant Science 08
DFAF module, delivering efficient and effective attention

capabilities suitable for lightweight networks.

This enhancement is inspired by SENet (Hu et al., 2018) and

CBAM (Woo et al., 2018). SENet employs 2D global pooling to

calculate channel attention and improves model performance with a

relatively minimal computational overhead. Nevertheless, SENet

solely considers inter-channel information and neglects positional

information, which is essential for capturing object structures in

visual tasks. To address this limitation, CBAM endeavors to

compute positional information by reducing the channel

dimension of the input tensor and subsequently utilizing

convolution to calculate spatial attention. However, convolution

solely captures local area information and cannot model long-
FIGURE 6

Structure of the Multi-Path Inverted Residual Unit (MPIRU).
FIGURE 5

The architecture of the proposed TomatoGuard-YOLO model.
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distance dependencies, nor can it capture spatial information at

varying scales to enrich the feature space. Although CBAM uses two

fully connected layers and a nonlinear Sigmoid function to generate

channel weights, capturing nonlinear cross-channel interaction

information and controlling model complexity through

dimensionality reduction, the parameter count is still positively

correlated with the square of the input feature map channels.

Further research shows that dimensionality reduction negatively

impacts channel attention prediction, with low efficiency in

capturing dependencies among all channels.

To address the critical challenges in object detection, we

introduce the C2f-DFAF module, centered around a lightweight

adaptive attention unit (DFAF) capable of dynamically learning and

adjusting the significance of features across channel and spatial

dimensions. DFAF effectively pinpoints tomato disease features,

suppresses irrelevant features, and significantly reduces parameters

and computational overhead. The module comprises a feature input

layer, channel attention module layer, spatial attention module

layer, and feature output layer. Figure 7 illustrates the detailed

structure of the DFAF module.

The DFAF (Dynamic Feature Adaptive Fusion) module consists

of two primary components: a channel attention module and a

spatial attention module. The input features undergo parallel

processing through these modules, with their outputs being

adaptively fused through multiplication operations. A skip

connection preserves the original feature information, ensuring

robust feature representation. This architecture enables dynamic

feature weighting while maintaining computational efficiency.

Specifically, the feature input layer is responsible for receiving

and pre-processing raw input features, preparing them for

subsequent attention mechanism modules. The channel attention

module layer learns weights for each channel, adaptively enhancing

important feature channels while suppressing secondary channels,

thereby modeling the global importance of features. The spatial

attention module layer focuses on capturing spatial dependencies

within feature maps by generating attention weight maps, precisely

localizing tomato disease regions. Finally, the feature output layer

integrates the outputs of the aforementioned attention mechanisms,

generating more focused and discriminative feature representations.

The mathematical expression of the DFAF module is as follows:

A = s   WC ⊗AvgPool(X) +WS ⊗MaxPool(X)ð Þ (3)
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In the aforementioned formular, X represents the input feature,

WC and WS are the weight parameters for channel and spatial

attention, respectively, s is the sigmoid activation function, and ⊗
denotes the convolution operation. This design allows the model to

adaptively balance the significance of channel and spatial attention,

thereby better accommodating different types of disease features.

Simultaneously, the C2f-DFAF module introduces a residual

learning mechanism. As shown in Equation 4, the output of the

attention mechanism is added to the original features rather than

simply multiplied:

Y = X*A + X (4)

This design helps mitigate the vanishing gradient problem while

preserving the original feature information, which is particularly

important for maintaining the subtle features of diseases.

Consequently, the DFAF module utilizes the channel attention

module to generate channel-level attention maps, thereby

enhancing the response to small targets. The spatial attention

module generates spatial-level attention maps through convolution

operations, enabling the model to accurately pinpoint regions of

interest in intricate backgrounds. By integrating these two attention

mechanisms, the model can adjust and weight channel and spatial

attention, allowing it to concentrate on significant regions in complex

backgrounds, strengthening small target detection capabilities, and

improving recognition accuracy. Additionally, the use of global

pooling and convolution operations enables efficient parallel

computation without adding too many extra parameters, allowing

the C2f-DFAF module to achieve excellent detection performance

with high efficiency and low parameters in tomato disease detection.
3.4.3 Focal-EIoU loss function
Tomato disease samples in images often exhibit substantial class

imbalance, with significant variations in shape and size. To address

these challenges, we propose the Focal-EIoU loss function, which

integrates the sample balancing capability of Focal Loss (Lin et al.,

2017) and the precise bounding box regression capability of EIoU

(Efficient IoU) (Zhang Z. et al., 2021).

Focal Loss is particularly effective in addressing class imbalance

issues by dynamically reducing the loss weight of easily classified

samples, thereby increasing the model’s emphasis on difficult-to-

classify samples. The definition of Focal Loss is as follows:
FIGURE 7

Structure of DFAF attention mechanism.
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FL(pt) = −at(1 − pt)
g log (pt) (5)

at =
v

(1 − IoU) + v
(6)

n =
4
p2 arctan

wgt

hgt
− arctan

w
h

� �2

(7)

The model’s predicted probability for the accurate classification is

denoted by pt . To address the issue of imbalanced classes, we employ a

weighting factor represented byat . Additionally, the parameter g serves
to regulate the influence of easily classified samples. The dimensions of

the ground truth and predicted bounding boxes are expressed as (wgt ,

hgt) and (w , h), respectively. The central coordinates of the predicted
and ground truth boxes are given by b and bgt . The Euclidean distance

between these center points is calculated as r. The diagonal length of

the smallest bounding box encompassing both boxes is represented by

c. The weighting function is defined as a, and the squared disparity in

the diagonal angles of the ground truth and predicted boxes is denoted

by v, as illustrated in Figure 8.

Focal Loss effectively prioritizes challenging samples with low

intersection over union (IoU) by assigning them greater weights.

This mechanism empowers the model to concentrate on more

elusive classes, which is indispensable for the identification of

uncommon diseases such as leaf mold and gray mold.

EIoU significantly elevates the accuracy of bounding box

regression by refining the precision of the overlap between the

predicted and ground truth boxes. EIoU comprehensively evaluates

not only the area of overlap but also the relative positions,

dimensions, and contours of the boxes. Its formal definition is as

follows:

EIoU = IoU −
r2(b, bgt)

c2
−
n
c

(6)
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EIoU provides a more comprehensive evaluation of bounding

boxes than traditional IoU by penalizing deviations in position and

aspect ratio, improving the localization accuracy for small targets

and irregularly shaped diseases.

The final Focal-EIoU loss function integrates Focal Loss and

EIoU, enabling the model to effectively mitigate class imbalance

concerns and refine the accuracy of bounding box localization. Its

mathematical formulation is as follows:

LFocal−EIoU = FL(pt) + lEIoU (7)

Where l is the weighting factor for balancing classification and

localization losses. After multiple experiments, the parameter g=0.9
was selected. The incorporation of Focal-EIoU loss into the

TomatoGuard-YOLO model enables it to effectively prioritize less

prevalent disease categories and accurately pinpoint the affected

regions within intricate agricultural settings.
4 Results

4.1 Experimental environment

To ensure the reproducibility and reliability of the experimental

results, this study meticulously records the experimental

environment and key parameter settings. Tables 6, 7 list the

hardware and software configurations, as well as the core

parameters for model training.

This experiment employs cutting-edge hardware and software

configurations, particularly the NVIDIA A100 GPU, whose powerful

computing capabilities significantly enhance the efficiency of large-

scale model training. The deep learning framework used is PyTorch, a

popular open-source platform that seamlessly integrates with the

hardware to optimize performance. Additionally, the selected
FIGURE 8

Loss function border diagram.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1499278
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Wang and Liu 10.3389/fpls.2024.1499278
versions of CUDA and cuDNN ensure full utilization of GPU

acceleration and provide robust support for neural networks.

These parameters were chosen based on multiple experiments

and optimizations. A batch size of 64 effectively utilizes the parallel

capabilities of multi-GPU setups. The AdamW optimizer,

combined with the cosine annealing strategy, enhances model

convergence and mitigates potential overfitting issues during

training. To ensure thorough training, an early stopping

mechanism is introduced to prevent overfitting on the

validation set.
4.2 Evaluating indicators

This study employs a set of indicators, such as mAP, Model Size

(in MB), Number of Parameters (in MB), and Frames Per Second

(FPS). These indicators not only reflect the model’s detection

accuracy but also provide insights into its computational

complexity and real-time performance. The formulas for these

indicators are as follows:

Precision =
TP

TP + FP
· 100% (8)

Recall =
TP

TP + FN
· 100% (9)

mAP = o
K
i=1APi
K

(10)
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 F1 − score =
2 · Precision · Recall
Precision + Recall

(11)

Where TP represents True Positives, FP represents False

Positives, and FN represents False Negatives. Precision measures

the proportion of true positive samples among all samples predicted

as positive, reflecting the accuracy of the model’s positive

predictions. Recall, on the other hand, indicates the proportion of

true positive samples correctly identified by the model among all

actual positive samples, assessing the model’s recognition ability.

The mean Average Precision (mAP) is calculated by averaging the

Average Precision (AP) for each class, with K denoting the total

number of classes. It serves as a comprehensive performance metric

in object detection tasks, demonstrating the model’s effectiveness

across multiple categories. The F1-score, which is the harmonic

mean of Precision and Recall, offers a balanced evaluation of these

metrics, particularly useful when there ’s an imbalance

between them.

In addition to these accuracy evaluation metrics, this study

incorporates the following indicators to assess model efficiency:
• Model Size and Number of Parameters: Measured in MB,

these metrics reflect the model’s complexity and storage

requirements. In practical applications, the model’s size and

parameter count directly influence memory usage and

hardware demands, making them crucial for evaluation.

• Frames Per Second (FPS): This metric indicates the

number of image frames the model can process per

second during operation. A higher FPS signifies greater

operational efficiency, which is essential for real-time

detection tasks. FPS not only gauges the model’s

performance on hardware but also its potential for real-

time applications in various scenarios.
Through a comprehensive evaluation of these indicators, this

study not only confirms the accuracy and generalization capabilities

of the TomatoGuard-YOLO model in tomato disease detection but

also examines its computational efficiency and resource

consumption, providing robust support for its practical application.
4.3 Learning rate selection

The learning rate is a crucial hyperparameter in training deep

learning models, significantly influencing convergence speed, final

performance, and stability. To identify the optimal learning rate for

the TomatoGuard-YOLOmodel, we designed multiple comparative

experiments, testing initial rates of 0.1, 0.05, 0.01, and 0.001 while

keeping other hyperparameters constant. Figure 9 illustrates the

trends in the loss function and accuracy for these different

learning rates.

As illustrated in the loss function curves in Figure 9A, it is clear

that with learning rates of 0.1 and 0.05, the loss function does not

exhibit substantial reduction, instead displaying a relatively stable

or even fluctuating trend. This suggests that the learning rate is

excessively high, resulting in overly large gradient update steps that

hinder the model’s convergence to an optimal solution, thereby
TABLE 7 Model training parameters.

Parameter Value

Batch Size 64

Initial Learning Rate 0.001

Weight Decay 0.05

Number of Epochs 300
TABLE 6 Experimental environment configuration.

Category Component Specification

Hardware

Processor
2 × Intel Xeon Platinum 8280 (28

cores, 2.70 GHz)

Memory 768 GB DDR4-2933 ECC

GPU 4 × NVIDIA A100 (80 GB HBM2e)

Storage
2 TB NVMe SSD + 20 TB HDD

(RAID 5)

Software

CUDA CUDA 11.4.2, cuDNN 8.2.4

Python Python 3.9.7

Framework PyTorch 1.10.1

Libraries
NumPy 1.21.4, OpenCV 4.5.4,

Albumentations 1.1.0
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affecting training outcomes. Conversely, with learning rates of 0.01

and 0.001, the loss function demonstrates a stable and marked

downward trend, indicating that the model gradually approaches

the optimal solution. Among these, a learning rate of 0.001 yields

the most consistent decrease in the loss function, ultimately

reaching its lowest point and demonstrating the best convergence.

Figure 9B presents the accuracy changes of the model under

different learning rates. It is evident that at learning rates of 0.1 and

0.05, the accuracy curves exhibit significant fluctuations and fail to

stabilize at a high level. This aligns with the earlier observation of

the loss function’s instability, further confirming that a high

learning rate induces training volatility, preventing the model

from achieving optimal performance. In contrast, at a learning
Frontiers in Plant Science 12
rate of 0.01, the accuracy rises rapidly, but in the mid-to-late

training stages, the accuracy curve begins to display slight

fluctuations and tendencies towards overfitting. When employing

a learning rate of 0.001, accuracy improves steadily, ultimately

reaching the highest value without significant overfitting, resulting

in a stable training process with excellent convergence.

Considering the convergence behavior of the loss function, the

rate of accuracy improvement, and the model’s stability during

training, we ultimately selected 0.001 as the initial learning rate for

the TomatoGuard-YOLO model. This learning rate ensures stable

convergence while providing sufficient capacity for the model to

fully adapt to the complex patterns and variations in the training

data, laying a solid foundation for subsequent optimizations.
FIGURE 9

Shows Loss and mAP changes of TomatoGuard-YOLO model under different learning rates: (A) Loss for Different Learning Rates (B) mAP for
Different Learning Rates.
FIGURE 10

Training process curves.
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4.4 Model training

Based on the experimental environment configuration and

parameter settings described earlier, we systematically trained the

TomatoGuard-YOLO model for a total of 300 epochs. To

comprehensively understand the performance during training, we

closely monitored the changes in several key performance

indicators, such as the loss function, mAP50, and mAP50:95.

Figure 10 shows the trends of these indicators during the

training process.

As illustrated in Figure 10, both the training loss and validation

loss exhibit a consistent and marked decline, with the gap between

them gradually narrowing. This suggests that the model is effectively

adapting to the training data while simultaneously enhancing its

generalization capability. Specifically, the box_loss decreases from an

initial value of 0.086 to around 0.030, obj_loss drops from 0.038 to

approximately 0.027, and cls_loss significantly reduces from an initial

0.071 to 0.007. These results indicate notable enhancements in the

model’s localization accuracy (box_loss), detection confidence

(obj_loss), and classification performance (cls_loss).

In terms of detection accuracy, the mAP50 and mAP50:95

indicators show a rapid increase in the early training stages,

followed by a gradual slowdown and eventual stabilization in the

later phases. Ultimately, mAP50 reaches 94.23%, while mAP50:95

stabilizes at 72.52%, indicating that the TomatoGuard-YOLO

model possesses excellent object detection capabilities across

different IoU thresholds.

Additionally, during the training process, we observed that the

model’s ability to recognize various types of tomato diseases gradually

improved. Notably, it maintained high detection accuracy even for

disease types with relatively fewer samples. Through gradual

adjustments and optimizations, the TomatoGuard-YOLO model

achieved outstanding performance in tomato disease detection.
4.5 Ablation study results

To systematically evaluate the effectiveness of our proposed

improvements, we conducted comprehensive ablation experiments

on the core enhancement modules based on the YOLOv10 model.
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Through eight carefully designed comparative experiments with

different module combinations, we assessed the impact of the

MPIRU module, c2f-DFAF module, and Focal-EIoU loss function

on tomato disease detection performance across multiple

dimensions, including detection accuracy, model size, and

computational overhead. Table 8 presents detailed key

performance indicators under various module combinations.

The experimental results reveal the significant impact of each

enhancement module on model performance. The standalone

introduction of the MPIRU module led to substantial

improvements in detection accuracy, with mAP50 increasing

from 84.15% to 91.82% and mAP50:95 rising from 61.22% to

68.71%. More importantly, this performance enhancement was

accompanied by a significant reduction in model complexity, with

model size decreasing from 5.61MB to 2.62MB and parameter

count reducing from 2.73MB to 0.93MB. These results

convincingly demonstrate the MPIRU module’s effectiveness in

simultaneously improving detection accuracy and achieving

model lightweighting.

The integration of the c2f-DFAF module, through optimization

of the C2f structure, further enhanced model performance,

achieving an mAP50 of 88.92% and mAP50:95 of 65.81%. While

the parameter count increased slightly (from 2.73MB to 2.74MB),

the significant performance improvements fully justify this

optimization. The module demonstrated excellence in enhancing

feature hierarchy capture and multi-scale feature fusion, effectively

improving the model’s feature expression capabilities.

The application of the Focal-EIoU loss function exhibited unique

advantages, improving mAP50 to 88.72% and mAP50:95 to 65.61%

without increasing model complexity. This enhancement played a

crucial role in optimizing bounding box regression precision and

addressing sample imbalance issues while improving the model’s

detection robustness across different target scales.

The synergistic combination of all three enhancement modules

(Group 8) achieved optimal performance, with mAP50 reaching

94.23% and mAP50:95 rising to 72.52%, while maintaining a

compact model size (2.65MB) and parameter count (0.94MB).

Compared to the original YOLOv10 model, detection accuracy

improved by 10.07 percentage points, while model size and

parameter count reduced by 52.76% and 65.57%, respectively.
TABLE 8 Ablation experiment results.

Model MPIRU c2f-DFAF Focal-EIoU mAP50/% mAP50:95/% Model Size/MB Parameters/MB

1 84.15 61.22 5.61 2.73

2 √ 91.82 68.71 2.62 0.93

3 √ 88.92 65.81 5.62 2.74

4 √ 88.72 65.61 5.61 2.73

5 √ √ 91.53 68.42 5.62 2.74

6 √ √ 93.91 71.23 2.63 0.93

7 √ √ 93.37 70.69 2.64 0.94

8 √ √ √ 94.23 72.52 2.65 0.94
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These results conclusively demonstrate the synergistic effects of the

enhancement modules in achieving both high-precision detection

and model lightweighting objectives.

The ablation study results deeply reveal the core functions of each

module: the MPIRU module serves as the foundation for lightweight

design, significantly reducing model complexity; the c2f-DFAF

module enhances multi-scale target detection capabilities through

feature layer optimization; and the Focal-EIoU loss function

optimizes detection accuracy while maintaining low computational

overhead. The organic integration of these modules enables

TomatoGuard-YOLO to achieve lightweight design while

maintaining high performance, providing reliable technical support

for resource-constrained practical agricultural application scenarios.
4.6 Comparative experiments

In the comparative experiments, we standardized the

hyperparameters across all models to ensure a fair comparison.

Specifically, all models were trained with the following

hyperparameters: a batch size of 64, an initial learning rate of 0.001,

the AdamW optimizer, and a cosine annealing learning rate scheduling

strategy. Training was conducted for 300 epochs with an early stopping

mechanism to prevent overfitting. Additionally, to maintain

comparability, all experiments were performed on the same hardware

environment (NVIDIAA100GPU), whichmaximized the performance

of each model while ensuring consistent experimental conditions. To

assess the efficacy of the TomatoGuard-YOLO algorithm, we performed

comprehensive comparative experiments alongside other state-of-the-

art object detection algorithms. The results are summarized in Table 9.

The comparative results presented in Table 9 clearly

demonstrate that the TomatoGuard-YOLO model achieves a

significant advantage in the mAP50 metric, reaching 94.23%,

which is far superior to other compared algorithms. Especially

compared to the original YOLOv10, TomatoGuard-YOLO

improves by 10.07 percentage points, fully demonstrating the

efficacy of our improvement strategies.
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As for model complexity, TomatoGuard-YOLO’s parameter

count is only 0.94M, a reduction of 65.57% compared to

YOLOv10’s 2.73M. The model size is 2.65M, a reduction of

52.76% compared to YOLOv10’s 5.61M. This indicates that while

improving detection accuracy, TomatoGuard-YOLO significantly

reduces model complexity, making it a better choice for deployment

in resource-limited environments.

Regarding inference speed, TomatoGuard-YOLO achieves an

average frame rate of 129.64 FPS, an improvement of 3.20%

compared to YOLOv10’s 125.62 FPS. This further demonstrates

that despite the significant performance improvements, the model

does not sacrifice inference speed; instead, it enhances inference

efficiency. This high-efficiency and lightweight characteristic makes

TomatoGuard-YOLO perform exceptionally well.

To further assess the benefits of TomatoGuard-YOLO, we

performed a comparison of mAP and Loss curves with other

models, as shown in Figures 11A, B.

From Figure 11A, the mAP curve for TomatoGuard-YOLO is

notably superior to those of the other models under comparison,

ultimately stabilizing at approximately 94.23%, which reinforces the

model’s strong performance in tomato disease detection. Figure 11B

illustrates that the initial loss for TomatoGuard-YOLO is 0.195359,

significantly lower than that of the other models, eventually stabilizing

at around 0.0626034. This suggests that the model achieves a quicker

convergence and a lower final loss, further confirming its optimization

efficacy. Overall, the outstanding performance of TomatoGuard-YOLO

regarding accuracy, speed, and compact design highlights its significant

potential for application in tomato disease detection within

complex environments.
4.7 Detection results for different types
of diseases

To thoroughly assess the TomatoGuard-YOLO model’s

effectiveness in identifying different tomato diseases, we evaluated

it using a custom imbalanced dataset. The detection results for
TABLE 9 Comparative experiment results.

Model mAP50/% Parameters/MB Model Size/MB FPS

SSD 63.92 24.16 28.42 89.83

FasterR-CNN 70.78 136.75 89.64 21.74

YOLOv3 79.23 61.57 123.65 45.26

YOLOv3-tiny 56.52 8.68 17.53 104.15

YOLOv5s 72.73 7.06 14.52 98.67

YOLOX-s 72.62 9.02 8.95 97.28

YOLOv7-tiny 75.43 6.04 12.32 106.56

YOLOv8n 73.42 3.02 6.22 119.45

YOLOv10 84.15 2.73 5.61 125.62

TomatoGuard-YOLO 94.23 0.94 2.65 129.64
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various disease types, as achieved by the TomatoGuard-YOLO

model, are summarized in Table 10.

Table 10 demonstrates that the TomatoGuard-YOLO model

attains notable Precision, Recall, and AP metrics above 90% for all

four disease types and healthy samples, demonstrating high accuracy

and recall rates. The model’s mAP reaches 94.23%, fully proving its

excellent performance in handling different types of tomato diseases.

Notably, the model excels not only in detecting common diseases

such as late blight and early blight but also maintains high detection

sensitivity for relatively rare diseases like gray mold and leaf mold.

Additionally, the model’s outstanding performance in recognizing

healthy samples helps reduce misdiagnosis and unnecessary

treatments, which is crucial for practical agricultural production.

The AP50 values for detecting five types of tomato diseases and

healthy samples using the proposed TomatoGuard-YOLO

algorithm and other models are displayed in Table 11. The

findings clearly demonstrate that the TomatoGuard-YOLO

algorithm shows enhanced adaptability in handling targets with

pronounced sample imbalance and size variations.

As shown in Table 11, the YOLOv10 algorithm achieves an

AP50 of 90.71% for detecting healthy samples but only 77.18% for

identifying leaf mold. Similarly, the YOLOv8n algorithm performs

relatively well for late blight detection, with an AP50 of 87.16%, but

struggles with gray mold, achieving only 78.53%. In contrast, the

proposed TomatoGuard-YOLO algorithm demonstrates
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exceptional performance across all categories, significantly

surpassing other models in the overall detection of five types of

tomato diseases as well as healthy samples. Notably, for the more

challenging cases of gray mold and leaf mold, TomatoGuard-YOLO

achieves AP50 values of 93.07% and 90.36%, respectively,

outperforming competing algorithms by a substantial margin.

Accurate identification and localization of tomato diseases are

critical metrics for evaluating detection performance. While healthy

samples and late blight are relatively easier to detect due to their

distinct features, diseases such as early blight, gray mold, and leaf

mold pose greater challenges. These diseases often exhibit subtle

symptoms, with blurred boundaries between lesions and healthy

tissue, making detection more difficult. Gray mold and leaf mold, in

particular, are characterized by irregular lesion distribution,

significant variations in lesion size, and high visual similarity to

the background, further complicating accurate detection.

Compared to the next-best performer, YOLOv10, TomatoGuard-

YOLO achieves a remarkable improvement of 10.08 percentage

points in mAP50, with category-specific gains ranging from 6.88 to

13.18 percentage points. This comprehensive performance

enhancement highlights the superiority of TomatoGuard-YOLO in

tackling the complexities of tomato disease detection. Furthermore, it

provides reliable technical support for precise diagnosis and timely

intervention, offering significant practical value in real-world

agricultural applications.
TABLE 10 Detection performance of the TomatoGuard-YOLO model across various disease types.

Category Precision (%) Recall (%) F1-score (%) AP50 (%)

Healthy 96.85 96.53 96.69 97.59

Late Blight 95.93 95.41 95.67 95.99

Early Blight 94.72 94.28 94.51 94.11

Gray Mold 93.16 92.58 92.87 93.07

Leaf Mold 91.74 90.86 91.32 90.36

Average 94.48 93.93 94.21 94.23
FIGURE 11

Shows Comparison of mAP and loss curves for different models: (A) mAP0.5 Comparison of 10 Models (B) Loss Comparison of 10 Models.
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FIGURE 12

Detection results comparison in typical Tomato disease scenarios (A) Ground Truth, (B) Baseline, and (C) TomatoGuard-YOLO.
TABLE 11 Comparison of AP50 results for different models in tomato disease detection tasks.

Method mAP50/%
AP50/%

Healthy Late Blight Early Blight Gray Mold Leaf Mold

SSD 66.56 71.52 69.73 65.84 62.82 62.89

FasterR-CNN 73.56 79.04 77.07 72.77 69.44 69.51

YOLOv3 82.32 88.45 86.24 81.43 77.70 77.78

YOLOv3-tiny 58.68 63.05 61.47 58.04 55.38 55.44

YOLOv5s 76.19 81.87 79.82 75.37 71.92 71.99

YOLOX-s 75.32 80.93 78.90 74.50 71.09 71.16

YOLOv7-tiny 78.82 84.69 82.57 77.97 74.40 74.47

YOLOv8n 83.20 89.39 87.16 82.30 78.53 78.61

YOLOv10 84.15 90.71 87.79 83.72 81.37 77.18

TomatoGuard-YOLO 94.23 97.59 95.99 94.11 93.07 90.36
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4.8 Visualization of disease
detection results

To visually compare the detection capabilities of the

TomatoGuard-YOLO model , Figure 12 highlights the

performance differences between YOLOv10 and TomatoGuard-

YOLO in representative tomato disease scenarios.

The visual results clearly demonstrate that TomatoGuard-YOLO

outperforms YOLOv10, particularly in handling complex

backgrounds and multi-scale targets. These advantages underscore

the robustness and precision of TomatoGuard-YOLO in accurately

identifying and localizing diseased regions under challenging

conditions, further validating its superiority in practical agricultural

applications. In detecting small targets, TomatoGuard-YOLO

demonstrates extremely high precision, especially in identifying

early disease spots, accurately locating lesions. This is crucial for

timely detection and control measures. In complex situations such as

overlapping and occluded leaves, TomatoGuard-YOLO can still

effectively distinguish disease areas, significantly reducing false

detection rates, showing high robustness in complex scenarios.

Additionally, in uneven lighting or complex shadow backgrounds,

TomatoGuard-YOLO exhibits excellent environmental adaptability,

accurately identifying disease areas, ensuring detection stability under

different lighting conditions. Compared to YOLOv10, TomatoGuard-

YOLO generates more precise bounding boxes, aiding in accurately

assessing the severity and spread of diseases, providing more reliable

support for actual disease assessment. Therefore, by introducing

innovations such as MPIRU, DFAF, and Focal-EIoU loss functions,

TomatoGuard-YOLO significantly improves detection accuracy and

robustness while maintaining model lightweight, excelling in multi-

scale and complex scenarios of tomato disease detection. Moreover,

the model shows outstanding detection performance in quantitative

evaluation metrics, providing strong technical support for

early warning and precise control of tomato diseases in

practical applications.
5 Conclusions and future directions

5.1 Conclusion

This research introduces a highly efficient and lightweight

object detection approach built on an enhanced version of

YOLOv10 for the challenging task of detecting tomato diseases—

TomatoGuard-YOLO. By implementing an innovative model

architecture and conducting thorough experimental evaluations,

notable outcomes have been achieved. The key conclusions are

as follows:
Fron
1. Incorporating the Multi-Path Inverted Residual Unit

(MPIRU) greatly strengthens the model’s capacity for

mult i-scale feature extract ion and integration.

Experimental findings demonstrate that MPIRU not only

boosts detection accuracy but also lowers model

complexity, ensuring effective lightweight detection.
tiers in Plant Science 17
2. The Dynamic Focusing Attention Framework (DFAF)

improves the model’s precision in identifying critical

disease regions. With the C2f module optimized, C2f-

DFAF efficiently captures disease features in complex

environments, significantly enhancing detection

performance with negligible added computational cost.

3. The Focal-EIoU loss function effectively tackles challenges

related to sample imbalance and bounding box regression

accuracy, leading to significant improvements in detecting

small objects and boundary diseases. In addition to

optimizing detection precision, the overall model

performance is further improved.
Experimental results indicate that TomatoGuard-YOLO

achieves better performance than current methods on the tomato

disease dataset. The model achieves an mAP50 of 94.23%, an

improvement of 10.07 percentage points over the original

YOLOv10, with a model size reduction of 52.76%, parameter

count reduction of 65.31%, and an average inference speed

increase to 129.64 FPS. These data fully demonstrate the

method’s outstanding advantages in model accuracy, efficiency,

and lightweight design.

Comparative experiments and visualization results further

validate TomatoGuard-YOLO’s excellent performance in complex

scenarios. Whether in small target detection, differentiation in

complex backgrounds, multi-category disease recognition, or

bounding box precision control, the proposed model shows

significant improvement. These improvements not only provide

reliable technical support for disease detection but also lay a solid

foundation for applications in practical agricultural scenarios.

In summary, the TomatoGuard-YOLO model demonstrates

excellent performance and broad adaptability in tomato disease

detection tasks. Its high accuracy and reliability in disease detection

provide powerful technical tools for disease prevention and

intelligent management in tomato cultivation, offering significant

application value in improving tomato cultivation efficiency and

reducing disease losses.
5.2 Research limitations and
future directions

Despite the significant achievements of TomatoGuard-YOLO

in tomato disease detection, the current study lacks large-scale field

deployment validation, which is crucial for understanding real-

world performance. Future research can further explore the

following aspects:
1. Further optimize the design of MPIRU and C2f-DFAF

modules, deeply study more efficient feature extraction

and attention mechanisms.

2. Another important research direction is to expand the

appl icat ion scope of the model , explor ing i ts

generalization ability in detecting diseases of different

crops, and testing its detection effectiveness in more
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Fron
complex field scenarios to evaluate its robustness

and adaptability.

3. Combining edge computing technology, research on

deployment optimization strategies for the model on

resource-constrained devices is also key to future

development. By optimizing deployment on low-power

devices, computational resource consumption can be

effectively reduced, further enhancing the model’s

practical application value.

4. TomatoGuard-YOLO can work with other agricultural

intelligent systems (drone, IoT devices, etc.), fully

leveraging the complementary advantages of multi-

dimensional data to achieve more comprehensive crop

health management in actual agricultural environments.

This integration can effectively improve early warning

capabilities for diseases, promoting the development of

intelligent and precise agriculture.
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